Dividing both sides by the	(c) (5 points) As Ryden discusses in chapter 5, the universe today contains not only the photons of the cosmic microwave background (CMB), but also pho- tons that originated as starlight. Including both direct starlight and starlight	
	and therefore $R_{ m curv} > \ell_{ m Hubble}.$	
to carry around an arbitre Therefore the statement th equal at a_{rm} can be writte	Since $\rho > 0$, we must have $\frac{1}{\ell_{\text{Hubble}}^2} > \frac{1}{R_{\text{curv}}^2}$	
the scale factor is related to the energy density of matt normalization for the scale	$rac{1}{\ell_{ m Hubble}^2} = rac{8\pi G}{3c^2} ho + rac{1}{R_{ m curv}^2}.$	
Ans: (Ryden, page 68) By $\rho_r(a_{rm}) = \rho_m(a_{rm})$. The	where we have substituted the definition of the radius of curvature $R_{\text{curv}} \equiv R(t)/\sqrt{-k}$. Dividing through by c^2 , we have	
is called $R(t)$. (i) (4 points) Write an enders H_0 Or $_0$	$H^2 = rac{8\pi G}{3} ho - rac{kc^2}{R^2} = rac{8\pi G}{3} ho + rac{c^2}{R_{ m curv}^2},$	
I have not.) a_{rm} is the sca factor when the energy den a(t) is the notation Ryden	(b) (6 points) Give a derivation of the relation in part (a).Ans: (Ryden, page 50) The Friedmann equation (in our notation) is	
where A and B are constants A	Ans: (Ryden, page 50) The correct answer is (i).	
Н	Which of these relations is true?	
to take the form	${\rm (iii)} \ \ R_{\rm curv} < \ell_{\rm Hubble}$	
$\Omega_{m,0}$ refer to the present virtual respectively, compared to γ	(ii) $R_{ m curv} = \ell_{ m Hubble}$	
where H_0 refers to the pres	(i) $R_{ m curv} > \ell_{ m Hubble}$	
	(a) (4 points) For an open universe with a positive mass density, Ryden shows (in chapter 4) that the radius of curvature $R_{curv} \equiv R(t)/\sqrt{-k}$ and the Hubble length $\ell_{\text{Hubble}} \equiv c/H_0$ obey one of the following relations:	
(d) (10 points) For a flat unive matter, Ryden (chapter 6)	PROBLEM 1: DID YOU DO THE READING? (25 points)	
Ans: (Ryden, page 66) The	Quiz Date: November 10, 2005	
(i) 10^{-10} (ii) 10^{-5}	QUIZ 2 SOLUTIONS	
absorbed and reradiated by has approximately which o	Physics 8.286: The Early Universe November 29, 2005 Prof. Alan Guth	
8.286 QUIZ 2 SOLUTIONS, FALL 20	MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department	

005

of the following values: y dust, the ratio of energy densities $\varepsilon_{\text{Starlight}}/\varepsilon_{\text{CMB}}$

$$)^{-10}$$
 (ii) 10^{-5} (iii) 10^{-1} (iv) 10^{5} (v) 10^{10}

le correct answer is (iii).

rse that contains only radiation and nonrelativistic writes the Friedmann equation as

$$rac{H^2}{H_0^2} = rac{\Omega_{r,0}}{a^4} + rac{\Omega_{m,0}}{a^3} + rac{\Omega_{m,0}}{a^3}$$

the critical density. Ryden rearranges this formula alues of the mass densities in radiation and matter, sent value of the Hubble parameter H, and $\Omega_{r,0}$ and

$$H_0 dt = \frac{a da}{A} \left[1 + \frac{a}{a_{rm}} \right]^B , \qquad (1)$$

uses for the scale factor, which in the Lecture Notes isities of radiation and matter are equal. Recall that le factor of radiation-matter equality: i.e., the scale and B explicitly, but for the purpose of this question nts that might depend on the parameters H_0 , $\Omega_{r,0}$,

and $\Omega_{m,0}$. expression for a_{rm} in terms of all or some of the

Ĕ nat the energy densities in radiation and matter were ter is given by $\rho_m(a) = \rho_{m,0}/a^3$. (We use Ryden's definition, a_{rm} is the value of the scale factor when energy density in radiation at an arbitrary value of ary constant setting the normalization of a notch.) o its present-day value $\rho_{r,0}$ by $\rho_r(a) = \rho_{r,0}/a^4$, while factor, $a_0 = a(t_0) = 1$; otherwise, we would need

