
M
A
SSA

C
H
U
SE

T
T
S
IN

ST
IT

U
T
E

O
F
T
E
C
H
N
O
L
O
G
Y

P
hysics

D
epartm

ent
P
hysics

8.286:
T
he

E
arly

U
niverse

N
ovem

ber
6,2005

P
rof.A

lan
G
uth

Q
U

IZ
1

S
O

L
U

T
IO

N
S

Q
u
iz

D
ate:

O
ctob

er
18,

2005
C
orrected

11/7/05:
Factors

of
c
A
dded

to
P
roblem

3
Solution

P
R

O
B

L
E
M

1:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(25
points)

(a)
(4

points)
W

hat
w
as

the
first

externalgalaxy
that

w
as

show
n
to

be
at

a
distance

significantly
greater

than
the

m
ost

distant
know

n
ob

jects
in

our
galaxy?

H
ow

w
as

the
distance

estim
ated?

A
ns:

(W
einberg,page

20)
T
he

firstgalaxy
show

n
to

be
at

a
distance

beyond
the

size
of

our
galaxy

w
as

A
ndrom

eda,
also

know
n
by

its
M
essier

num
ber,

M
31.

It
is

the
nearest

spiral
galaxy

to
our

galaxy.
T
he

distance
w
as

determ
ined

(by
H
ubble)

using
C
epheid

variable
stars,for

w
hich

the
absolute

lum
inosity

is
proportional

to
the

period.
A

m
easurem

ent
of

a
particular

C
epheid’s

period
determ

ines
the

star’s
absolute

lum
inosity,

w
hich,

com
pared

to
the

m
easured

lum
inosity,determ

ines
the

distance
to

the
star.

(H
ubble’s

initialm
easurem

ent
of

the
distance

to
A
ndrom

eda
used

a
badly-calibrated

version
of

this
period-

lum
inosity

relationship
and

consequently
underestim

ated
the

distance
by

m
ore

than
a
factor

of
tw

o;
nonetheless,

the
initial

m
easurem

ent
still

show
ed

that
the

A
ndrom

eda
N
ebula

w
as

an
order

ofm
agnitude

m
ore

distant
than

the
m
ost

distant
know

n
ob

jects
in

our
ow

n
galaxy.)

(b)
(5

points)
W

hat
is

recom
bination?

D
id

galaxies
begin

to
form

before
or

after
recom

bination?
W

hy?

A
ns:

(W
einberg,

pages
64

and
73)

R
ecom

bination
refers

to
the

form
ation

of
neutral

atom
s
out

of
charged

nuclei
and

electrons.
G
alaxies

began
to

form
after

recom
bination.

P
rior

to
recom

bination,the
strong

electrom
agnetic

inter-
actions

betw
een

photons
and

m
atter

produced
a
high

pressure
w
hich

effectively
counteracted

the
gravitationalattraction

betw
een

particles.
O
nce

the
universe

becam
e
transparent

to
radiation,the

m
atter

no
longer

interacted
significantly

w
ith

the
photons

and
consequently

began
to

undergo
gravitationalcollapse

into
large

clum
ps.

(c)
(4

points)
In

C
hapter

IV
of

his
book,

W
einberg

develops
a
“recipe

for
a
hot

universe,”
in

w
hich

the
m
atter

of
the

universe
is

described
as

a
gas

in
therm

al
equilbrium

at
a
very

high
tem

perature,
in

the
vicinity

of
10

9
K

(several
thou-

sand
m
illion

degrees
K
elvin).

Such
a
therm

al
equilibrium

gas
is

com
pletely

described
by

specifying
its

tem
perature

and
the

density
ofthe

conserved
quan-

tities.
W

hich
of

the
follow

ing
is

on
this

list
of

conserved
quantities?

C
ircle

as
m
any

as
apply.
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(i)
baryon

num
ber

(ii)
energy

per
particle

(iii)
proton

num
ber

(iv)
electric

charge
(v)

pressure

A
ns:

(W
einberg,

page
91)

T
he

correct
answ

ers
are

(i)
and

(iv).
A

third
con-

served
quantity,lepton

num
ber,w

as
notincluded

in
the

m
ultiple-choice

options.

