
M
A
SSA

C
H
U
SE

T
T
S
IN

ST
IT

U
T
E

O
F
T
E
C
H
N
O
L
O
G
Y

P
hysics

D
epartm

ent
P
hysics

8.286:
T
he

E
arly

U
niverse

N
ovem

ber
29,2005

P
rof.A

lan
G
uth

Q
U

IZ
2

S
O

L
U

T
IO

N
S

Q
u
iz

D
ate:

N
ovem

b
er

10,
2005

P
R

O
B

L
E
M

1:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(25
points)

(a)
(4

points)
For

an
open

universe
w
ith

a
positive

m
ass

density,R
yden

show
s
(in

chapter
4)

that
the

radius
of

curvature
R

c
u
rv

≡
R
(t)/ √−

k
and

the
H
ubble

length
�
H

u
b
b
le ≡

c/
H

0
obey

one
of

the
follow

ing
relations:

(i)
R

c
u
rv
>
�
H

u
b
b
le

(ii)
R

c
u
rv

=
�
H

u
b
b
le

(iii)
R

c
u
rv
<
�
H

u
b
b
le

W
hich

of
these

relations
is

true?

A
ns:

(R
yden,

page
50)

T
he

correct
answ

er
is

(i).

(b)
(6

points)
G
ive

a
derivation

of
the

relation
in

part
(a).

A
ns:

(R
yden,

page
50)

T
he

Friedm
ann

equation
(in

our
notation)

is

H
2
=

8
π
G3
ρ−

k
c
2

R
2
=

8
π
G3
ρ
+

c
2

R
2c
u
rv

,

w
here

w
e
have

substituted
the

definition
of

the
radius

of
curvature

R
c
u
rv

≡
R
(t)/ √−

k.
D
ividing

through
by

c
2,

w
e
have

1
�
2H

u
b
b
le

=
8
π
G

3
c
2
ρ
+

1
R

2c
u
rv

.

Since
ρ
>

0,w
e
m
ust

have
1

�
2H

u
b
b
le

>
1

R
2c
u
rv

and
therefore

R
c
u
rv
>
�
H

u
b
b
le .

(c)
(5

points)
A
s
R
yden

discusses
in

chapter
5,

the
universe

today
contains

not
only

the
photons

of
the

cosm
ic

m
icrow

ave
background

(C
M
B
),

but
also

pho-
tons

that
originated

as
starlight.

Including
both

direct
starlight

and
starlight

8
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absorbed
and

reradiated
by

dust,
the

ratio
of

energy
densities

ε
S
ta

rlig
h
t /
ε
C

M
B

has
approxim

ately
w
hich

of
the

follow
ing

values:

(i)
10 −

1
0

(ii)
10 −

5
(iii)

10 −
1

(iv)
10

5
(v)

10
1
0

A
ns:

(R
yden,

page
66)

T
he

correct
answ

er
is

(iii).

(d)
(10

points)
For

a
flat

universe
that

contains
only

radiation
and

nonrelativistic
m
atter,R

yden
(chapter

6)
w
rites

the
Friedm

ann
equation

as

H
2

H
20

=
Ω

r,0

a
4

+
Ω

m
,0

a
3

,

w
here

H
0
refers

to
the

present
value

of
the

H
ubble

param
eter

H
,and

Ω
r,0

and
Ω

m
,0

refer
to

the
present

values
of

the
m
ass

densities
in

radiation
and

m
atter,

respectively,
com

pared
to

the
critical

density.
R
yden

rearranges
this

form
ula

to
take

the
form

H
0
d
t
=
a
d
a

A

[1
+

a

a
r
m ]

B

,
(1)

w
here

A
and

B
are

constants
that

m
ight

depend
on

the
param

eters
H

0 ,
Ω

r,0 ,
and

Ω
m

,0 .
(R

yden
w
rote

A
and

B
explicitly,but

for
the

purpose
ofthis

question
I
have

not.)
a

r
m

is
the

scale
factor

of
radiation-m

atter
equality:

i.e.,the
scale

factor
w
hen

the
energy

densities
ofradiation

and
m
atter

are
equal.

R
ecallthat

a(t)
is
the

notation
R
yden

uses
for

the
scale

factor,w
hich

in
the

L
ecture

N
otes

is
called

R
(t).

(i)
(4

points)
W
rite

an
expression

for
a

r
m

in
term

s
of

all
or

som
e
of

the
param

eters
H

0 ,Ω
r,0 ,and

Ω
m

,0 .

A
ns:

(R
yden,page

68)
B
y
definition,

a
r
m

is
the

value
of

the
scale

factor
w
hen

ρ
r (a

r
m
)
=
ρ

m
(a

r
m
).