$$rac{
ho_{r,0}}{a_{rm}^4} = rac{
ho_{m,0}}{a_{rm}^3}.$$

critical density gives

$$rac{\Omega_{r,0}}{a_{rm}^4}=rac{\Omega_{m,0}}{a_{rm}^3},$$

(c) Recall t since t	(e) BONUS QUESTION (1 point): Where does Barbara Ryden suggest writing the Friedmann equation?
where v (Notice termine calculat	$A=\Omega_{r,0}^{1/2}\ , \qquad B=-rac{1}{2}.$
	This lets us read off the values of A and B ,
(b) The Hu	$H_0 dt = rac{a da}{\Omega_{r,0}^{1/2}} \left(1 + rac{a}{a_{rm}} ight)^{-1/2}.$
	which we rearrange to obtain
Notice by choc yields	$rac{H}{H_0} = rac{da}{adtH_0} = rac{\Omega_{r,0}^{1/2}}{a^2} \left(1 + rac{a}{a_{rm}} ight)^{1/2} ,$
	Taking the square root yields
and the	H_0^2 a^4 a_{rm}
	$rac{H^2}{rr^2} = rac{\Omega_{r,0}}{4} \left(1 + rac{a}{r} ight).$
for som	Ans: (Ryden, page 94) Starting from the form of the Friedmann equation given above, we pull out an overall factor of $\Omega_{r,0}/a^4$ on the right-hand side,
	(ii) (6 points) Derive Eq. (1) above, and find the values of A and B.
Substit	(Notice that if we had not set $a_0 = 1$, this equation would need to include the arbitrary constant controlling the definition of a notch.)
(a) The Fri	$a_{rm}=rac{\Omega_{m,0}}{\Omega_{r,0}}.$
PROBLEN RIO	which can be solved to yield

that the horizon distance is the physical distance traveled by a light ray

$$\ell \quad (t) = \mathbf{p}(t) \int_{t}^{t} c dt'$$

= 0,

$$\ell_{p, ext{horizon}}(t) = R(t) \int_0^t rac{c \, dt'}{R(t')}.$$

M 2: TIME EVOLUTION OF A UNIVERSE WITH MYSTE-US STUFF (20 points)

p.4

iedmann equation in a flat universe is

8.286 QUIZ 2 SOLUTIONS, FALL 2005

p. 3

8.286 QUIZ 2 SOLUTIONS, FALL 2005

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G}{3}\rho.$$

uting $\rho = \operatorname{const}/R^5$ and taking the square root of both sides gives

$$\frac{\dot{R}}{R} = \alpha R^{-5/2} \; ,$$

ne constant α . Rearranging to a form we can integrate,

$$dR R^{3/2} = \alpha dt,$$

erefore

$$\frac{2}{5}R^{5/2} = \alpha t.$$

that once again we have eliminated the arbitrary integration constant osing the Big Bang boundary conditions R = 0 at t = 0. Solving for R

$$R \propto t^{2/5}.$$

lbble parameter is, from its definition,

$$H = \frac{\dot{R}}{R} = \frac{2}{5t},$$

e we have used the time dependence of
$$R(t)$$
 that we found in part (a).
ice that we don't need to know the constant of proportionality left unde-
ined in part (a), as it cancels between numerator and denominator in this
lation.)

(Ryden, page 49) On your forehead.

Using $R(t) \propto t^{2/5}$, we find

$$\ell_{p, ext{horizon}}(t) = c t^{2/5} \int_{0}^{t} dt' \, t'^{-2/5}$$

or

$$\ell_{p,\text{horizon}}(t) = ct^{2/5} \left(\frac{5}{3}t^{3/5}\right) = \left[\frac{5}{3}ct.\right]$$

(d) Since we know the Hubble parameter, we can find the mass density $\rho(t)$ easily from the Friedmann equation,

$$\rho(t) = \frac{3H^2}{8\pi G}.$$

Using the result from part (b), we find

$$\rho(t) = \frac{3}{50\pi G} \, \frac{1}{t^2}.$$

As a check on our algebra, since we found in (a) that $R \propto t^{2/5}$, and knew at the beginning of the calculation that $\rho \propto R^{-5}$, we should find, as we do here, that $\rho \propto t^{-2}$. Notice, however, that in this case we do not leave our answer in terms of some undetermined constant of proportionality; the units of ρ are not arbitrary, and therefore we care about its normalization.

