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PROBLEM 1: DID YOU DO THE READING? (25 points)

(a) (4 points) For an open universe with a positive mass density, Ryden shows (in
chapter 4) that the radius of curvature Rcurv ≡ R(t)/

√−k and the Hubble
length �Hubble ≡ c/H0 obey one of the following relations:

(i) Rcurv > �Hubble

(ii) Rcurv = �Hubble

(iii) Rcurv < �Hubble

Which of these relations is true?

Ans: (Ryden, page 50) The correct answer is (i).

(b) (6 points) Give a derivation of the relation in part (a).

Ans: (Ryden, page 50) The Friedmann equation (in our notation) is

H2 =
8πG
3

ρ− kc2

R2
=

8πG
3

ρ+
c2

R2
curv

,

where we have substituted the definition of the radius of curvature Rcurv ≡
R(t)/

√−k. Dividing through by c2, we have

1
�2Hubble

=
8πG
3c2

ρ+
1

R2
curv

.

Since ρ > 0, we must have
1

�2Hubble

>
1

R2
curv

and therefore
Rcurv > �Hubble.

(c) (5 points) As Ryden discusses in chapter 5, the universe today contains not
only the photons of the cosmic microwave background (CMB), but also pho-
tons that originated as starlight. Including both direct starlight and starlight
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absorbed and reradiated by dust, the ratio of energy densities εStarlight/εCMB

has approximately which of the following values:

(i) 10−10 (ii) 10−5 (iii) 10−1 (iv) 105 (v) 1010

Ans: (Ryden, page 66) The correct answer is (iii).

(d) (10 points) For a flat universe that contains only radiation and nonrelativistic
matter, Ryden (chapter 6) writes the Friedmann equation as

H2

H2
0

=
Ωr,0

a4
+

Ωm,0

a3
,

where H0 refers to the present value of the Hubble parameter H, and Ωr,0 and
Ωm,0 refer to the present values of the mass densities in radiation and matter,
respectively, compared to the critical density. Ryden rearranges this formula
to take the form

H0 dt =
ada
A

[
1 +

a

arm

]B

, (1)

where A and B are constants that might depend on the parameters H0, Ωr,0,
and Ωm,0. (Ryden wrote A andB explicitly, but for the purpose of this question
I have not.) arm is the scale factor of radiation-matter equality: i.e., the scale
factor when the energy densities of radiation and matter are equal. Recall that
a(t) is the notation Ryden uses for the scale factor, which in the Lecture Notes
is called R(t).

(i) (4 points) Write an expression for arm in terms of all or some of the
parameters H0, Ωr,0, and Ωm,0.

Ans: (Ryden, page 68) By definition, arm is the value of the scale factor when
ρr(arm) = ρm(arm). The energy density in radiation at an arbitrary value of
the scale factor is related to its present-day value ρr,0 by ρr(a) = ρr,0/a

4, while
the energy density of matter is given by ρm(a) = ρm,0/a

3. (We use Ryden’s
normalization for the scale factor, a0 = a(t0) = 1; otherwise, we would need
to carry around an arbitrary constant setting the normalization of a notch.)
Therefore the statement that the energy densities in radiation and matter were
equal at arm can be written

ρr,0

a4
rm

=
ρm,0

a3
rm

.

Dividing both sides by the critical density gives

Ωr,0

a4
rm

=
Ωm,0

a3
rm

,
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which can be solved to yield

arm =
Ωm,0

Ωr,0
.

(Notice that if we had not set a0 = 1, this equation would need to include the
arbitrary constant controlling the definition of a notch.)

(ii) (6 points) Derive Eq. (1) above, and find the values of A and B.

Ans: (Ryden, page 94) Starting from the form of the Friedmann equation given
above, we pull out an overall factor of Ωr,0/a

4 on the right-hand side,

H2

H2
0

=
Ωr,0

a4

(
1 +

a

arm

)
.

Taking the square root yields

H

H0
=

da

adtH0
=

Ω1/2
r,0

a2

(
1 +

a

arm

)1/2

,

which we rearrange to obtain

H0dt =
ada

Ω1/2
r,0

(
1 +

a

arm

)−1/2

.

This lets us read off the values of A and B,

A = Ω1/2
r,0 , B = −1

2
.

(e) BONUS QUESTION (1 point): Where does Barbara Ryden suggest writing
the Friedmann equation?

(Ryden, page 49) On your forehead.
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PROBLEM 2: TIME EVOLUTION OF A UNIVERSE WITH MYSTE-
RIOUS STUFF (20 points)

(a) The Friedmann equation in a flat universe is

(
Ṙ

R

)2

=
8πG
3

ρ.

