
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

Physics 8.286: The Early Universe November 3, 2007
Prof. Alan Guth

REVIEW PROBLEMS FOR QUIZ 2

QUIZ DATE: Tuesday, November 6, 2007, during the normal class time.

COVERAGE: Lecture Notes 6 and Lecture Notes 7; Problem Sets 4, 5, and
6; Weinberg, The First Three Minutes, Chapters 4–8; Ryden, Introduction
to Cosmology, Chapter 5. However, Ryden’s Chapter 5 is intended to help
you understand the lecture material, so there will be no quiz questions based
specifically on this material. Chapters 4 and 5 of Weinberg’s book are packed
with numbers; you need not memorize these numbers, but you should be fa-
miliar with their orders of magnitude. One of the problems on the quiz
will be taken verbatim (or at least almost verbatim) from either the
homework assignments, or from the starred problems from this set
of Review Problems. The starred problems are the ones that I recommend
that you review most carefully: Problems 1, 2, 4, 6, 9, 10, 12, 13, 14, 15, and
16. There is only one reading question, Problem 17.

PURPOSE: These review problems are not to be handed in, but are being made
available to help you study. They come mainly from quizzes in previous years.
In some cases the number of points assigned to the problem on the quiz is listed
— in all such cases it is based on 100 points for the full quiz.

In addition to this set of problems, you will find on the course web page the
actual quizzes that were given in 1994, 1996, 1998, 2000, 2002, 2004, and 2005.
The relevant problems from those quizzes have mostly been incorporated into
these review problems, but you still may be interested in looking at the quizzes,
just to see how much material has been included in each quiz. The coverage of
the upcoming quiz will not necessarily match the coverage of any of the quizzes
from previous years. Quiz 2 of this year covers more than Quiz 2 did in 2004
or 2005.

REVIEW SESSION AND OFFICE HOUR: To help you study for the quiz,
Barton Zwiebach will hold a review session on Monday, November 5, at 7:00
pm, in Room 2-105. Note that this is a room that we have not used before. Yi
Mao will hold an office hour on Monday, November 5, from 4:00 - 5:00 pm, in
Room 8-310. Note that this is also a room that we have not used before.

INFORMATION TO BE GIVEN ON QUIZ:

Each quiz in this course will have a section of “useful information” for your
reference. For the second quiz, this useful information will be the following:
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DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=
R(tobserved)
R(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β�0/c .

Energy-Momentum Four-Vector:

pµ =
(
E

c
, �p

)
, �p = γm0�v , E = γm0c

2 =
√
(m0c2)

2 + |�p|2 c2 ,

p2 ≡ |�p|2 − (p0
)2

= |�p|2 − E2

c2
= − (m0c)

2
.

COSMOLOGICAL EVOLUTION:

H2 =

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2
, R̈ = −4π

3
G

(
ρ+

3p
c2

)
R ,

ρm(t) =
R3(ti)
R3(t)

ρm(ti) (matter), ρr(t) =
R4(ti)
R4(t)

ρr(ti) (radiation).

ρ̇ = −3
Ṙ

R

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.
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Flat (k = 0): R(t) ∝ t2/3 (matter-dominated) ,

R(t) ∝ t1/2 (radiation-dominated) ,

Ω = 1 .

EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Closed (k > 0): ct = α(θ − sin θ) ,
R√
k
= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π
3
Gρ

c2

(
R√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
R√
κ
= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π
3
Gρ

c2

(
R√
κ

)3

,

κ ≡ −k > 0 .

ROBERTSON-WALKER METRIC:

ds2 = −c2 dτ2 = −c2 dt2+R2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}

SCHWARZSCHILD METRIC:

ds2 = −c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1
2
(∂igk	)

dxk

ds

dx	

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
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BLACK-BODY RADIATION:

u = g
π2

30
(kT )4

(h̄c)3
(energy density)

p =
1
3
u ρ = u/c2 (pressure, mass density)

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
(number density)

s = g
2π2

45
k4T 3

(h̄c)3
, (entropy density)

where

g ≡
{
1 per spin state for bosons (integer spin)

7/8 per spin state for fermions (half-integer spin)

g∗ ≡
{
1 per spin state for bosons

3/4 per spin state for fermions ,

and
ζ(3) =

1
13

+
1
23

+
1
33

+ · · · ≈ 1.202 .

gγ = g∗γ = 2 ,

gν =
7
8︸ ︷︷ ︸

Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21
4

,

g∗ν =
3
4︸ ︷︷ ︸

Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
9
2
,

ge+e− =
7
8︸ ︷︷ ︸

Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

=
7
2
,

g∗e+e− =
3
4︸ ︷︷ ︸

Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

= 3 .



8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2007 p. 5

EVOLUTION OF A FLAT RADIATION-DOMINATED
UNIVERSE:

kT =
(

45h̄3c5

16π3gG

)1/4
1√
t

For mµ = 106 MeV 	 kT 	 me = 0.511 MeV, g = 10.75 and
then

kT =
0.860 MeV√
t (in sec)

PHYSICAL CONSTANTS:

G = 6.673× 10−8 cm3 · g−1 · s−2

k = Boltzmann’s constant = 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K ,

h̄ =
h

2π
= 1.055× 10−27 erg-s

= 6.582× 10−16 eV-s ,

c = 2.998× 1010 cm/s

1 yr = 3.156× 107 s

1 eV = 1.602× 10−12 erg

1 GeV = 109 eV = 1.783 g (c ≡ 1) .
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∗PROBLEM 1: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE (30 points)

The following problem was Problem 3, Quiz 2, 1998.

The spacetime metric for a homogeneous, isotropic, closed universe is given by
the Robertson-Walker formula:

ds2 = −c2 dτ2 = −c2 dt2 +R2(t)
{

dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where I have taken k = 1. To discuss motion in the radial direction, it is more
convenient to work with an alternative radial coordinate ψ, related to r by

r = sinψ .

Then
dr√
1− r2

= dψ ,

so the metric simplifies to

ds2 = −c2 dτ2 = −c2 dt2 +R2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

(a) (7 points) A light pulse travels on a null trajectory, which means that dτ = 0
for each segment of the trajectory. Consider a light pulse that moves along
a radial line, so θ = φ = constant. Find an expression for dψ/dt in terms of
quantities that appear in the metric.

(b) (8 points) Write an expression for the physical horizon distance �phys at time
t. You should leave your answer in the form of a definite integral.

The form of R(t) depends on the content of the universe. If the universe is matter-
dominated (i.e., dominated by nonrelativistic matter), then R(t) is described by
the parametric equations

ct = α(θ − sin θ) ,

R = α(1− cos θ) ,

where

α ≡ 4π
3
GρR3

c2
.