(d)
(4

points)
T
he

w
avelength

corresponding
to

the
m
ean

energy
ofa

C
M
B
(cosm

ic
m
icrow

ave
background)

photon
today

is
approxim

ately
equal

to
w
hich

of
the

follow
ing

quantities?
(Y

ou
m
ay

w
ish

to
look

up
the

values
of

various
physical

constants
at

the
end

of
the

quiz.)

(i)
2
fm

(2×
10 −

1
5
m
)

(ii)
2
m
icrons

(2×
10 −

6
m
)

(iii)
2
m
m

(2×
10 −

3
m
)

(iv)
2
m
.

A
ns:

(R
yden,

page
23)

T
he

correct
answ

er
is

(iii).

Ifyou
did

not
rem

em
ber

this
num

ber,you
could

estim
ate

the
answ

er
by

rem
em

-
bering

that
the

characteristic
tem

perature
ofthe

cosm
ic
m
icrow

ave
background

is
approxim

ately
3
K
elvin.

T
he

typical
photon

energy
is

then
on

the
order

of
k
T
,
from

w
hich

w
e
can

find
the

frequency
as

E
=

h
ν.

T
he

w
avelength

of
the

photon
is

then
λ
=

ν
/
c.

T
his

approxim
ation

gives
λ
=

5
.3

m
m
,
w
hich

is
not

equalto
the

correct
answ

er,but
it
is
m
uch

closer
to

the
correct

answ
er

than
to

any
of

the
other

choices.

(e)
(4

points)
W

hat
is

the
equivalence

principle?

A
ns:

(R
yden,page

27)
In

its
sim

plest
form

,the
equivalence

principle
says

that
the

gravitationalm
ass

ofan
ob

ject
is
identicalto

its
inertialm

ass.
T
his

equality
im

plies
the

equivalent
statem

ent
that

it
is

im
possible

to
distinguish

(w
ithout

additionalinform
ation)

betw
een

an
observer

in
a
reference

fram
e
accelerating

w
ith

acceleration

a
and

an
observer

in
an

inertialreference
fram

e
sub

ject
to

a
gravitationalforce−

m
o
b
s 
a.

(A
ctually,

w
hat

the
equivalence

principle
really

says
is

that
the

ratio
of

the
gravitationalto

inertialm
asses

m
g /
m

i
is
universal,that

is,independent
of

the
m
aterial

properties
of

the
ob

ject
in

question.
T
he

ratio
does

not
necessarily

need
to

be
1.

H
ow

ever,
once

w
e
know

that
the

tw
o
types

of
m
asses

are
pro-

portional,
w
e
can

sim
ply

define
the

gravitational
coupling

G
to

m
ake

them
equal.

T
o
see

this,
consider

a
theory

of
gravity

w
here

m
g /
m

i
=

q.
T
hen

the
gravitationalforce

law
is

m
i a

=
−
G
M

m
g

r
2

,
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or
a
=

−
G
qM

r
2

.

A
t
this

point,if
w
e
define

G
′=

G
q,w

e
have

a
gravitationaltheory

w
ith

gravi-
tationalcoupling

G
′
and

inertialm
ass

equalto
gravitationalm

ass.)

(f)
(4

points)
W

hy
is

it
diffi

cult
for

E
arth-based

experim
ents

to
look

at
the

sm
all

w
avelength

portion
of

the
graph

of
C
M
B

energy
density

per
w
avelength

vs.
w
avelength?

A
ns:

(W
einberg,

page
67)

T
he

E
arth’s

atm
osphere

is
increasingly

opaque
for

w
avelength

shorter
than

.3
cm

.
T
herefore,

radiation
at

these
w
avelengths

w
ill

be
absorbed

and
rescattered

by
the

E
arth’s

atm
osphere;

observations
of

the
cosm

ic
m
icrow

ave
background

at
sm

allw
avelengths

m
ust

be
perform

ed
above

the
E
arth’s

atm
osphere.