Substituting ρ = const/R5 and taking the square root of both sides gives

Ṙ

R
= αR−5/2 ,

for some constant α. Rearranging to a form we can integrate,

dRR3/2 = αdt,

and therefore
2
5
R5/2 = αt.

Notice that once again we have eliminated the arbitrary integration constant
by choosing the Big Bang boundary conditions R = 0 at t = 0. Solving for R
yields

R ∝ t2/5.

(b) The Hubble parameter is, from its definition,

H =
Ṙ

R
=

2
5t
,

where we have used the time dependence of R(t) that we found in part (a).
(Notice that we don’t need to know the constant of proportionality left unde-
termined in part (a), as it cancels between numerator and denominator in this
calculation.)

(c) Recall that the horizon distance is the physical distance traveled by a light ray
since t = 0,

�p,horizon(t) = R(t)
∫ t

0

c dt′

R(t′)
.
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Using R(t) ∝ t2/5, we find

�p,horizon(t) = ct2/5

∫ t

0

dt′ t′−2/5

or

�p,horizon(t) = ct2/5

(
5
3
t3/5

)
=

5
3
ct.

(d) Since we know the Hubble parameter, we can find the mass density ρ(t) easily
from the Friedmann equation,

ρ(t) =
3H2

8πG
.

Using the result from part (b), we find

ρ(t) =
3

50πG
1
t2
.

As a check on our algebra, since we found in (a) that R ∝ t2/5, and knew at
the beginning of the calculation that ρ ∝ R−5, we should find, as we do here,
that ρ ∝ t−2. Notice, however, that in this case we do not leave our answer in
terms of some undetermined constant of proportionality; the units of ρ are not
arbitrary, and therefore we care about its normalization.

PROBLEM 3: AN EXERCISE IN TWO-DIMENSIONAL METRICS
(30 points)

(a) Since
r(θ) = (1 + ε sin θ) r0 ,

as the angular coordinate θ changes by dθ, r changes by

dr = εr0 cos θ dθ .

ds2 is then given by

ds2 = dr2 + r2dθ2

= ε2r20 cos
2 θ dθ2 + (1 + ε sin θ)2 r20 dθ

2

=
[
ε2 cos2 θ + 1 + 2ε sin θ + ε2 sin2 θ

]
r20 dθ

2

=
[
1 + ε2 + 2ε sin θ

]
r20 dθ

2 ,
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so
ds = r0

√
1 + ε2 + 2ε sin θ dθ .

Since θ runs from θ1 to θ2 as the curve is swept out,

S = r0

∫ θ2

θ1

√
1 + ε2 + 2ε sin θ dθ .

(b) Since θ does not vary along this path,

ds =

√
1 +

r2

a2
dr ,

and so

R =
∫ r0

0

√
1 +

r2

a2
dr .

(c) Since the metric does not contain a term in dr dθ, the r and θ directions are
orthogonal. Thus, if one considers a small region in which r is in the interval r′

to r′+dr′, and θ is in the interval θ′ to θ′+dθ′, then the region can be treated as
a rectangle. The side along which r varies has length dsr =

√
1 + (r′2/a2) dr′,

while the side along which θ varies has length dsθ = r′ dθ′. The area is then

dA = dsr dsθ = r′
√

1 + (r′2/a2) dr′ dθ′ .

To cover the area for which r < r0, r′ must be integrated from 0 to r0, and θ′

must be integrated from 0 to 2π:

A =
∫ r0

0

dr′
∫ 2π

0

dθ′ r′
√

1 + (r′2/a2) .

But ∫ 2π

0

dθ′ = 2π ,

so

A = 2π
∫ r0

0

dr′ r′
√
1 + (r′2/a2) .
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You were not asked to carry out the integration, but it can be done by using
the substitution u = x2, so du = 2xdx. The result is

A =
2π
3
a2

[(
1 +

r20
a2

)3/2

− 1

]
.

(d) The nonzero metric coefficients are given by

grr = 1 +
r2

a2
, gθθ = r2 ,

so the metric is diagonal. For i = 1 = r, the geodesic equation becomes

d
ds

{
grr

dr
ds

}
=

1
2
∂grr

∂r

dr
ds

dr
ds

+
1
2
∂gθθ

∂r

dθ
ds

dθ
ds

,

so if we substitute the values from above, we have

d
ds

{(
1 +

r2

a2

)
dr
ds

}
=

1
2
∂

∂r

(
1 +

r2

a2

)(
dr
ds

)2

+
1
2
∂r2

∂r

(
dθ
ds

)2

.