These equations are identical to those on the front of the exam, except that I have
chosen k = 1.

(c) (10 points) Consider a radial light-ray moving through a matter-dominated
closed universe, as described by the equations above. Find an expression for
dψ/dθ, where θ is the parameter used to describe the evolution.

(d) (5 points) Suppose that a photon leaves the origin of the coordinate system
(ψ = 0) at t = 0. How long will it take for the photon to return to its starting
place? Express your answer as a fraction of the full lifetime of the universe,
from big bang to big crunch.
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∗PROBLEM 2: LENGTHS AND AREAS IN A TWO-DIMENSIONAL
METRIC (25 points)

The following problem was Problem 3, Quiz 2, 1994:

Suppose a two dimensional space, described in polar coordinates (r, θ), has a
metric given by

ds2 = (1 + ar)2 dr2 + r2(1 + br)2 dθ2 ,

where a and b are positive constants. Consider the path in this space which is
formed by starting at the origin, moving along the θ = 0 line to r = r0, then
moving at fixed r to θ = π/2, and then moving back to the origin at fixed θ. The
path is shown below:

a) (10 points) Find the total length of this path.

b) (15 points) Find the area enclosed by this path.
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PROBLEM 3: GEOMETRY IN A CLOSED UNIVERSE (25 points)

The following problem was Problem 4, Quiz 2, 1988:

Consider a universe described by the Robertson–Walker metric on the first page
of the quiz, with k = 1. The questions below all pertain to some fixed time t, so
the scale factor can be written simply as R, dropping its explicit t-dependence.

A small rod has one end at the point (r = a, θ = 0, φ = 0) and the other end
at the point (r = a, θ = ∆θ, φ = 0). Assume that ∆θ 
 1.

(a) Find the physical distance �p from the origin (r = 0) to the first end (a, 0, 0)
of the rod. You may find one of the following integrals useful:

∫
dr√
1− r2

= sin−1 r

∫
dr

1− r2
=

1
2
ln
(
1 + r

1− r

)
.

(b) Find the physical length sp of the rod. Express your answer in terms of the
scale factor R, and the coordinates a and ∆θ.

(c) Note that ∆θ is the angle subtended by the rod, as seen from the origin. Write
an expression for this angle in terms of the physical distance �p, the physical
length sp, and the scale factor R.
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∗PROBLEM 4: THE GENERAL SPHERICALLY SYMMETRIC
METRIC (20 points)

The following problem was Problem 3, Quiz 2, 1986:

The metric for a given space depends of course on the coordinate system which
is used to describe it. It can be shown that for any three dimensional space which
is spherically symmetric about a particular point, coordinates can be found so that
the metric has the form

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
for some function ρ(r). The coordinates θ and φ have their usual ranges: θ varies
between 0 and π, and φ varies from 0 to 2π, where φ = 0 and φ = 2π are identified.
Given this metric, consider the sphere whose outer boundary is defined by r = r0.

(a) Find the physical radius a of the sphere. (By “radius”, I mean the physical
length of a radial line which extends from the center to the boundary of the
sphere.)

(b) Find the physical area of the surface of the sphere.

(c) Find an explicit expression for the volume of the sphere. Be sure to include
the limits of integration for any integrals which occur in your answer.

(d) Suppose a new radial coordinate σ is introduced, where σ is related to r by

σ = r2 .

Express the metric in terms of this new variable.

PROBLEM 5: VOLUMES IN A ROBERTSON-WALKER UNIVERSE
(20 points)

The following problem was Problem 1, Quiz 3, 1990:

The metric for a Robertson-Walker universe is given by

ds2 = R2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Calculate the volume V (rmax) of the sphere described by

r ≤ rmax .

You should carry out any angular integrations that may be necessary, but you may
leave your answer in the form of a radial integral which is not carried out. Be sure,
however, to clearly indicate the limits of integration.
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∗PROBLEM 6: THE SCHWARZSCHILD METRIC (25 points)

The follow problem was Problem 4, Quiz 3, 1992:

The space outside a spherically symmetric mass M is described by the
Schwarzschild metric, given at the front of the exam. Two observers, designated A
and B, are located along the same radial line, with values of the coordinate r given
by rA and rB, respectively, with rA < rB. You should assume that both observers
lie outside the Schwarzschild horizon.

a) (5 points)Write down the expression for the Schwarzschild horizon radius RSch,
expressed in terms of M and fundamental constants.

b) (5 points) What is the proper distance between A and B? It is okay to leave
the answer to this part in the form of an integral that you do not evaluate—
but be sure to clearly indicate the limits of integration.

c) (5 points) Observer A has a clock that emits an evenly spaced sequence of ticks,
with proper time separation ∆τA. What will be the coordinate time separation
∆tA between these ticks?

d) (5 points) At each tick of A’s clock, a light pulse is transmitted. Observer B
receives these pulses, and measures the time separation on his own clock. What
is the time interval ∆τB measured by B.

e) (5 points) Suppose that the object creating the gravitational field is a static
black hole, so the Schwarzschild metric is valid for all r. Now suppose that one
considers the case in which observer A lies on the Schwarzschild horizon, so
rA ≡ RSch. Is the proper distance between A and B finite for this case? Does
the time interval of the pulses received by B, ∆τB, diverge in this case?

PROBLEM 7: GEODESICS (20 points)

The following problem was Problem 4, Quiz 2, 1986:

Ordinary Euclidean two-dimensional space can be described in polar coordi-
nates by the metric

ds2 = dr2 + r2 dθ2 .

(a) Suppose that r(λ) and θ(λ) describe a geodesic in this space, where the param-
eter λ is the arc length measured along the curve. Use the general formula on
the front of the exam to obtain explicit differential equations which r(λ) and
θ(λ) must obey.

(b) Now introduce the usual Cartesian coordinates, defined by

x = r cos θ ,

y = r sin θ .

Use your answer to (a) to show that the line y = 1 is a geodesic curve.
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PROBLEM 8: GEODESICS ON THE SURFACE OF A SPHERE

In this problem we will test the geodesic equation by computing the geodesic
curves on the surface of a sphere. We will describe the sphere as in Lecture Notes
6, with metric given by

ds2 = a2
(
dθ2 + sin2 θ dφ2

)
.

(a) Clearly one geodesic on the sphere is the equator, which can be parametrized
by θ = π/2 and φ = ψ, where ψ is a parameter which runs from 0 to 2π.
Show that if the equator is rotated by an angle α about the x-axis, then the
equations become:

cos θ = sinψ sinα

tanφ = tanψ cosα .

(b) Using the generic form of the geodesic equation on the front of the exam, derive
the differential equation which describes geodesics in this space.