PROBLEM 3: AN EXERCISE IN TWO-DIMENSIONAL METRICS (30 points)

(a) Since

$$r(heta) = (1 + \epsilon \sin heta) r_0$$
,

as the angular coordinate θ changes by $d\theta$, r changes by

$$\mathrm{d}r = \epsilon r_0 \cos\theta \,\mathrm{d}\theta \;.$$

 ds^2 is then given by

$$\begin{split} \mathrm{d}s^2 &= \mathrm{d}r^2 + r^2 \mathrm{d}\theta^2 \\ &= \epsilon^2 r_0^2 \cos^2 \theta \, \mathrm{d}\theta^2 + (1 + \epsilon \sin \theta)^2 \, r_0^2 \, \mathrm{d}\theta^2 \\ &= \left[\epsilon^2 \cos^2 \theta + 1 + 2\epsilon \sin \theta + \epsilon^2 \sin^2 \theta \right] \, r_0^2 \, \mathrm{d}\theta^2 \\ &= \left[1 + \epsilon^2 + 2\epsilon \sin \theta \right] \, r_0^2 \, \mathrm{d}\theta^2 \, , \end{split}$$

p. 5

SO

$$\mathrm{d}s = r_0 \sqrt{1 + \epsilon^2 + 2\epsilon \sin\theta} \,\mathrm{d}\theta \;.$$

Since θ runs from θ_1 to θ_2 as the curve is swept out,

$$S = r_0 \int_{ heta_1}^{ heta_2} \sqrt{1 + \epsilon^2 + 2\epsilon \sin \theta} \, d heta \; .$$

(b) Since θ does not vary along this path,

$$\mathrm{d}s = \sqrt{1 + \frac{r^2}{a^2}} \,\mathrm{d}r \ ,$$

and so

$$R = \int_0^{r_0} \sqrt{1 + \frac{r^2}{a^2}} \,\mathrm{d}r \ .$$

(c) Since the metric does not contain a term in $dr d\theta$, the r and θ directions are orthogonal. Thus, if one considers a small region in which r is in the interval r' to r' + dr', and θ is in the interval θ' to $\theta' + d\theta'$, then the region can be treated as a rectangle. The side along which r varies has length $ds_r = \sqrt{1 + (r'^2/a^2)} dr'$, while the side along which θ varies has length $ds_{\theta} = r' d\theta'$. The area is then

$$dA = ds_r ds_\theta = r' \sqrt{1 + (r'^2/a^2)} dr' d\theta'$$

To cover the area for which $r < r_0$, r' must be integrated from 0 to r_0 , and θ' must be integrated from 0 to 2π :

$$A = \int_0^{r_0} dr' \int_0^{2\pi} d\theta' r' \sqrt{1 + (r'^2/a^2)}$$

 $\frac{5}{2}$

 $\mathrm{d}\theta' = 2\pi \; ,$

But

 $^{\rm OS}$

$$A = 2\pi \int_0^{r_0} \mathrm{d}r' \, r' \sqrt{1 + (r'^2/a^2)} \, .$$

p. 7 8.286 QUIZ 2 SOLUTIONS, FALL 2005

You were not asked to carry out the integration, but it can be done by using the substitution $u = x^2$, so du = 2x dx. The result is

$$A = \frac{2\pi}{3}a^2 \left[\left(1 + \frac{r_0^2}{a^2} \right)^{3/2} - 1 \right] \; .$$

(d) The nonzero metric coefficients are given by

$$r = 1 + rac{r^2}{a^2} , \qquad g_{ heta heta} = r^2 ,$$

 g_r

so the metric is diagonal. For i = 1 = r, the geodesic equation becomes

$$\frac{\mathrm{d}}{\mathrm{d}s} \left\{ g_{rr} \frac{\mathrm{d}r}{\mathrm{d}s} \right\} = \frac{1}{2} \frac{\partial g_{rr}}{\partial r} \frac{\mathrm{d}r}{\mathrm{d}s} \frac{\mathrm{d}r}{\mathrm{d}s} + \frac{1}{2} \frac{\partial g_{\theta\theta}}{\partial r} \frac{\mathrm{d}\theta}{\mathrm{d}s} \frac{\mathrm{d}\theta}{\mathrm{d}s} ,$$