T
he

energy
density

in
radiation

at
an

arbitrary
value

of
the

scale
factor

is
related

to
its

present-day
value

ρ
r,0

by
ρ

r (a)
=
ρ

r,0 /
a
4,w

hile
the

energy
density

of
m
atter

is
given

by
ρ

m
(a)

=
ρ

m
,0 /
a
3.

(W
e
use

R
yden’s

norm
alization

for
the

scale
factor,

a
0
=
a(t

0 )
=

1;
otherw

ise,
w
e
w
ould

need
to

carry
around

an
arbitrary

constant
setting

the
norm

alization
of

a
notch.)

T
herefore

the
statem

ent
that

the
energy

densities
in

radiation
and

m
atter

w
ere

equalat
a

r
m

can
be

w
ritten

ρ
r,0

a
4r
m

=
ρ

m
,0

a
3r
m

.

D
ividing

both
sides

by
the

critical
density

gives

Ω
r,0

a
4r
m

=
Ω

m
,0

a
3r
m

,
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w
hich

can
be

solved
to

yield

a
r
m

=
Ω

m
,0

Ω
r,0

.

(N
otice

that
if
w
e
had

not
set

a
0
=

1,this
equation

w
ould

need
to

include
the

arbitrary
constant

controlling
the

definition
of

a
notch.)

(ii)
(6

points)
D
erive

E
q.(1)

above,and
find

the
values

of
A

and
B
.

A
ns:

(R
yden,page

94)
Starting

from
the

form
ofthe

Friedm
ann

equation
given

above,w
e
pullout

an
overallfactor

of
Ω

r,0 /
a
4
on

the
right-hand

side,

H
2

H
20

=
Ω

r,0

a
4 (

1
+

a

a
r
m )

.

T
aking

the
square

root
yields

HH
0
=

d
a

a
d
t
H

0
=

Ω
1
/
2

r,0

a
2 (

1
+

a

a
r
m )

1
/
2

,

w
hich

w
e
rearrange

to
obtain

H
0 d
t
=

a
d
a

Ω
1
/
2

r,0 (
1
+

a

a
r
m )

−
1
/
2

.

T
his

lets
us

read
off

the
values

of
A

and
B
,

A
=

Ω
1
/
2

r,0
,

B
=

−
12
.

(e)
B
O
N
U
S
Q
U
E
ST

IO
N

(1
point):

W
here

does
B
arbara

R
yden

suggest
w
riting

the
Friedm

ann
equation?

(R
yden,page

49)
O
n
your

forehead.
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P
R

O
B

L
E
M

2:
T

IM
E

E
V

O
L
U

T
IO

N
O

F
A

U
N

IV
E
R

S
E

W
IT

H
M

Y
S
T

E
-

R
IO

U
S

S
T

U
F
F

(20
points)

(a)
T
he

Friedm
ann

equation
in

a
flat

universe
is

(
ṘR )

2

=
8
π
G3
ρ
.

Substituting
ρ
=

const/
R

5
and

taking
the

square
root

of
both

sides
gives

ṘR
=
α
R

−
5
/
2
,

for
som

e
constant

α
.
R
earranging

to
a
form

w
e
can

integrate,

d
R
R

3
/
2
=
α
d
t,

and
therefore

25
R

5
/
2
=
α
t.

N
otice

that
once

again
w
e
have

elim
inated

the
arbitrary

integration
constant

by
choosing

the
B
ig

B
ang

boundary
conditions

R
=

0
at

t
=

0.
Solving

for
R

yields

R
∝
t
2
/
5.

(b)
T
he

H
ubble

param
eter

is,from
its

definition,

H
=
ṘR

=
25
t ,

w
here

w
e
have

used
the

tim
e
dependence

of
R
(t)

that
w
e
found

in
part

(a).
(N

otice
that

w
e
don’t

need
to

know
the

constant
of

proportionality
left

unde-
term

ined
in

part
(a),

as
it
cancels

betw
een

num
erator

and
denom

inator
in

this
calculation.)

(c)
R
ecallthat

the
horizon

distance
is
the

physicaldistance
traveled

by
a
light

ray
since

t
=

0,

�
p
,h

o
riz

o
n (t)

=
R
(t) ∫

t

0

c
d
t ′

R
(t ′)

.
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U
sing

R
(t)∝

t
2
/
5,w

e
find

�
p
,h

o
riz

o
n (t)

=
ct

2
/
5 ∫

t

0

d
t ′t ′−

2
/
5

or

�
p
,h

o
riz

o
n (t)

=
ct

2
/
5 (

53
t
3
/
5 )

=
53
ct.

(d)
Since

w
e
know

the
H
ubble

param
eter,w

e
can

find
the

m
ass

density
ρ(t)

easily
from

the
Friedm

ann
equation,

ρ(t)
=

3
H

2

8
π
G
.