(c) Show that the expressions in (a) satisfy the differential equation for the
geodesic. Hint: The algebra on this can be messy, but I found things were
reasonably simple if I wrote the derivatives in the following way:

dθ

dψ
= − cosψ sinα√

1− sin2 ψ sin2 α
,

dφ

dψ
=

cosα
1− sin2 ψ sin2 α

.

∗PROBLEM 9: GEODESICS IN A CLOSED UNIVERSE

The following problem was Problem 3, Quiz 3, 2000, where it was worth 40 points
plus 5 points extra credit.

Consider the case of closed Robertson-Walker universe. Taking k = 1, the
spacetime metric can be written in the form

ds2 = −c2 dτ2 = −c2 dt2 +R2(t)
{

dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

We will assume that this metric is given, and that R(t) has been specified. While
galaxies are approximately stationary in the comoving coordinate system described
by this metric, we can still consider an object that moves in this system. In particu-
lar, in this problem we will consider an object that is moving in the radial direction
(r-direction), under the influence of no forces other than gravity. Hence the object
will travel on a geodesic.

(a) (7 points) Express dτ/dt in terms of dr/dt.
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(b) (3 points) Express dt/dτ in terms of dr/dt.

(c) (10 points) If the object travels on a trajectory given by the function rp(t)
between some time t1 and some later time t2, write an integral which gives the
total amount of time that a clock attached to the object would record for this
journey.

(d) (10 points) During a time interval dt, the object will move a coordinate distance

dr =
dr

dt
dt .

Let d� denote the physical distance that the object moves during this time. By
“physical distance,” I mean the distance that would be measured by a comoving
observer (an observer stationary with respect to the coordinate system) who is
located at the same point. The quantity d�/dt can be regarded as the physical
speed vphys of the object, since it is the speed that would be measured by a
comoving observer. Write an expression for vphys as a function of dr/dt and r.

(e) (10 points) Using the formulas at the front of the exam, derive the geodesic
equation of motion for the coordinate r of the object. Specifically, you should
derive an equation of the form

d

dτ

[
A
dr

dτ

]
= B

(
dt

dτ

)2

+ C

(
dr

dτ

)2

+D

(
dθ

dτ

)2

+ E

(
dφ

dτ

)2

,

where A, B, C, D, and E are functions of the coordinates, some of which might
be zero.

(f) (5 points EXTRA CREDIT) On Problem 4 of Problem Set 3 we learned that
in a flat Robertson-Walker metric, the relativistically defined momentum of a
particle,

p =
mvphys√
1− v2

phys
c2

,

falls off as 1/R(t). Use the geodesic equation derived in part (e) to show that
the same is true in a closed universe.
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∗PROBLEM 10: A TWO-DIMENSIONAL CURVED SPACE (40
points)

The following problem was Problem 3, Quiz 2, 2002.

Consider a two-dimensional curved space described by
polar coordinates u and θ, where 0 ≤ u ≤ a and 0 ≤ θ ≤ 2π,
and θ = 2π is as usual identified with θ = 0. The metric is
given by

ds2 =
a du2

4u(a− u)
+ u dθ2 .

A diagram of the space is shown at the right, but you should
of course keep in mind that the diagram does not accurately
reflect the distances defined by the metric.

(a) (6 points) Find the radius R of the space, defined as
the length of a radial (i.e., θ = constant) line. You
may express your answer as a definite integral, which
you need not evaluate. Be sure, however, to specify the
limits of integration.

(b) (6 points) Find the circumference S of the space, de-
fined as the length of the boundary of the space at
u = a.

(c) (7 points) Consider an annular region as shown, con-
sisting of all points with a u-coordinate in the range
u0 ≤ u ≤ u0 + du. Find the physical area dA of this
region, to first order in du.
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(d) (3 points) Using your answer to part (c), write an expression for the total area
of the space.

(e) (10 points) Consider a geodesic curve in this space, described by the functions
u(s) and θ(s), where the parameter s is chosen to be the arc length along the
curve. Find the geodesic equation for u(s), which should have the form

d
ds

[
F (u, θ)

du
ds

]
= . . . ,

where F (u, θ) is a function that you will find. (Note that by writing F as a
function of u and θ, we are saying that it could depend on either or both of
them, but we are not saying that it necessarily depends on them.) You need
not simplify the left-hand side of the equation.

(f) (8 points) Similarly, find the geodesic equation for θ(s), which should have the
form

d
ds

[
G(u, θ)

dθ
ds

]
= . . . ,

where G(u, θ) is a function that you will find. Again, you need not simplify the
left-hand side of the equation.

PROBLEM 11: EVOLUTION OF MODEL UNIVERSES (30 points)

The following problem was Problem 1, Quiz 2, 2004.

This problem is based on Chapter 5 of Ryden. Since her notation is a little different
from mine, I am presenting the problem in both notations, and you can answer it
in the notation of your choice.

The evolution of a homogeneous, isotropic universe is governed by the following
three independent equations:

The Friedmann equation,

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2
⇐ or ⇒

(
ȧ

a

)2

=
8πG
3c2

ε− κc2

R2
0a

2
, (1)

the fluid equation,

ρ̇ = −3
Ṙ

R

(
ρ+

p

c2

)
⇐ or ⇒ ε̇ = −3

ȧ

a
(ε+ P ) , (2)

and the equation of state,

p = wρc2 ⇐ or ⇒ P = wε . (3)
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In Eq. (3) we assume that w is a constant. In this problem we will examine the
time evolution of the scale factor, R(t) [or a(t)], for different assumptions about the
nature of the matter and its equation of state.

(a) (8 points) First consider an empty universe (ρ = ε = 0). What are the possible
forms for the function R(t) [or a(t)], and is the universe open, closed, or flat in
each case?

For the rest of the problem we consider a flat universe, made up of “stuff” that
has some constant w relating the pressure and the mass density (according to the
equation of state above).

(b) (8 points) What value of w corresponds to

(i) nonrelativistic matter?

(ii) relativistic matter (i.e., radiation)?

and

(iii) the cosmological constant?

For this part you may simply state the answers without doing any calculations.

(c) (6 points) In such a universe, ρ ∝ R−b [or ε ∝ a−b], where b is a constant that
depends only on w. Find b. For full credit, your answer should show how to
derive the expression for b using only mathematics and Eqs. (1), (2), and (3)
above.