so if we substitute the values from above, we have

$$\frac{\mathrm{d}}{\mathrm{d}s} \left\{ \left(1 + \frac{r^2}{a^2}\right) \frac{\mathrm{d}r}{\mathrm{d}s} \right\} = \frac{1}{2} \frac{\partial}{\partial r} \left(1 + \frac{r^2}{a^2}\right) \left(\frac{\mathrm{d}r}{\mathrm{d}s}\right)^2 + \frac{1}{2} \frac{\partial r^2}{\partial r} \left(\frac{\mathrm{d}\theta}{\mathrm{d}s}\right)^2 \ .$$

Simplifying slightly,

$$\frac{\mathrm{d}}{\mathrm{d}s} \left\{ \left(1 + \frac{r^2}{a^2} \right) \frac{\mathrm{d}r}{\mathrm{d}s} \right\} = \frac{r}{a^2} \left(\frac{\mathrm{d}r}{\mathrm{d}s} \right)^2 + r \left(\frac{\mathrm{d}\theta}{\mathrm{d}s} \right)^2 \ .$$

left-hand side: The answer above is perfectly acceptable, but one might want to expand the

$$\frac{\mathrm{d}}{\mathrm{d}s} \left\{ \left(1 + \frac{r^2}{a^2} \right) \frac{\mathrm{d}r}{\mathrm{d}s} \right\} = \frac{2r}{a^2} \left(\frac{\mathrm{d}r}{\mathrm{d}s} \right)^2 + \left(1 + \frac{r^2}{a^2} \right) \frac{\mathrm{d}^2 r}{\mathrm{d}s^2} \ .$$

b

brought to the right-hand side, giving Inserting this expansion into the boxed equation above, the first term can be

$$\left(1 + \frac{r^2}{a^2}\right)\frac{\mathrm{d}^2 r}{\mathrm{d}s^2} = -\frac{r}{a^2}\left(\frac{\mathrm{d}r}{\mathrm{d}s}\right)^2 + r\left(\frac{\mathrm{d}\theta}{\mathrm{d}s}\right)^2 \ .$$

p. 8

on θ , so the right-hand side of the geodesic equation vanishes. One has simply The $i = 2 = \theta$ equation is simpler, because none of the g_{ij} coefficients depend

$$\frac{\mathrm{d}}{\mathrm{d}s} \left\{ r^2 \frac{\mathrm{d}\theta}{\mathrm{d}s} \right\} = 0 \; .$$

For most purposes this is the best way to write the equation, since it leads immediately to $r^2(d\theta/ds) = const$. However, it is possible to expand the derivative, giving the alternative form

$$r^{2}\frac{\mathrm{d}^{2}\theta}{\mathrm{d}s^{2}} + 2r\frac{\mathrm{d}r}{\mathrm{d}s}\frac{\mathrm{d}\theta}{\mathrm{d}s} = 0$$

PROBLEM 4: TRAJECTORIES IN AN OPEN UNIVERSE (25 points)

(a) Since r and ϕ are not changing,

$$c^2 d\tau^2 = c^2 dt^2 - R^2(t)r_0^2 d\theta^2$$
,

from which it follows that

$$\left(\frac{\mathrm{d}\tau}{\mathrm{d}t}\right)^2 = 1 - \frac{1}{c^2} R^2(t) r_0^2 \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 \; .$$

Taking a square root

,
$$\frac{\mathrm{d}\tau}{\mathrm{d}t} = \sqrt{1 - \frac{1}{c^2}R^2(t)r_0^2\left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2} \ . \label{eq:dt}$$

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = \frac{1}{\mathrm{d}\tau} \; ,$$

 $^{\rm OS}$

 $\frac{\mathrm{d}t}{\mathrm{d}\tau} =$

 $\sqrt{1-rac{1}{c^2}R^2(t)r_0^2}\left(rac{\mathrm{d} heta}{\mathrm{d}t}
ight)$

(c) A clock attached to the object would read the proper time τ , so

$$\tau = \int_{t_1}^{t_2} \frac{\mathrm{d}\tau}{\mathrm{d}t} \,\mathrm{d}t = \int_{t_1}^{t_2} \mathrm{d}t \sqrt{1 - \frac{1}{c^2} R^2(t) r_0^2 \left(\frac{\mathrm{d}\theta_p}{\mathrm{d}t}\right)^2} \;.$$

Note that the subscript p on θ_p is necessary, as it indicates that we are using the specific function $\theta_p(t)$ specified in the problem.