P
R

O
B

L
E
M

2:
E
V

O
L
U

T
IO

N
O

F
A

N
O

P
E
N

,
M

A
T

T
E
R

-D
O

M
IN

A
T

E
D

U
N

IV
E
R

S
E

(30
points)

T
his

question
w
as

P
roblem

5
on

P
roblem

Set
2.

(a)
W
e
use

the
chain

rule
to

w
rite

the
definition

of
the

H
ubble

param
eter

in
term

s
of

derivatives
w
ith

respect
to

θ:H
(θ)

=
1R

d
Rd
θ

d
θd
t
.

T
he

param
etric

equations
for

R
and

t
for

an
open,m

atter-dom
inated

universe
are

given
by

ct
=

α
(sinh

θ−
θ)

R√
κ
=

α
(cosh

θ−
1)

.

R
ecallthat

the
hyperbolic

trigonom
etric

functions
are

differentiated
as

dd
θ
sinh

θ
=

cosh
θ
,

dd
θ
cosh

θ
=

sinh
θ
,

so
the

param
etric

equations
can

be
differentiated

to
give

d
Rd
θ

=
α √

κ
sinh

θ
,

d
t

d
θ
=

αc
(cosh

θ−
1)

=
1

d
θ/
d
t
.
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T
hen

H
(θ)

= [
1

√
κ
α
(cosh

θ−
1) ][α √

κ
sinh

θ ] [
c

α
(cosh

θ−
1) ]

=
csinh

θ

α
(cosh

θ−
1)

2
.

(b)
T
his

problem
can

be
attacked

by
at

least
three

different
m
ethods.

W
hile

you
w
ere

expected
to

use
only

one,
w
e
w
illshow

all
three.

(i)
O
ne

w
ay

to
find

ρ
is

to
useH

2
=

8
π3
G
ρ−

k
c
2

R
2
.

T
his

is
usually

the
safest

m
ethod

to
find

ρ
for

a
cosm

ologicalm
odel,since

the
above

equation
is

one
of

the
generalFriedm

ann
equations.

T
he

equa-
tion

requires
that

the
universe

be
hom

ogeneous
and

isotropic,
but

it
is

valid
for

any
form

ofm
atter.

B
y
contrast,the

tw
o
other

m
ethods

that
w
ill

be
show

n
below

are
valid

only
for

“m
atter-dom

inated”
universes

(i.e.,uni-
verses

that
are

dom
inated

by
nonrelativistic

m
atter,for

w
hich

the
pressure

is
alw

ays
negligible).

O
ne

can
rew

rite
this

equation
as

8
π3
G
ρ
=

H
2
+

k
c
2

R
2
.

R
ecalling

that
w
e
described

open
universes

by
using

κ
≡

−
k,

this
can

be
rew

ritten
as

8
π3
G
ρ
=

H
2−

κ
c
2

R
2
.

R
eplacing

H
by

the
answ

er
in

part
(a)

and
R

by
its

param
etric

equation,
one

finds

8
π3
G
ρ
=

c
2sinh

2
θ

α
2(cosh

θ−
1)

4 −
κ
c
2

α
2κ(cosh

θ−
1)

2

=
c
2

α
2(cosh

θ−
1)

4 [sinh
2
θ−

(cosh
θ−

1)
2 ]

.

N
ow

m
ake

use
of

the
hypertrigonom

etric
identity

cosh
2
θ−

sinh
2
θ
=

1
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to
sim

plify:

sinh
2
θ−

(cosh
θ−

1)
2
=

sinh
2
θ−

cosh
2
θ
+

2
cosh

θ−
1

=
2(cosh

θ−
1)

,

so
8
π3
G
ρ
=

2
c
2

α
2(cosh

θ−
1)

3
.

D
ividing

both
sides

of
the

equation
by

(8π
/3)G

,
one

finds

ρ
=

3
c
2

4
π
G
α

2(cosh
θ−

1)
3
.

(ii)
T
he

equation
for

α
in

the
form

ula
sheet,

α
=

4
π3
G
ρ
R

3

κ
3
/
2c

2
,

can
be

solved
for

ρ
to

give

ρ
=

34
π

α
κ

3
/
2c

2

G
R

3
.