(d) (6 points) Using ρ ∝ R−b [or ε ∝ a−b] , determine R(t) [or a(t)] for both b = 0
and b �= 0. For b �= 0 you should express R(t) in terms of t and b. For the
case b = 0 you should express your answer in terms of the present value of the
Hubble constant, H0. In both cases your answer can contain a “proportional
to” sign (∝), or you can introduce an arbitrary constant of proportionality.
Again, to obtain full credit you must show how to derive the answer from
Eqs. (1), (2), and (3) above.
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∗PROBLEM 12: ROTATING FRAMES OF REFERENCE (35 points)

The following problem was Problem 3, Quiz 2, 2004.

In this problem we will use the formalism of general relativity and geodesics to
derive the relativistic description of a rotating frame of reference.

The problem will concern the consequences of the metric

ds2 = −c2 dτ2 = −c2 dt2 +
[
dr2 + r2 (dφ+ ω dt)2 + dz2

]
, (1)

which corresponds to a coordinate system rotating about the z-axis, where φ is
the azimuthal angle around the z-axis. The coordinates have the usual range for
cylindrical coordinates: −∞ < t < ∞, 0 ≤ r < ∞, −∞ < z < ∞, and 0 ≤ φ < 2π,
where φ = 2π is identified with φ = 0.

EXTRA INFORMATION

To work the problem, you do not need to know anything about where this
metric came from. However, it might (or might not!) help your intuition
to know that Eq. (1) was obtained by starting with a Minkowski metric in
cylindrical coordinates t̄ , r̄, φ̄, and z̄,

c2 dτ2 = c2 dt̄ 2 − [dr̄2 + r̄2 dφ̄2 + dz̄2
]
,

and then introducing new coordinates t, r, φ, and z that are related by

t̄ = t, r̄ = r, φ̄ = φ+ ωt, z̄ = z ,

so dt̄ = dt, dr̄ = dr, dφ̄ = dφ+ ω dt, and dz̄ = dz.

(a) (8 points) The metric can be written in matrix form by using the standard
definition

ds2 = −c2 dτ2 ≡ gµν dx
µ dxν ,

where x0 ≡ t, x1 ≡ r, x2 ≡ φ, and x3 ≡ z. Then, for example, g11 (which can
also be called grr) is equal to 1. Find explicit expressions to complete the list
of the nonzero entries in the matrix gµν :

g11 ≡ grr = 1

g00 ≡ gtt = ?

g20 ≡ g02 ≡ gφt ≡ gtφ = ?

g22 ≡ gφφ = ?

g33 ≡ gzz = ?

(2)
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If you cannot answer part (a), you can introduce unspecified functions f1(r), f2(r),
f3(r), and f4(r), with

g11 ≡ grr = 1

g00 ≡ gtt = f1(r)

g20 ≡ g02 ≡ gφt ≡ gtφ = f1(r)

g22 ≡ gφφ = f3(r)

g33 ≡ gzz = f4(r) ,

(3)

and you can then express your answers to the subsequent parts in terms of these
unspecified functions.

(b) (10 points) Using the geodesic equations from the front of the quiz,

d
dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ
dxσ

dτ
,

explicitly write the equation that results when the free index µ is equal to 1,
corresponding to the coordinate r.

(c) (7 points) Explicitly write the equation that results when the free index µ is
equal to 2, corresponding to the coordinate φ.

(d) (10 points) Use the metric to find an expression for dt/dτ in terms of dr/dt,
dφ/dt, and dz/dt. The expression may also depend on the constants c and ω.
Be sure to note that your answer should depend on the derivatives of t, φ, and
z with respect to t, not τ . (Hint: first find an expression for dτ/dt, in terms
of the quantities indicated, and then ask yourself how this result can be used to
find dt/dτ .)
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∗PROBLEM 13: PRESSURE AND ENERGY DENSITY OF
MYSTERIOUS STUFF (25 points)

The following problem was Problem 3, Quiz 3, 2002. Although it is couched in
the language of Lecture Notes 13, the physics is really the same as the pressure
calculations in Lecture Notes 7, so a modified form of this problem would be fair for
the coming quiz.

In Lecture Notes 13, a thought experiment involving a piston was used to show
that p = −ρc2 for any substance for which the energy density remains constant
under expansion. In this problem you will apply the same technique to calculate
the pressure of mysterious stuff, which has the property that the energy density
falls off in proportion to 1/

√
V as the volume V is increased.

If the initial energy density of the mysterious stuff is u0 = ρ0c
2, then the initial

configuration of the piston can be drawn as

The piston is then pulled outward, so that its initial volume V is increased to
V +∆V . You may consider ∆V to be infinitesimal, so ∆V 2 can be neglected.

(a) (15 points) Using the fact that the energy density of mysterious stuff falls off
as 1/

√
V , find the amount ∆U by which the energy inside the piston changes

when the volume is enlarged by ∆V . Define ∆U to be positive if the energy
increases.

(b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how
much work ∆W is done by the agent that pulls out the piston?

(c) (5 points) Use your results from (a) and (b) to express the pressure p of the
mysterious stuff in terms of its energy density u. (If you did not answer parts
(a) and/or (b), explain as best you can how you would determine the pressure
if you knew the answers to these two questions.)
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∗PROBLEM 14: NUMBER DENSITIES IN THE COSMIC BACK-
GROUND RADIATION

Today the temperature of the cosmic microwave background radiation is 2.7◦K.
Calculate the number density of photons in this radiation. What is the number
density of thermal neutrinos left over from the big bang?

∗PROBLEM 15: PROPERTIES OF BLACK-BODY RADIATION (25
points)

The following problem was Problem 4, Quiz 3, 1998.

In answering the following questions, remember that you can refer to the for-
mulas at the front of the exam. Since you were not asked to bring calculators, you
may leave your answers in the form of algebraic expressions, such as π32/

√
5ζ(3).

(a) (5 points) For the black-body radiation (also called thermal radiation) of pho-
tons at temperature T , what is the average energy per photon?

(b) (5 points) For the same radiation, what is the average entropy per photon?

(c) (5 points) Now consider the black-body radiation of a massless boson which has
spin zero, so there is only one spin state. Would the average energy per particle
and entropy per particle be different from the answers you gave in parts (a)
and (b)? If so, how would they change?

(d) (5 points) Now consider the black-body radiation of electron neutrinos. These
particles are fermions with spin 1/2, and we will assume that they are massless
and have only one possible spin state. What is the average energy per particle
for this case?

(e) (5 points)What is the average entropy per particle for the black-body radiation
of neutrinos, as described in part (d)?
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∗PROBLEM 16: A NEW SPECIES OF LEPTON

The following problem was Problem 2, Quiz 3, 1992, worth 25 points.

Suppose the calculations describing the early universe were modified by includ-
ing an additional, hypothetical lepton, called an 8.286ion. The 8.286ion has roughly
the same properties as an electron, except that its mass is given by mc2 = 0.750
MeV.