(d) We start with the general form for the geodesic equation, as taken from the formula sheet:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left\{ g_{\mu\nu} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \right\} = \frac{1}{2} \left(\partial_{\mu} g_{\lambda\sigma} \right) \frac{\mathrm{d}x^{\lambda}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\tau}$$

The metric is diagonal, with nonzero entries

$$g_{tt} = c^2$$
 $g_{rr} = -\frac{R^2(t)}{1+r^2}$ $g_{\theta\theta} = -R^2(t)r^2$ $g_{\phi\phi} = -R^2(t)r^2 \sin^2\theta$

The equation is valid for each value of μ , but to find the θ -equation we consider the case $\mu = \theta$. Then the diagonal property of the metric implies that only $\nu = \theta$ will contribute to the sum over ν . The left-hand side is then

LHS =
$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left\{ g_{\theta\theta} \frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right\} = \frac{\mathrm{d}}{\mathrm{d}\tau} \left\{ -R^2(t)r^2 \frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right\}$$

In evaluating the right-hand-side, $\mu = \theta$, while (λ, σ) can take on only the values (t, t) and (θ, θ) , as the other terms vanish as a consequence of the fact that $dr/dt = d\phi/dt = 0$. Thus,

$$\begin{aligned} \text{RHS} &= \frac{1}{2} \left(\frac{\partial g_{tt}}{\partial \theta} \right) \left(\frac{\mathrm{d}t}{\mathrm{d}\tau} \right)^2 + \frac{1}{2} \left(\frac{\partial g_{\theta\theta}}{\partial \theta} \right) \left(\frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right)^2 \\ &= \frac{1}{2} \left(\frac{\partial c^2}{\partial \theta} \right) \left(\frac{\mathrm{d}t}{\mathrm{d}\tau} \right)^2 + \frac{1}{2} \left(\frac{\partial [-R^2(t)r^2]}{\partial \theta} \right) \left(\frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right)^2 \\ &= 0 \;. \end{aligned}$$

Thus, the equation becomes

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left\{ R^2(t) r^2 \frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right\} = 0 \; .$$

(e) This time we choose $\mu = r$, and then only $\nu = r$ will give a nonzero contribution to the sum over ν . Thus,

$$\mathrm{LHS} = \frac{\mathrm{d}}{\mathrm{d}\tau} \left\{ g_{rr} \frac{\mathrm{d}r}{\mathrm{d}\tau} \right\} = \frac{\mathrm{d}}{\mathrm{d}\tau} \left\{ -\frac{R^2(t)}{1+r^2} \frac{\mathrm{d}r}{\mathrm{d}\tau} \right\} \; .$$

For the right-hand-side, we again need only include the terms $(\lambda, \sigma) = (t, t)$ and $(\lambda, \sigma) = (\theta, \theta)$, so

$$\begin{aligned} \mathrm{RHS} &= \frac{1}{2} \left(\frac{\partial g_{tt}}{\partial r} \right) \left(\frac{\mathrm{d}t}{\mathrm{d}\tau} \right)^2 + \frac{1}{2} \left(\frac{\partial g_{\theta\theta}}{\partial r} \right) \left(\frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right)^2 \\ &= \frac{1}{2} \left(\frac{\partial c^2}{\partial r} \right) \left(\frac{\mathrm{d}t}{\mathrm{d}\tau} \right)^2 + \frac{1}{2} \left(\frac{\partial [-R^2(t)r^2]}{\partial r} \right) \left(\frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right)^2 \\ &= -rR^2(t) \left(\frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right)^2 \; . \end{aligned}$$

Finally, then, the geodesic equation is

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left\{ \frac{R^2(t)}{1+r^2} \frac{\mathrm{d}r}{\mathrm{d}\tau} \right\} = r R^2(t) \left(\frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right)^2 \, .$$

This equation does not allow $r(\tau) = r_0$ as a solution, because this would imply that $dr/d\tau = 0$; the left-hand side of the geodesic equation would then vanish, while the right-hand side does not.