U
sing

the
result

from
part

(b),
w
e
find

ρ(t)
=

3
50
π
G

1t
2
.

A
s
a
check

on
our

algebra,
since

w
e
found

in
(a)

that
R

∝
t
2
/
5,

and
knew

at
the

beginning
of

the
calculation

that
ρ∝

R
−

5,
w
e
should

find,as
w
e
do

here,
that

ρ∝
t −

2.
N
otice,

how
ever,that

in
this

case
w
e
do

not
leave

our
answ

er
in

term
s
ofsom

e
undeterm

ined
constant

of
proportionality;the

units
of
ρ
are

not
arbitrary,and

therefore
w
e
care

about
its

norm
alization.

P
R

O
B

L
E
M

3:
A

N
E
X

E
R

C
IS

E
IN

T
W

O
-D

IM
E
N

S
IO

N
A

L
M

E
T

R
IC

S
(30

points)

(a)
Since

r(θ)
=

(1
+
εsin

θ)
r
0
,

as
the

angular
coordinate

θ
changes

by
d
θ,
r
changes

by

d
r
=
εr

0
cos

θ
d
θ
.

d
s
2
is

then
given

by

d
s
2
=

d
r
2
+
r
2d
θ
2

=
ε
2r

20
cos

2
θ
d
θ
2
+
(1

+
εsin

θ)
2
r
20
d
θ
2

= [ε
2
cos

2
θ
+

1
+

2
εsin

θ
+
ε
2
sin

2
θ ]

r
20
d
θ
2

= [1
+
ε
2
+

2
εsin

θ ]
r
20
d
θ
2
,
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so
d
s
=
r
0 √

1
+
ε
2
+

2
εsin

θ
d
θ
.

Since
θ
runs

from
θ
1
to

θ
2
as

the
curve

is
sw

ept
out,

S
=
r
0 ∫

θ
2

θ
1 √

1
+
ε
2
+

2
εsin

θ
d
θ
.

(b)
Since

θ
does

not
vary

along
this

path,

d
s
= √

1
+
r
2

a
2
d
r
,

and
so

R
= ∫

r
0

0 √
1
+
r
2

a
2
d
r
.

(c)
Since

the
m
etric

does
not

contain
a
term

in
d
r
d
θ,

the
r
and

θ
directions

are
orthogonal.

T
hus,ifone

considers
a
sm

allregion
in

w
hich

r
is
in

the
interval

r ′

to
r ′+

d
r ′,and

θ
is
in

the
interval

θ ′to
θ ′+

d
θ ′,then

the
region

can
be

treated
as

a
rectangle.

T
he

side
along

w
hich

r
varies

has
length

d
s
r
= √

1
+
(r ′2/

a
2)d

r ′,
w
hile

the
side

along
w
hich

θ
varies

has
length

d
s
θ
=
r ′d

θ ′.
T
he

area
is

then

d
A

=
d
s
r d
s
θ
=
r ′ √

1
+
(r ′2

/
a
2)d

r ′d
θ ′
.

T
o
cover

the
area

for
w
hich

r
<
r
0 ,
r ′

m
ust

be
integrated

from
0
to

r
0 ,

and
θ ′

m
ust

be
integrated

from
0
to

2
π:

A
= ∫

r
0

0

d
r ′ ∫

2
π

0

d
θ ′r ′ √

1
+

(r ′2/
a
2)
.

B
ut

∫
2
π

0

d
θ ′=

2
π
,

so

A
=

2
π ∫

r
0

0

d
r ′r ′ √

1
+

(r ′2/
a
2)
.
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Y
ou

w
ere

not
asked

to
carry

out
the

integration,
but

it
can

be
done

by
using

the
substitution

u
=
x

2,
so

d
u
=

2
x
d
x.

T
he

result
is

A
=

2
π3
a
2 [(

1
+
r
20

a
2 )

3
/
2−

1 ]
.

(d)
T
he

nonzero
m
etric

coeffi
cients

are
given

by

g
r
r
=

1
+
r
2

a
2
,

g
θ
θ
=
r
2
,

so
the

m
etric

is
diagonal.

For
i
=

1
=
r,

the
geodesic

equation
becom

es

dd
s {

g
r
r d
r

d
s }

=
12
∂
g

r
r

∂
r

d
r

d
s

d
r

d
s
+

12
∂
g

θ
θ

∂
r

d
θ

d
s

d
θ

d
s
,

so
if
w
e
substitute

the
values

from
above,w

e
have

dd
s {(

1
+
r
2

a
2 )

d
r

d
s }

=
12
∂∂
r (

1
+
r
2

a
2 )(

d
r

d
s )

2

+
12
∂
r
2

∂
r (

d
θ

d
s )

2

.