Simplifying slightly,

d
ds

{(
1 +

r2

a2

)
dr
ds

}
=

r

a2

(
dr
ds

)2

+ r

(
dθ
ds

)2

.

The answer above is perfectly acceptable, but one might want to expand the
left-hand side:

d
ds

{(
1 +

r2

a2

)
dr
ds

}
=

2r
a2

(
dr
ds

)2

+
(
1 +

r2

a2

)
d2r

ds2
.

Inserting this expansion into the boxed equation above, the first term can be
brought to the right-hand side, giving

(
1 +

r2

a2

)
d2r

ds2
= − r

a2

(
dr
ds

)2

+ r

(
dθ
ds

)2

.
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The i = 2 = θ equation is simpler, because none of the gij coefficients depend
on θ, so the right-hand side of the geodesic equation vanishes. One has simply

d
ds

{
r2

dθ
ds

}
= 0 .

For most purposes this is the best way to write the equation, since it leads
immediately to r2(dθ/ds) = const. However, it is possible to expand the deriv-
ative, giving the alternative form

r2
d2θ

ds2
+ 2r

dr
ds

dθ
ds

= 0 .

PROBLEM 4: TRAJECTORIES IN AN OPEN UNIVERSE (25 points)

(a) Since r and φ are not changing,

c2 dτ 2 = c2 dt2 −R2(t)r20dθ
2 ,

from which it follows that(
dτ
dt

)2

= 1− 1
c2
R2(t)r20

(
dθ
dt

)2

.

Taking a square root,

dτ
dt

=

√
1− 1

c2
R2(t)r20

(
dθ
dt

)2

.

(b)
dt
dτ

=
1
dτ
dt

,

so

dt
dτ

=

1√
1− 1

c2
R2(t)r20

(
dθ
dt

)2 .
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(c) A clock attached to the object would read the proper time τ , so

τ =
∫ t2

t1

dτ
dt

dt =
∫ t2

t1

dt

√
1− 1

c2
R2(t)r20

(
dθp

dt

)2

.

Note that the subscript p on θp is necessary, as it indicates that we are using
the specific function θp(t) specified in the problem.

(d) We start with the general form for the geodesic equation, as taken from the
formula sheet:

d
dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ
dxσ

dτ
.

The metric is diagonal, with nonzero entries

gtt = c2 grr = − R2(t)
1 + r2

gθθ = −R2(t)r2 gφφ = −R2(t)r2 sin2 θ .

The equation is valid for each value of µ, but to find the θ-equation we consider
the case µ = θ. Then the diagonal property of the metric implies that only
ν = θ will contribute to the sum over ν. The left-hand side is then

LHS =
d
dτ

{
gθθ

dθ
dτ

}
=

d
dτ

{
−R2(t)r2

dθ
dτ

}
.

In evaluating the right-hand-side, µ = θ, while (λ, σ) can take on only the
values (t, t) and (θ, θ), as the other terms vanish as a consequence of the fact
that dr/dt = dφ/dt = 0. Thus,

RHS =
1
2

(
∂gtt

∂θ

)(
dt
dτ

)2

+
1
2

(
∂gθθ

∂θ

)(
dθ
dτ

)2

=
1
2

(
∂c2

∂θ

)(
dt
dτ

)2

+
1
2

(
∂[−R2(t)r2 ]

∂θ

)(
dθ
dτ

)2

= 0 .

Thus, the equation becomes

d
dτ

{
R2(t)r2

dθ
dτ

}
= 0 .
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(e) This time we choose µ = r, and then only ν = r will give a nonzero contribution
to the sum over ν. Thus,

LHS =
d
dτ

{
grr

dr
dτ

}
=

d
dτ

{
− R2(t)
1 + r2

dr
dτ

}
.

For the right-hand-side, we again need only include the terms (λ, σ) = (t, t)
and (λ, σ) = (θ, θ), so

RHS =
1
2

(
∂gtt

∂r

)(
dt
dτ

)2

+
1
2

(
∂gθθ

∂r

)(
dθ
dτ

)2

=
1
2

(
∂c2

∂r

)(
dt
dτ

)2

+
1
2

(
∂[−R2(t)r2 ]

∂r

)(
dθ
dτ

)2

= −rR2(t)
(
dθ
dτ

)2

.

Finally, then, the geodesic equation is

d
dτ

{
R2(t)
1 + r2

dr
dτ

}
= rR2(t)

(
dθ
dτ

)2

.

This equation does not allow r(τ ) = r0 as a solution, because this would imply
that dr/dτ = 0; the left-hand side of the geodesic equation would then vanish,
while the right-hand side does not.