Parts (a)-(c) of this question require numerical answers, but since you were
not told to bring calculators, you need not carry out the arithmetic. Your answer
should be expressed, however, in “calculator-ready” form— that is, it should be an
expression involving pure numbers only (no units), with any necessary conversion
factors included. (For example, if you were asked how many meters a light pulse in
vacuum travels in 5 minutes, you could express the answer as 2.998× 108 × 5× 60.)

a) (5 points) What would be the number density of 8.286ions, in particles per
cubic meter, when the temperature T was given by kT = 3 MeV?

b) (5 points) Assuming (as in the standard picture) that the early universe is
accurately described by a flat, radiation-dominated model, what would be the
value of the mass density at t = .01 sec? You may assume that 0.75 MeV 

kT 
 100 MeV, so the particles contributing significantly to the black-body
radiation include the photons, neutrinos, e+-e− pairs, and 8.286ion-anti8286ion
pairs. Express your answer in the units of gm-cm−3.

c) (5 points) Under the same assumptions as in (b), what would be the value of
kT , in MeV, at t = .01 sec?

d) (5 points) When nucleosynthesis calculations are modified to include the effect
of the 8.286ion, is the production of helium increased or decreased? Explain
your answer in a few sentences.

e) (5 points) Suppose the neutrinos decouple while kT 	 0.75 MeV. If the
8.286ions are included, what does one predict for the value of Tν/Tγ today?
(Here Tν denotes the temperature of the neutrinos, and Tγ denotes the tem-
perature of the cosmic background radiation photons.)
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PROBLEM 17: DID YOU DO THE READING?

(a) (5 points) By what factor does the lepton number per comoving volume of the
universe change between temperatures of kT = 10 MeV and kT = 0.1 MeV?
You should assume the existence of the normal three species of neutrinos for
your answer.

(b) (5 points) Measurements of the primordial deuterium abundance would give
good constraints on the baryon density of the universe. However, this abun-
dance is hard to measure accurately. Which of the following is NOT a reason
why this is hard to do?

(i) The neutron in a deuterium nucleus decays on the time scale of 15 minutes,
so almost none of the primordial deuterium produced in the Big Bang is
still present.

(ii) The deuterium abundance in the Earth’s oceans is biased because, being
heavier, less deuterium than hydrogen would have escaped from the Earth’s
surface.

(iii) The deuterium abundance in the Sun is biased because nuclear reactions
tend to destroy it by converting it into helium-3.

(iv) The spectral lines of deuterium are almost identical with those of hydrogen,
so deuterium signatures tend to get washed out in spectra of primordial
gas clouds.

(v) The deuterium abundance is so small (a few parts per million) that it
can be easily changed by astrophysical processes other than primordial
nucleosynthesis.

(c) (5 points) Give three examples of hadrons.

(d) (6 points) In chapter 6 of The First Three Minutes, Steven Weinberg posed the
question, “Why was there no systematic search for this [cosmic background]
radiation, years before 1965?” In discussing this issue, he contrasted it with
the history of two different elementary particles, each of which were predicted
approximately 20 years before they were first detected. Name one of these
two elementary particles. (If you name them both correctly, you will get 3
points extra credit. However, one right and one wrong will get you 4 points for
the question, compared to 6 points for just naming one particle and getting it
right.)

Answer:
2nd Answer (optional):

(e) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg discusses
three reasons why the importance of a search for a 3◦ K microwave radiation
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background was not generally appreciated in the 1950s and early 1960s. Choose
those three reasons from the following list. (2 points for each right answer, circle
at most 3.)

(i) The earliest calculations erroneously predicted a cosmic background tem-
perature of only about 0.1◦ K, and such a background would be too weak
to detect.

(ii) There was a breakdown in communication between theorists and experi-
mentalists.

(iii) It was not technologically possible to detect a signal as weak as a 3◦ K
microwave background until about 1965.

(iv) Since almost all physicists at the time were persuaded by the steady state
model, the predictions of the big bang model were not taken seriously.

(v) It was extraordinarily difficult for physicists to take seriously any theory
of the early universe.

(vi) The early work on nucleosynthesis by Gamow, Alpher, Herman, and Follin,
et al., had attempted to explain the origin of all complex nuclei by reactions
in the early universe. This program was never very successful, and its
credibility was further undermined as improvements were made in the
alternative theory, that elements are synthesized in stars.
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SOLUTIONS

PROBLEM 1: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE

(a) Since θ = φ = constant, dθ = dφ = 0, and for light rays one always has dτ = 0.
The line element therefore reduces to

0 = −c2 dt2 +R2(t)dψ2 .

Rearranging gives (
dψ

dt

)2

=
c2

R2(t)
,

which implies that

dψ

dt
= ± c

R(t)
.

The plus sign describes outward radial motion, while the minus sign describes
inward motion.

(b) The maximum value of the ψ coordinate that can be reached by time t is found
by integrating its rate of change:

ψhor =
∫ t

0

c

R(t′)
dt′ .

The physical horizon distance is the proper length of the shortest line drawn at
the time t from the origin to ψ = ψhor, which according to the metric is given
by

�phys(t) =
∫ ψ=ψhor

ψ=0

ds =
∫ ψhor

0

R(t) dψ = R(t)
∫ t

0

c

R(t′)
dt′ .

(c) From part (a),
dψ

dt
=

c

R(t)
.

By differentiating the equation ct = α(θ − sin θ) stated in the problem, one
finds

dt

dθ
=
α

c
(1− cos θ) .
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Then
dψ

dθ
=
dψ

dt

dt

dθ
=
α(1− cos θ)

R(t)
.

Then using R = α(1− cos θ), as stated in the problem, one has the very simple
result

dψ

dθ
= 1 .

(d) This part is very simple if one knows that ψ must change by 2π before the
photon returns to its starting point. Since dψ/dθ = 1, this means that θ must
also change by 2π. From R = α(1− cos θ), one can see that R returns to zero
at θ = 2π, so this is exactly the lifetime of the universe. So,

Time for photon to return
Lifetime of universe

= 1 .

If it is not clear why ψ must change by 2π for the photon to return to
its starting point, then recall the construction of the closed universe that was
used in Lecture Notes 6. The closed universe is described as the 3-dimensional
surface of a sphere in a four-dimensional Euclidean space with coordinates
(x, y, z, w):

x2 + y2 + z2 + w2 = a2 ,

where a is the radius of the sphere. The Robertson-Walker coordinate system
is constructed on the 3-dimensional surface of the sphere, taking the point
(0, 0, 0, 1) as the center of the coordinate system. If we define the w-direction
as “north,” then the point (0, 0, 0, 1) can be called the north pole. Each point
(x, y, z, w) on the surface of the sphere is assigned a coordinate ψ, defined to be
the angle between the positive w axis and the vector (x, y, z, w). Thus ψ = 0
at the north pole, and ψ = π for the antipodal point, (0, 0, 0,−1), which can be
called the south pole. In making the round trip the photon must travel from
the north pole to the south pole and back, for a total range of 2π.