T
hen

substitute
the

param
etric

equation
for

R
(θ):

ρ
=

34
π

α
κ

3
/
2c

2

G

1
α

3κ
3
/
2(cosh

θ−
1)

3

=
3
c
2

4
π
G
α

2(cosh
θ−

1)
3
.

(iii)
ρ
can

also
be

found
from

R̈
=

−
(4
π
/3)G

ρ
R
,
as

long
as

w
e
know

that
the

universe
is

m
atter-dom

inated.
(B

e
careful,

how
ever,

about
applying

this
form

ula
in

other
situations:

if
the

pressure
cannot

be
neglected,then

this
equation

has
to

be
m
odified.)

T
o
evaluate

R̈
,
again

use
the

chain
rule.

Starting
w
ith

Ṙ
,

Ṙ
=

d
Rd
θ

d
θd
t
=

α √
κ
sinh

θ
c

α
(cosh

θ−
1)

=
c √

κ
sinh

θ

cosh
θ−

1
.
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T
hen

R̈
=

d
Ṙd
θ

d
θd
t
=

dd
θ [

c √
κ
sinh

θ

cosh
θ−

1 ]
c

α
(cosh

θ−
1)

=
c
2 √

κ

α
(cosh

θ−
1) [

cosh
θ

cosh
θ−

1 −
sinh

2
θ

(cosh
θ−

1)
2 ]

=
c
2 √

κ

α
(cosh

θ−
1)

3 [cosh
θ(cosh

θ−
1)−

sinh
2
θ ]

=
c
2 √

κ

α
(cosh

θ−
1)

3 (1−
cosh

θ)
=

−
c
2 √

κ

α
(cosh

θ−
1)

2
.

SoR̈
=

−
4
π3
G
ρ
R

=⇒
−

c
2 √

κ

α
(cosh

θ−
1)

2
=

−
4
π3
G
ρ
α √

κ(cosh
θ−

1)
,

and

ρ
=

3
c
2

4
π
G
α

2(cosh
θ−

1)
3
.

(c)
T
he

criticalm
ass

density
satisfies

the
cosm

ologicalevolution
equations

for
k
=

0,so

H
2
=

8
π3
G
ρ

c
.

T
hen

Ω
≡

ρρ
c
=

8
π
G
ρ

3
H

2
.

N
ow

replace
H

by
the

answ
er

to
part

(a),
and

ρ
by

the
answ

er
to

part
(b):

Ω
=

8
π
G3 [

34
π

c
2

G
α

2(cosh
θ−

1)
3 ][

α
2(cosh

θ−
1)

4

c
2sinh

2
θ

]

=
2
cosh

θ−
1

sinh
2
θ

=
2
cosh

θ−
1

cosh
2
θ−

1

=
2

cosh
θ−

1
(cosh

θ
+

1)(cosh
θ−

1)
=

2
cosh

θ
+

1
.

T
he

answ
er

can
be

w
ritten

even
m
ore

com
pactly,

if
one

w
ishes,

by
using

a
further

hypertrigonom
etric

identity:

Ω
=

2
cosh

θ
+

1
=

1
cosh

2
12
θ
=

sech
2
12
θ
.
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(d)
T
he

basic
form

ula
that

determ
ines

the
physical

value
of

the
horizon

distance
is

given
by

E
q.

(5.7)
of

the
lecture

notes:

�
p
,h

o
riz

o
n (t)

=
R
(t) ∫

t

0

c

R
(t ′)

d
t ′
.

T
he

com
plication

here
is
that

R
is
given

as
a
function

of
θ,rather

than
t.

T
he

problem
is
handled,how

ever,by
a
sim

ple
change

of
integration

variables.
O
ne

can
change

the
integralover

t ′to
an

integralover
θ ′,provided

that
one

replaces

d
t ′→

d
t ′

d
θ ′ d

θ ′=
αc
(cosh

θ ′−
1)d

θ ′
.

