$$	$\stackrel{-}{\sim}$	\cdots	\cdots	-	- 0 0 0 0 0
5	$\stackrel{\sim}{c}$	$\stackrel{\circ}{\circ}$	N	N	录
					U

[^0]
'G рие V јо sәп

(i) (4 points) Write an expression for $a_{r m}$ in terms of all or some of the

 (1) to take the form respectively, compared to the critical density. Ryden rearranges this formula

 $c=2.998 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$
$1 \mathrm{yr}=3.156 \times 10^{7} \mathrm{~s}$

$1 \mathrm{eV}=1.602 \times 10^{-12} \mathrm{erg}$ $\begin{aligned} \hbar=\frac{h}{2 \pi} & =1.055 \times 10^{-27} \mathrm{erg}-\mathrm{sec} \\ & =6.582 \times 10^{-16} \mathrm{eV}-\mathrm{sec} \\ & \end{aligned}$ $=8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}$,
$k=$ Boltzmann's constant $=1.381 \times 10^{-16} \mathrm{erg} / \mathrm{K}$
GEODESIC EQUATION:

$$
\frac{d}{d s}\left\{g_{i j} \frac{d x}{d s}\right\}
$$

or: $\frac{d}{d \tau}\left\{g_{\mu \nu} \frac{d x}{d \tau}\right.$
PHYSICAL CONSTANTS
SCHWARZSCHILD METRIC:

ROBERTSON-WALKER METRIC:

$$
{ }_{z} \theta \mathrm{p} z^{\iota}+{ }_{z^{\iota}} \mathrm{p}\left(\frac{z^{p}}{z^{\iota}}+\mathrm{I}\right)={ }_{z^{s}} \mathrm{p}
$$

(b) (5 points) Now consider a two-dimensional space with the same two coordinates
r and θ, but this time the metric will be

، $0_{\iota} \ell(\theta$ u!̣s э +I$)=(\theta) \iota$

Consider the curve described by

Suppose that a model universe is filled with a peculiar form of matter for which

The following problem was Problem 5 of Problem Set 4. RIOUS STUFF (20 points)

8.286 QUIZ 2, FALL 2005 (d) (5 points) The mass density $\rho(t)$. (c) $\left(5\right.$ points) The physical horizon distance, $\ell_{p, \text { horizon }}(t)$ (b) (5 points) The value of the Hubble parameter $H(t)$, as a function of t. $R(t)$ up to an arbitrary constant of proportionality.

Assuming that the model universe is flat, calculate

$$
\rho \propto \frac{1}{R^{5}(t)}
$$

$g \cdot d$
¿OJəZUOU

(e) (5 points) Again assuming that the object is moving in the θ-direction, derive
 of the functions A, B, C, D, and E might be identically zero. (You need

${ }_{z}\left(\frac{\iota p}{\not p}\right) g=\left[\frac{\iota p}{\theta p} V\right] \frac{\iota p}{p}$
 ${ }_{z}\left(\frac{\imath p}{\phi p}\right) 马+{ }_{z}\left(\frac{\imath p}{\theta p}\right) Q+{ }_{z}\left(\frac{\imath p}{\iota p}\right) D+$

unoj is moving in the θ-direction. Specifically, you should derive an equation of the equation of motion for the coordinate θ of the object, assuming again that it

 a geodesic, so perhaps some kind of rocket engine is needed to cause the object where on the trajectory. We are not claiming that this trajectory is necessarily
 (c) (10 points) Suppose the object travels on a trajectory given by the function (b) (3 points) For the same situation as in part (a), express $d t / d \boldsymbol{\tau}$ in terms of $d \theta / d t$. in the θ-direction, with $r=r_{0}$ and $\phi=\phi_{0}$. (a) (7 points) Express $d \boldsymbol{\tau} / d t$ in terms of $d \theta / d t$, assuming that the object is moving ular, in this problem we will consider an object that is moving in the θ-direction.
 We will assume that this metric is given, and that $R(t)$ has been specified. While We will assume that this metric is given, and that $R(t)$ has been specified. While

> Consider the case of an open Robertson-Walker universe. Taking $k=-1$, the

PROBLEM 4: TRAJECTORIES IN AN OPEN UNIVERSE (35 points)
8.286 QUIZ 2, FALL 2005
p. 7

[^0]: Reformatted to Remove Blank Pages

 Prof. Alan Guth
 ХЮОTONHOGL HO 飞LOLILSNI SLLASOHOVSSVI
 8.286 QUIZ 2, FALL 2005