Discussion: Some students answered that the photon would return in the life-
time of the universe, but reached this conclusion without considering the details
of the motion. The argument was simply that, at the big crunch when the scale
factor returns to zero, all distances would return to zero, including the distance
between the photon and its starting place. This statement is correct, but it does
not quite answer the question. First, the statement in no way rules out the pos-
sibility that the photon might return to its starting point before the big crunch.
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Second, if we use the delicate but well-motivated definitions that general rel-
ativists use, it is not necessarily true that the photon returns to its starting
point at the big crunch. To be concrete, let me consider a radiation-dominated
closed universe—a hypothetical universe for which the only “matter” present
consists of massless particles such as photons or neutrinos. In that case (you
can check my calculations) a photon that leaves the north pole at t = 0 just
reaches the south pole at the big crunch. It might seem that reaching the south
pole at the big crunch is not any different from completing the round trip back
to the north pole, since the distance between the north pole and the south pole
is zero at t = tCrunch, the time of the big crunch. However, suppose we adopt
the principle that the instant of the initial singularity and the instant of the
final crunch are both too singular to be considered part of the spacetime. We
will allow ourselves to mathematically consider times ranging from t = ε to
t = tCrunch − ε, where ε is arbitrarily small, but we will not try to describe
what happens exactly at t = 0 or t = tCrunch. Thus, we now consider a photon
that starts its journey at t = ε, and we follow it until t = tCrunch − ε. For the
case of the matter-dominated closed universe, such a photon would traverse
a fraction of the full circle that would be almost 1, and would approach 1 as
ε → 0. By contrast, for the radiation-dominated closed universe, the photon
would traverse a fraction of the full circle that is almost 1/2, and it would
approach 1/2 as ε → 0. Thus, from this point of view the two cases look very
different. In the radiation-dominated case, one would say that the photon has
come only half-way back to its starting point.

PROBLEM 2: LENGTHS AND AREAS IN A TWO-DIMEN-
SIONAL METRIC

a) Along the first segment dθ = 0, so ds2 = (1 + ar)2 dr2, or ds = (1 + ar) dr.
Integrating, the length of the first segment is found to be

S1 =
∫ r0

0

(1 + ar) dr = r0 +
1
2
ar20 .

Along the second segment dr = 0, so ds = r(1 + br) dθ, where r = r0. So the
length of the second segment is

S2 =
∫ π/2

0

r0(1 + br0) dθ =
π

2
r0(1 + br0) .

Finally, the third segment is identical to the first, so S3 = S1. The total length
is then

S = 2S1 + S2 = 2
(
r0 +

1
2
ar20

)
+
π

2
r0(1 + br0)

=
(
2 +

π

2

)
r0 +

1
2
(2a+ πb)r20 .
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b) To find the area, it is best to divide the region into concentric strips as shown:

Note that the strip has a coordinate width of dr, but the distance across the
width of the strip is determined by the metric to be

dh = (1 + ar) dr .

The length of the strip is calculated the same way as S2 in part (a):

s(r) =
π

2
r(1 + br) .

The area is then
dA = s(r) dh ,

so

A =
∫ r0

0

s(r) dh

=
∫ r0

0

π

2
r(1 + br)(1 + ar) dr

=
π

2

∫ r0

0

[r + (a+ b)r2 + abr3] dr

=
π

2

[
1
2
r20 +

1
3
(a+ b)r30 +

1
4
abr40

]
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PROBLEM 3: GEOMETRY IN A CLOSED UNIVERSE

(a) As one moves along a line from the origin to (a, 0, 0), there is no variation in θ
or φ. So dθ = dφ = 0, and

ds =
Rdr√
1− r2

.

So

�p =
∫ a

0

Rdr√
1− r2

= R sin−1 a .

(b) In this case it is only θ that varies, so dr = dφ = 0. So

ds = Rr dθ ,

so

sp = Ra∆θ .

(c) From part (a), one has
a = sin(�p/R) .

Inserting this expression into the answer to (b), and then solving for ∆θ, one
has

∆θ =
sp

R sin(�p/R)
.

Note that as R → ∞, this approaches the Euclidean result, ∆θ = sp/�p.

PROBLEM 4: THE GENERAL SPHERICALLY SYMMETRIC MET-
RIC

(a) The metric is given by

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
.

The radius a is defined as the physical length of a radial line which extends
from the center to the boundary of the sphere. The length of a path is just the
integral of ds, so

a =
∫
radial path from
origin to r0

ds .
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The radial path is at a constant value of θ and φ, so dθ = dφ = 0, and then
ds = dr. So

a =
∫ r0

0

dr = r0 .

(b) On the surface r = r0, so dr ≡ 0. Then

ds2 = ρ2(r0)
[
dθ2 + sin2 θ dφ2

]
.

To find the area element, consider first a path obtained by varying only θ.
Then ds = ρ(r0) dθ. Similarly, a path obtained by varying only φ has length
ds = ρ(r0) sin θ dφ. Furthermore, these two paths are perpendicular to each
other, a fact that is incorporated into the metric by the absence of a dr dθ
term. Thus, the area of a small rectangle constructed from these two paths is
given by the product of their lengths, so

dA = ρ2(r0) sin θ dθ dφ .

The area is then obtained by integrating over the range of the coordinate
variables:

A = ρ2(r0)
∫ 2π

0

dφ

∫ π

0

sin θ dθ

= ρ2(r0)(2π)
(
− cos θ

∣∣∣π
0

)

=⇒ A = 4πρ2(r0) .

As a check, notice that if ρ(r) = r, then the metric becomes the metric of
Euclidean space, in spherical polar coordinates. In this case the answer above
becomes the well-known formula for the area of a Euclidean sphere, 4πr2.

(c) As in Problem 2 of Problem Set 3 (2000), we can imagine breaking up the
volume into spherical shells of infinitesimal thickness, with a given shell ex-
tending from r to r+dr. By the previous calculation, the area of such a shell is
A(r) = 4πρ2(r). (In the previous part we considered only the case r = r0, but
the same argument applies for any value of r.) The thickness of the shell is just
the path length ds of a radial path corresponding to the coordinate interval dr.
For radial paths the metric reduces to ds2 = dr2, so the thickness of the shell
is ds = dr. The volume of the shell is then

dV = 4πρ2(r) dr .
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The total volume is then obtained by integration:

V = 4π
∫ r0

0

ρ2(r) dr .