O
ne

m
ust

also
re-express

the
lim

its
of

integration
in

term
s
of

θ.
So

�
p
,h

o
riz

o
n (θ)

=
R
(θ) ∫

θ

0

c

R
(θ ′)

d
t ′

d
θ ′ d

θ ′

=
α √

κ(cosh
θ−

1) ∫
θ

0

c

α √
κ(cosh

θ ′−
1)

αc
(cosh

θ ′−
1)

d
θ ′

.

=
α
(cosh

θ−
1) ∫

θ

0

d
θ ′=

α
θ(cosh

θ−
1)

.

(e)
T
he

key
to

this
problem

is
the

use
of

pow
er

series
expansions.

In
general,any

suffi
ciently

sm
ooth

function
f(x)

can
be

expanded
about

the
point

x
0
by

the
series

f(x)
=

f(x
0 )

+
11! f ′(x

0 )(x−
x

0 )+
12! f ′′(x

0 )(x−
x

0 )
2

+
13! f ′′′(x

0 )(x−
x

0 )
3
+
...

,

w
here

the
prim

e
is

used
to

denote
a
derivative.

In
particular,the

exponential,
sinh,

and
cosh

functions
can

be
expanded

about
θ
=

0
by

the
form

ulas

e
θ
=

1
+

θ1!
+

θ
2

2!
+

θ
3

3!
+
...

sinh
θ
=

θ
+

θ
3

3!
+

θ
5

5!
+

θ
5

7!
...

cosh
θ
=

1
+

θ
2

2!
+

θ
4

4!
+

θ
6

6!
+
...

.
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For
this

problem
,w

e
expand

the
param

etric
equations

for
R
(θ)

and
t(θ),

keep-
ing

the
first

nonvanishing
term

in
the

pow
er

series
expansions:

t
=

αc
(sinh

θ−
θ)

=
αc (

θ
3

3!
+
... )

R
=

α √
κ(cosh

θ−
1)

=
α √

κ (
θ
2

2!
+
... )

.

T
he

first
expression

can
be

solved
for

θ,
giving

θ≈ (
6
ct

α )
1
/
3

,

w
hich

can
be

substituted
into

the
second

expression
to

give

R
≈

12
α √

κ (
6
ct

α )
2
/
3

.

T
he

pow
er

series
expansions

for
the

sinh
and

cosh
are

valid
w
henever

the
term

s
left

out
are

m
uch

sm
aller

than
the

last
term

kept,w
hich

happens
w
hen

θ�
1.

G
iven

the
above

relation
betw

een
θ
and

t,
this

condition
is

equivalent
to

t�
α6
c
.

T
hus,

t ∗≈
α6
c
,
or

t ∗≈
αc

.

Since
there

is
no

precise
m
eaning

to
the

statem
ent

that
an

approxim
ation

is
valid,

there
is

no
precise

value
for

t ∗.
It

is
possible

to
be

m
ore

precise
by

placing
criteria

on
the

size
of

the
first

om
itted

term
in

the
series,

and
using

these
criteria

to
derive

a
m
ore

precise
value

for
t ∗.

T
hese

expressions
for

t ∗

are
alw

ays
in

the
form

of
a
dim

ensionless
constant

tim
es

α
/
c.

T
his

approach
is

very
good,

but
it

w
as

not
required

to
get

full
credit

for
this

problem
.

(f)
From

part
(c),

the
expression

for
Ω

is
given

by

Ω
=

2
cosh

θ
+
1
.
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So,

1−
Ω

=
1−

2
cosh

θ
+
1
=

cosh
θ−

1
cosh

θ
+

1
.

E
xpanding

num
erator

and
denom

inator
in

pow
er

series,

1−
Ω

≈
θ
2

2
!
+

θ
4

4
!
+
...

2
+

θ
22
!
+
...

.

K
eeping

only
the

leading
term

s,

1−
Ω

≈
θ
222
=

14
θ
2
,

so

1−
Ω

≈
14 (

6
ct

α )
2
/
3

.

T
his

result
show

s
that

the
deviation

of
Ω

from
1
is

am
plified

w
ith

tim
e.

T
his

fact
leads

to
a
conundrum

called
the

“flatness
problem

”,w
hich

w
illbe

discussed
later

in
the

course.

