$\kappa_{\text {I }}$ dde se रuru

 universe," in which the matter of the universe is described as a gas in thermal © (4 points) In Chapter IV of his book, Weinberg develops a "recipe for a hot large clumps.

 recombination? Why?

 was the distance estimated?

 SNOLLATOS I Zinô Prof. Alan Guth Physics 8.286: The Early Universe

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
$\frac{z^{\iota}}{{ }^{6} u{ }^{\iota}}-=n^{?} u$ gravitational force law is
 portional, we can simply define the gravitational coupling G to make them

 gravitational to inertial masses m_{g} / m_{i} is universal, that is, independent of the
(Actually, what the equivalence principle really says is that the ratio of the gravitational force $-m_{o b s} \vec{a}$.

 (4 points) What is the equivalence principle? any of the other choices.
 photon is then $\lambda=\nu / c$. This approximation gives $\lambda=5.3 \mathrm{~mm}$, which is not
 is approximately 3 Kelvin. The typical photon energy is then on the order of bering that the characteristic temperature of the cosmic microwave background If you did not remember this number, you could estimate the answer by remem-
 (iv) 2 m . (iii) $2 \mathrm{~mm}\left(2 \times 10^{-3} \mathrm{~m}\right)$ (ii) 2 microns $\left(2 \times 10^{-6} \mathrm{~m}\right)$
 constants at the end of the quiz.)
 microwave background) photon today is approximately equal to which of the

Now make use of the hypertrigonometric identity

:
$\frac{\varepsilon(\mathrm{I}-\theta \mathrm{USOO})_{Z} O \supseteq \Perp \sqcap}{}=d$
$z^{\supset} \mathcal{E}$

$$
\theta \frac{Z}{\mathrm{~L}}{ }_{z} \text { Чวəs }=\frac{\theta \frac{\mathrm{Z}}{\mathrm{~L}}{ }_{\mathrm{Z}} \mathrm{\Psi SO} \mathrm{\partial}}{\mathrm{~L}}=\frac{\mathrm{I}+\theta \mathrm{\Psi SO} \mathrm{\partial}}{\tau}=\mho
$$

The answer can be written even more compactly, if one wishes, by using a
(c) The critical mass density satisfies the cosmological evolution equations for $k=$
0, so

$\ell_{p, \text { horizon }}(\theta)$	$=R(\theta) \int_{0}^{\theta} \frac{c}{R\left(\theta^{\prime}\right)} \frac{d t^{\prime}}{d \theta^{\prime}} d \theta^{\prime}$
	$=\alpha \sqrt{\kappa}(\cosh \theta-1) \int_{0}^{\theta} \frac{c}{\alpha \sqrt{\kappa}\left(\cosh \theta^{\prime}-1\right)} \frac{\alpha}{c}\left(\cosh \theta^{\prime}-1\right) d \theta^{\prime}$.
	$=\alpha(\cosh \theta-1) \int_{0}^{\theta} d \theta^{\prime}=\alpha \theta(\cosh \theta-1)$.
(e) The key to this problem is the use of power series expansions. In general, any	
sufficiently smooth function $f(x) \operatorname{can}$ be expanded about the point x_{0} by the	
series	
$\qquad f(x)=f\left(x_{0}\right)+\frac{1}{1!} f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}$	
	$+\frac{1}{3!} f^{\prime \prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{3}+\ldots$,

where the prime is used to denote a derivative. In particular, the exponential,
sinh, and cosh functions can be expanded about $\theta=0$ by the formulas

$$
e^{\theta}=1+\frac{\theta}{1!}+\frac{\theta^{2}}{2!}+\frac{\theta^{3}}{3!}+\ldots
$$

can change the integral over t^{\prime} to an integral over θ^{\prime}, provided that one replaces problem is handled, however, by a simple change of integration variables. One The complication here is that R is given as a function of θ, rather than t. The
(d) The basic formula that determines the physical value of the horizon distance
is given by Eq. (5.7) of the lecture notes:
p. 7
(f) From part (c), the expression for Ω is given by
$\Omega=\frac{2}{\cosh \theta+1}$. is very good, but it was not required to get full credit for this problem.
 these criteria to derive a more precise value for t^{*}. These expressions for t^{*} placing criteria on the size of the first omitted term in the series, and using
 Since there is no precise meaning to the statement that an approximation is

Thus,
Given the above relation between θ and t, this condition is equivalent to

which can be substituted into the second expression to give

The first expression can be solved for θ, giving
 ing the first nonvanishing term in the power series expansions: For this problem, we expand the parametric equations for $R(\theta)$ and $t(\theta)$, keep-
Thus, the extra term in the denominator is equivalent to a term in the numer-

the accuracy. In this case, an extra term in the denominator can be rewritten
as a term in the numerator:
 is nothing wrong with it. However, one should always be sure to keep all terms

 fact leads to a conundrum called the "flatness problem", which will be discussed
later in the course. This result shows that the deviation of Ω from 1 is amplified with time. This

(e) To find the maximum of $\ell_{p}(t)$, we differentiate it and set the derivative to zero:

$$
\left(\underline{q} \mu-\underline{f_{7}} \mu\right) \frac{q}{\partial_{Z}}={ }^{\circ} \gamma
$$

toward the origin. Thus the photon will be at coordinate distance

$\frac{q}{7 \wedge \partial Z}={ }_{\lambda} \not 卩 \frac{z / \mathrm{L} \uparrow q}{\partial}{ }_{\imath}^{0}$

(d) The photon starts at coordinate distance $2 c \sqrt{t_{f}} / b$, and by time t it will have
traveled a coordinate distance

 source at $t=0$ would just be reaching the origin at t_{f}. So, $t_{e}=0$.
əऽeว S!̣Ч7 U!̣ OS

(a) The physical horizon distance is given in general by

8.286 QUIZ 1 SOLUTIONS, FALL 2005
$6 \cdot d$

$\frac{d \ell_{p}}{d t}=\left(\sqrt{\frac{t_{f}}{t}}-2\right) c$

$\frac{\cdots+\frac{i z}{z \theta}+\tau}{\cdots+\frac{i \hbar}{\ddagger \theta}+\frac{\mathrm{i} z}{z^{\theta}}} \approx \mho-\mathrm{I}$
Expanding numerator and denominator in power series,
$\frac{\mathrm{I}+\theta \text { YSOo }}{\mathrm{I}-\theta \text { YSOD }}=\frac{\mathrm{I}+\theta \text { YSOO }}{Z}-\mathrm{I}=\mho-\mathrm{I}$