Checking the answer for the Euclidean case, ρ(r) = r, one sees that it gives
V = (4π/3)r30, as expected.

(d) If r is replaced by a new coordinate σ ≡ r2, then the infinitesimal variations of
the two coordinates are related by

dσ

dr
= 2r = 2

√
σ ,

so

dr2 =
dσ2

4σ
.

The function ρ(r) can then be written as ρ(
√
σ ), so

ds2 =
dσ2

4σ
+ ρ2(

√
σ )
[
dθ2 + sin2 θ dφ2

]
.

PROBLEM 5: VOLUMES IN A ROBERTSON-WALKER UNIVERSE

The product of differential length elements corresponding to infinitesimal
changes in the coordinates r, θ and φ equals the differential volume element dV .
Therefore

dV = R(t)
dr√

1− kr2
×R(t)rdθ ×R(t)r sin θdφ

The total volume is then

V =
∫
dV = R3(t)

∫ rmax

0

dr

∫ π

0

dθ

∫ 2π

0

dφ
r2 sin θ√
1− kr2

We can do the angular integrations immediately:

V = 4πR3(t)
∫ rmax

0

r2dr√
1− kr2

.
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[Pedagogical Note: If you don’t see through the solutions above, then note that the
volume of the sphere can be determined by integration, after first breaking the
volume into infinitesimal cells. A generic cell is shown in the diagram below:

The cell includes the volume lying between r and r+dr, between θ and θ+dθ,
and between φ and φ + dφ. In the limit as dr, dθ, and dφ all approach zero,
the cell approaches a rectangular solid with sides of length:

ds1 = R(t)
dr√

1− kr2

ds2 = R(t)r dθ

ds3 = R(t)r sin θ dθ .

Here each ds is calculated by using the metric to find ds2, in each case allowing
only one of the quantities dr, dθ, or dφ to be nonzero. The infinitesimal volume
element is then dV = ds1ds2ds3, resulting in the answer above. The derivation
relies on the orthogonality of the dr, dθ, and dφ directions; the orthogonality
is implied by the metric, which otherwise would contain cross terms such as
dr dθ.]

[Extension: The integral can in fact be carried out, using the substitution√
k r = sinψ (if k > 0)

√−k r = sinhψ (if k > 0).
The answer is

V =




2πR3(t)


sin−1

(√
k rmax

)
k3/2

−
√

1− kr2max

k


 (if k > 0)

2πR3(t)

[√
1− kr2max

(−k) − sinh−1
(√−k rmax

)
(−k)3/2

]
(if k < 0) .]
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PROBLEM 6: THE SCHWARZSCHILD METRIC

a) The Schwarzschild horizon is the value of r for which the metric becomes sin-
gular. Since the metric contains the factor(

1− 2GM
rc2

)
,

it becomes singular at

RSch =
2GM
c2

.

b) The separation between A and B is purely in the radial direction, so the proper
length of a segment along the path joining them is given by

ds2 =
(
1− 2GM

rc2

)−1

dr2 ,

so
ds =

dr√
1− 2GM

rc2

.

The proper distance from A to B is obtained by adding the proper lengths of
all the segments along the path, so

sAB =
∫ rB

rA

dr√
1− 2GM

rc2

.

EXTENSION: The integration can be carried out explicitly. First use the
expression for the Schwarzschild radius to rewrite the expression for sAB as

sAB =
∫ rB

rA

√
r dr√

r −RSch

.

Then introduce the hyperbolic trigonometric substitution

r = RSch cosh2 u .

One then has √
r −RSch =

√
RSch sinh u
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dr = 2RSch coshu sinhu du ,

and the indefinite integral becomes∫ √
r dr√

r −RSch

= 2RSch

∫
cosh2 u du

= RSch

∫
(1 + cosh 2u)du

= RSch

(
u+

1
2
sinh 2u

)
= RSch(u+ sinh u coshu)

= RSch sinh−1

(√
r

RSch
− 1
)
+
√
r(r −RSch) .

Thus,

sAB = RSch

[
sinh−1

(√
rB
RSch

− 1
)
− sinh−1

(√
rA
RSch

− 1
)]

+
√
rB(rB −RSch)−

√
rA(rA −RSch) .

c) A tick of the clock and the following tick are two events that differ only in their
time coordinates. Thus, the metric reduces to

−c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2 ,

so

dτ =

√
1− 2GM

rc2
dt .

The reading on the observer’s clock corresponds to the proper time interval dτ ,
so the corresponding interval of the coordinate t is given by

∆tA =
∆τA√
1− 2GM

rAc2

.

d) Since the Schwarzschild metric does not change with time, each pulse leaving
A will take the same length of time to reach B. Thus, the pulses emitted by A
will arrive at B with a time coordinate spacing

∆tB = ∆tA =
∆τA√
1− 2GM

rAc2

.
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The clock at B, however, will read the proper time and not the coordinate
time. Thus,

∆τB =
√
1− 2GM

rBc2
∆tB

=

√√√√1− 2GM
rBc2

1− 2GM
rAc2

∆τA .

e) From parts (a) and (b), the proper distance between A and B can be rewritten
as

sAB =
∫ rB

RSch

√
rdr√

r −RSch

.

The potentially divergent part of the integral comes from the range of integra-
tion in the immediate vicinity of r = RSch, say RSch < r < RSch + ε. For this
range the quantity

√
r in the numerator can be approximated by

√
RSch, so

the contribution has the form

√
RSch

∫ RSch+ε

RSch

dr√
r −RSch

.

Changing the integration variable to u ≡ r − RSch, the contribution can be
easily evaluated:

√
RSch

∫ RSch+ε

RSch

dr√
r −RSch

=
√
RSch

∫ ε

0

du√
u
= 2
√
RSchε < ∞ .

So, although the integrand is infinite at r = RSch, the integral is still finite.

The proper distance between A and B does not diverge.

Looking at the answer to part (d), however, one can see that when rA = RSch,

The time interval ∆τB diverges.
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PROBLEM 7: GEODESICS

The geodesic equation for a curve xi(λ), where the parameter λ is the arc
length along the curve, can be written as

d

dλ

{
gij

dxj

dλ

}
=

1
2
(∂igk	)

dxk

dλ

dx	

dλ
.

Here the indices j, k, and � are summed from 1 to the dimension of the space, so
there is one equation for each value of i.

(a) The metric is given by

ds2 = gijdx
idxj = dr2 + r2 dθ2 ,

so
grr = 1, gθθ = r2 , grθ = gθr = 0 .