A
com

m
on

m
istake

(very
m
inor)

w
as

to
keep

extra
term

s,
especially

in
the

denom
inator.

K
eeping

extra
term

s
allow

s
a
higher

degree
ofaccuracy,so

there
is
nothing

w
rong

w
ith

it.
H
ow

ever,one
should

alw
ays

be
sure

to
keep

a
llterm

s
of

a
given

order,since
keeping

only
a
subset

of
term

s
m
ay

or
m
ay

not
increase

the
accuracy.

In
this

case,
an

extra
term

in
the

denom
inator

can
be

rew
ritten

as
a
term

in
the

num
erator:

θ
2

2
!

2
+

θ
2

2
!

=
14

θ
2

1
+

θ
24

=
14
θ
2 (

1−
θ
24
+
... )

=
14
θ
2−

116
θ
4
+
...

,

w
here

I
used

the
expansion

1
1
+
x
=

1−
x
+
x

2−
x

3
+
x

4
+
...

.

T
hus,the

extra
term

in
the

denom
inator

is
equivalent

to
a
term

in
the

num
er-

ator
of

order
θ
4,but

other
term

s
proportionalto

θ
4
have

been
dropped.

So,it
is

not
w
orthw

hile
to

keep
the

2nd
term

in
the

expansion
of

the
denom

inator.
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3:
T

R
A

C
IN

G
A

L
IG

H
T

P
U

L
S
E

T
H

R
O

U
G

H
A

R
A

D
IA

T
IO

N
-D

O
M

IN
A
T

E
D

U
N

IV
E
R

S
E

(25
points)

(a)
T
he

physicalhorizon
distance

is
given

in
generalby

�
p
,h

o
riz

o
n
=

R
(t) ∫

t
f

0

c

R
(t)

d
t
,

so
in

this
case

�
p
,h

o
riz

o
n
=

bt
1
/
2 ∫

t
f

0

c

bt
1
/
2
d
t
=

2
ct

f
.

(b)
If

the
source

is
at

the
horizon

distance,
it

m
eans

that
a
photon

leaving
the

source
at

t
=

0
w
ould

just
be

reaching
the

origin
at

t
f .

So,
t
e
=

0
.

(c)
T
he

coordinate
distance

betw
een

the
source

and
the

origin
is

the
coordinate

horizon
distance,given

by

�
c
,h

o
riz

o
n
= ∫

t
f

0

c

bt
1
/
2
d
t
=

2
ct

1
/
2

fb
.

(d)
T
he

photon
starts

at
coordinate

distance
2c √

t
f
/
b,

and
by

tim
e
t
it

w
ill

have
traveled

a
coordinate

distance∫
t

0

c

bt ′1
/
2
d
t ′=

2
c √

t

b

tow
ard

the
origin.

T
hus

the
photon

w
illbe

at
coordinate

distance

�
c
=

2
cb (√

t
f −

√
t )

from
the

origin,and
hence

a
physicaldistance

�
p (t)

=
R
(t)�

c
=

2
c ( √

t
t
f −

t )
.

(e)
T
o
find

the
m
axim

um
of

�
p (t),w

e
differentiate

it
and

set
the

derivative
to

zero:

d
�
p

d
t

= (√
t
ft
−
2 )

c
,
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so
the

m
axim

um
occurs

w
hen

√
t
f

t
m

a
x
=

2
,

or

t
m

a
x
=

14
t
f
.

P
R

O
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L
E
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4:
T

R
A

N
S
V

E
R

S
E

D
O

P
P

L
E
R

S
H

IF
T

S
(20

points)

(a)
D
escribing

the
events

in
the

coordinate
system

show
n,

the
X
anthu

is
at

rest,
so

its
clocks

run
at

the
sam

e
speed

as
the

coordinate
system

tim
e
variable,

t.
T
he

em
ission

of
the

w
avecrests

of
the

radio
signalare

therefore
separated

by
a

tim
e
intervalequalto

the
tim

e
intervalas

m
easured

by
the

source,the
X
anthu:

∆
t
=

∆
t
s
.