Sim
plifying

slightly,

dd
s {(

1
+
r
2

a
2 )

d
r

d
s }

=
ra
2 (

d
r

d
s )

2

+
r (

d
θ

d
s )

2

.

T
he

answ
er

above
is

perfectly
acceptable,

but
one

m
ight

w
ant

to
expand

the
left-hand

side:dd
s {(

1
+
r
2

a
2 )

d
r

d
s }

=
2
r

a
2 (

d
r

d
s )

2

+ (
1
+
r
2

a
2 )

d
2r

d
s
2
.

Inserting
this

expansion
into

the
boxed

equation
above,

the
first

term
can

be
brought

to
the

right-hand
side,giving

(
1
+
r
2

a
2 )

d
2r

d
s
2
=

−
ra
2 (

d
r

d
s )

2

+
r (

d
θ

d
s )

2

.
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T
he

i
=

2
=
θ
equation

is
sim

pler,because
none

of
the

g
ij

coeffi
cients

depend
on

θ,
so

the
right-hand

side
of

the
geodesic

equation
vanishes.

O
ne

has
sim

ply

dd
s {

r
2 d
θ

d
s }

=
0
.

For
m
ost

purposes
this

is
the

best
w
ay

to
w
rite

the
equation,

since
it

leads
im

m
ediately

to
r
2(d

θ/d
s)

=
con

st.H
ow

ever,it
is
possible

to
expand

the
deriv-

ative,giving
the

alternative
form

r
2 d

2θ

d
s
2
+

2
r d
r

d
s

d
θ

d
s
=

0
.

P
R

O
B

L
E
M

4:
T

R
A

J
E
C

T
O

R
IE

S
IN

A
N

O
P

E
N

U
N

IV
E
R

S
E

(25
points)

(a)
Since

r
and

φ
are

not
changing,

c
2d
τ

2
=
c
2d
t
2−

R
2(t)r

20 d
θ
2
,

from
w
hich

it
follow

s
that
(
d
τd
t )

2

=
1−

1c
2
R

2(t)r
20 (

d
θ

d
t )

2

.

T
aking

a
square

root,

d
τd
t
= √

1−
1c
2
R

2(t)r
20 (

d
θ

d
t )

2

.

(b)
d
t

d
τ
=

1d
τd
t

,

so

d
t

d
τ
=

1
√
1−

1c
2
R

2(t)r
20 (

d
θ

d
t )

2
.
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(c)
A

clock
attached

to
the

ob
ject

w
ould

read
the

proper
tim

e
τ,so

τ
= ∫

t2

t1

d
τd
t
d
t
= ∫

t2

t1

d
t √

1−
1c
2
R

2(t)r
20 (

d
θ
p

d
t )

2

.

N
ote

that
the

subscript
p
on

θ
p
is

necessary,
as

it
indicates

that
w
e
are

using
the

specific
function

θ
p (t)

specified
in

the
problem

.

(d)
W
e
start

w
ith

the
general

form
for

the
geodesic

equation,
as

taken
from

the
form

ula
sheet:

dd
τ {

g
µ

ν
d
x

ν

d
τ }

=
12
(∂

µ
g

λ
σ )

d
x

λ

d
τ

d
x

σ

d
τ

.

T
he

m
etric

is
diagonal,w

ith
nonzero

entries

g
tt
=
c
2

g
r
r
=

−
R

2(t)
1
+
r
2

g
θ
θ
=

−
R

2(t)r
2

g
φ

φ
=

−
R

2(t)r
2
sin

2
θ
.

T
he

equation
is
valid

for
each

value
of
µ,but

to
find
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θ-equation
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the
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In
evaluating

the
right-hand-side,
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hus,the
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becom

esdd
τ {

R
2(t)r

2
d
θ

d
τ }

=
0
.

8
.2

8
6

Q
U

IZ
2

S
O

L
U

T
IO

N
S
,
F
A

L
L

2
0
0
5

p
.
1
0

(e)
T
his

tim
e
w
e
choose

µ
=
r,and

then
only

ν
=
r
w
illgive

a
nonzero

contribution
to

the
sum

over
ν.
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For
the

right-hand-side,
w
e
again

need
only

include
the

term
s
(λ
,σ)

=
(t,t)

and
(λ
,σ)

=
(θ,θ),

so
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F
inally,then,the

geodesic
equation

is
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T
his

equation
does

not
allow

r(τ)
=
r
0
as

a
solution,because

this
w
ould

im
ply

that
d
r/
d
τ
=

0;the
left-hand

side
of

the
geodesic

equation
w
ould

then
vanish,

w
hile

the
right-hand

side
does

not.


