

әлеч ұsnu әм ‘ $0<d$ әәи!̣

$R(t) / \sqrt{-k}$. Dividing through by c^{2}, we have where we have substituted the definition of the radius of curvature $R_{\text {curv }} \equiv$ Ans: (Ryden, page 50) The Friedmann equation (in our notation) is
(b) (6 points) Give a derivation of the relation in part (a).

Which of these relations is true?

(i) $R_{\text {curv }}>\ell_{\text {Hubble }}$
$H^{2}=\frac{8 \pi G}{3} \rho-\frac{k c^{2}}{R^{2}}=\frac{8 \pi G}{3} \rho+\frac{c^{2}}{R_{\mathrm{curv}}^{2}}$
әлојә.эәч рие
әqqn 2
ncurv

chapter 4) that the radius of curvature $R_{\text {curv }} \equiv R(t) / \sqrt{-k}$ and the Hubble

 snoiuntos z zino Physics Department
Physics 8.286: The Early Universe MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(c) Recall that the horizon distance is the physical distance traveled by a light ray

yields

 әлодәләчд рие
for some constant α. Rearranging to a form we can integrate,
$\bar{R}=\alpha R^{-5 / 2}$,
$\frac{R}{R}=\alpha R^{-5 / 2}$,
Substituting $\rho=$ const $/ R^{5}$ and taking the square root of both sides gives
 PROBLEM 2: TIME EVOLUTION OF A UNIVERSE WITH MYSTE-
RIOUS STUFF (20 points)
(a) The Friedmann equation in a flat universe is

8.286 QUIZ 2 SOLUTIONS, FALL 2005 p. 5			
Using $R(t) \propto t^{2 / 5}$, we find			
$\ell_{p, \text { horizon }}(t)=c t^{2 / 5} \int_{0}^{t} d t^{\prime} t^{\prime-2 / 5}$			
or			
$\ell_{p, \text { horizon }}(t)=c t^{2 / 5}\left(\frac{5}{3} t^{3 / 5}\right)=\frac{5}{3} c t .$			
(d) Since we know the Hubble parameter, we can find the mass density $\rho(t)$ easily from the Friedmann equation,			
$\rho(t)=\frac{3 H^{2}}{8 \pi G} .$			
Using the result from part (b), we find			
$\rho(t)=\frac{3}{50 \pi G} \frac{1}{t^{2}}$.			
As a check on our algebra, since we found in (a) that $R \propto t^{2 / 5}$, and knew at the beginning of the calculation that $\rho \propto R^{-5}$, we should find, as we do here, that $\rho \propto t^{-2}$. Notice, however, that in this case we do not leave our answer in terms of some undetermined constant of proportionality; the units of ρ are not arbitrary, and therefore we care about its normalization.			
PROBLEM 3: AN EXERCISE IN TWO-DIMENSIONAL METRICS (30 points)			
(a) Since $\quad r(\theta)=(1+\epsilon \sin \theta) r_{0}$			
as the angular coordinate θ changes by $\mathrm{d} \theta, r$ changes by			
$\mathrm{d} r=\epsilon r_{0} \cos \theta \mathrm{~d} \theta$			
$\mathrm{d} s^{2}$ is then given by			
$\mathrm{d} s^{2}=\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}$			
$=\epsilon^{2} r_{0}^{2} \cos ^{2} \theta \mathrm{~d} \theta^{2}+(1+\epsilon \sin \theta)^{2} r_{0}^{2} \mathrm{~d} \theta^{2}$			
$=\left[\epsilon^{2} \cos ^{2} \theta+1+2 \epsilon \sin \theta+\epsilon^{2} \sin ^{2} \theta\right] r_{0}^{2} \mathrm{~d} \theta^{2}$			