Since
the

E
m
m
erac

is
m
oving

perpendicular
to

the
path

of
the

radio
w
aves,

at
the

m
om

ent
of

reception
its

distance
from

the
X
anthu

is
at

a
m
inim

um
,

and
hence

its
rate

of
change

is
zero.

H
ence

successive
w
avecrests

w
ill

travel
the

sam
e
distance,

as
long

as
c∆

t�
a.

Since
the

w
avecrests

travel
the

sam
e

distance,
the

tim
e
separation

of
their

arrival
at

the
E
m
m
erac

is
∆
t,

the
sam

e
as

the
tim

e
separation

oftheir
em

ission.
T
he

clocks
on

the
E
m
m
erac,how

ever,
and

running
slow

ly
by

a
factor

ofγ
=

1
√

1−
v
2

c
2

.

T
he

tim
e
interval

betw
een

w
ave

crests
as

m
easured

by
the

receiver,
on

the
E
m
m
erac,is

therefore
sm

aller
by

a
factor

of
γ,

∆
t
r
=

∆
t
s

γ
.

T
hus,there

is
a

blueshift.
T
he

redshift
param

eter
z
is

defined
by

∆
t
r

∆
t
s
=

1
+
z
,

so
1γ
=

1
+
z
,
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or

z
=

1−
γ

γ
.

R
ecallthat

γ
>

1,so
z
is

negative.

(b)
D
escribing

this
situation

in
the

coordinate
system

show
n,this

tim
e
the

source
on

the
X
anthu

is
m
oving,

so
the

clocks
at

the
source

are
running

slow
ly.

T
he

tim
e
betw

een
w
avecrests,m

easured
in

coordinate
tim

e
t,is

therefore
larger

by
a
factor

of
γ
than

∆
t
s ,the

tim
e
as

m
easured

by
the

clock
on

the
source:

∆
t
=

γ
∆
t
s
.

Since
the

radio
signal

is
em

itted
w
hen

the
X
anthu

is
at

its
m
inim

um
separa-

tion
from

the
E
m
m
erac,

the
rate

of
change

of
the

separation
is

zero,
so

each
w
avecrest

travels
the

sam
e
distance

(again
assum

ing
that

c∆
t�

a).
Since

the
E
m
m
erac

is
at

rest,its
clocks

run
at

the
sam

e
speed

as
the

coordinate
tim

e
t,

and
hence

the
tim

e
intervalbetw

een
crests,as

m
easured

by
the

receiver,is

∆
t
r
=

∆
t
=

γ
∆
t
s
.

T
hus

the
tim

e
intervalas

m
easured

by
the

receiver
is
longer

than
that

m
easured

by
the

source,and
hence

it
is
a

redshift.
T
he

redshift
param

eter
z
is
given

by

1
+
z
=

∆
t
r

∆
t
s
=

γ
,

so

z
=

γ−
1
.

(c)
T
he

events
described

in
(a)

can
be

m
ade

to
look

a
lot

like
the

events
described

in
(b)

by
transform

ing
to

a
fram

e
of

reference
that

is
m
oving

to
the

right
at

speed
v
0
—

i.e.,
by

transform
ing

to
the

rest
fram

e
of

the
E
m
m
erac.

In
this

fram
e
the

E
m
m
erac

is
of

course
at

rest,
and

the
X
anthu

is
traveling

on
the

trajectory
(x=

−
v
0 t,y=

a
,z=

0)
,

as
in

part
(b).

H
ow

ever,
just

as
the

transform
ation

causes
the

x-com
ponent

of
the

velocity
of

the
X
anthu

to
change

from
zero

to
a
negative

value,
so

the
x-com

ponent
ofthe

velocity
ofthe

radio
signalw

illbe
transform

ed
from

zero
to

a
negative

value.
T
hus

in
this

fram
e
the

radio
signalw

illnot
be

traveling
along

the
y-axis,so

the
events

w
illnot

m
atch

those
described

in
(b).

T
he

situations
described

in
(a)

and
(b)

are
therefore

physically
distinct

(w
hich

they
m
ust

be
if
the

redshifts
are

different,as
w
e
calculated

above).