First taking i = r, the nonvanishing terms in the geodesic equation become

d

dλ

{
grr

dr

dλ

}
=

1
2
(∂rgθθ)

dθ

dλ

dθ

dλ
,

which can be written explicitly as

d

dλ

{
dr

dλ

}
=

1
2
(
∂rr

2
)( dθ

dλ

)2

,

or

d2r

dλ2
= r

(
dθ

dλ

)2

.

For i = θ, one has the simplification that gij is independent of θ for all (i, j).
So

d

dλ

{
r2
dθ

dλ

}
= 0 .

(b) The first step is to parameterize the curve, which means to imagine moving
along the curve, and expressing the coordinates as a function of the distance
traveled. (I am calling the locus y = 1 a curve rather than a line, since the
techniques that are used here are usually applied to curves. Since a line is a
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special case of a curve, there is nothing wrong with treating the line as a curve.)
In Cartesian coordinates, the curve y = 1 can be parameterized as

x(λ) = λ , y(λ) = 1 .

(The parameterization is not unique, because one can choose λ = 0 to represent
any point along the curve.) Converting to the desired polar coordinates,

r(λ) =
√
x2(λ) + y2(λ) =

√
λ2 + 1 ,

θ(λ) = tan−1 y(λ)
x(λ)

= tan−1(1/λ) .

Calculating the needed derivatives,*

dr

dλ
=

λ√
λ2 + 1

d2r

dλ2
=

1√
λ2 + 1

− λ2

(λ2 + 1)3/2
=

1

(λ2 + 1)3/2
=

1
r3

dθ

dλ
= − 1

1 +
(

1
λ

)2 1
λ2

= − 1
r2

.

Then, substituting into the geodesic equation for i = r,

d2r

dλ2
= r

(
dθ

dλ

)2

⇐⇒ 1
r3

= r

(
− 1
r2

)2

,

which checks. Substituting into the geodesic equation for i = θ,

d

dλ

{
r2
dθ

dλ

}
= 0 ⇐⇒ d

dλ

{
r2
(
− 1
r2

)}
= 0 ,

which also checks.

* If you do not remember how to differentiate φ = tan−1(z), then you should
know how to derive it. Write z = tanφ = sinφ/ cosφ, so

dz =
(
cosφ
cosφ

+
sin2 φ

cos2 φ

)
dφ = (1 + tan2 φ)dφ .

Then
dφ

dz
=

1
1 + tan2 φ

=
1

1 + z2
.
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PROBLEM 8: GEODESICS ON THE SURFACE OF A SPHERE

(a) Rotations are easy to understand in Cartesian coordinates. The relationship
between the polar and Cartesian coordinates is given by

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ .

The equator is then described by θ = π/2, and φ = ψ, where ψ is a parameter
running from 0 to 2π. Thus, the equator is described by the curve xi(ψ), where

x1 = x = r cosψ

x2 = y = r sinψ

x3 = z = 0 .

Now introduce a primed coordinate system that is related to the original system
by a rotation in the y-z plane by an angle α:

x = x′

y = y′ cosα− z′ sinα

z = z′ cosα+ y′ sinα .
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The rotated equator, which we seek to describe, is just the standard equator
in the primed coordinates:

x′ = r cosψ , y′ = r sinψ , z′ = 0 .

Using the relation between the two coordinate systems given above,

x = r cosψ

y = r sinψ cosα

z = r sinψ sinα .

Using again the relations between polar and Cartesian coordinates,

cos θ =
z

r
= sinψ sinα

tanφ =
y

x
= tanψ cosα .

(b) A segment of the equator corresponding to an interval dψ has length a dψ, so
the parameter ψ is proportional to the arc length. Expressed in terms of the
metric, this relationship becomes

ds2 = gij
dxi

dψ

dxj

dψ
dψ2 = a2dψ2 .

Thus the quantity

A ≡ gij
dxi

dψ

dxj

dψ

is equal to a2, so the geodesic equation (6.36) reduces to the simpler form of
Eq. (6.38). (Note that we are following the notation of Lecture Notes 6, except
that the variable used to parametrize the path is called ψ, rather than λ or s.
Although A is not equal to 1 as we assumed in Lecture Notes 6, it is easily seen
that Eq. (6.38) follows from (6.36) provided only that A = constant.) Thus,

d

dψ

{
gij

dxj

dψ

}
=

1
2
(∂igk	)

dxk

dψ

dx	

dψ
.

For this problem the metric has only two nonzero components:

gθθ = a2 , gφφ = a2 sin2 θ .
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Taking i = θ in the geodesic equation,

d

dψ

{
gθθ

dθ

dψ

}
=

1
2
∂θgφφ

dφ

dψ

dφ

dψ
=⇒

d2θ

dψ2
= sin θ cos θ

(
dφ

dψ

)2

.

Taking i = φ,
d

dψ

{
a2 sin2 θ

dφ

dψ

}
= 0 =⇒

d

dψ

{
sin2 θ

dφ

dψ

}
= 0 .

(c) This part is mainly algebra. Taking the derivative of

cos θ = sinψ sinα

implies
− sin θ dθ = cosψ sinαdψ .

Then, using the trigonometric identity sin θ =
√
1− cos2 θ, one finds

sin θ =
√

1− sin2 ψ sin2 α ,

so
dθ

dψ
= − cosψ sinα√

1− sin2 ψ sin2 α
.

Similarly

tanφ = tanψ cosα =⇒ sec2 φdφ = sec2 ψ dψ cosα .

Then
sec2 φ = tan2 φ+ 1 = tan2 ψ cos2 α+ 1

=
1

cos2 ψ
[sin2 ψ cos2 α+ cos2 ψ]

= sec2 ψ[sin2 ψ(1− sin2 α) + cos2 ψ]

= sec2 ψ[1− sin2 ψ sin2 α] ,
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So
dφ

dψ
=

cosα
1− sin2 ψ sin2 α

.

To verify the geodesic equations of part (b), it is easiest to check the second
one first:

sin2 θ
dφ

dψ
= (1− sin2 ψ sin2 α)

cosα
1− sin2 ψ sin2 α

= cosα ,

so clearly
d

dψ

{
sin2 θ

dφ

dψ

}
=

d

dψ
(cosα) = 0 .

To verify the first geodesic equation from part (b), first calculate the left-hand
side, d2θ/dψ2, using our result for dθ/dψ:

d2θ

dψ2
=

d

dψ

(
dθ

dψ

)
=

d

dψ

{
− cosψ sinα√

1− sin2 ψ sin2 α

}
.

After some straightforward algebra, one finds

d2θ

dψ2
=

sinψ sinα cos2 α[
1− sin2 ψ sin2 α

]3/2 .

The right-hand side of the first geodesic equation can be evaluated using the
expression found above for dφ/dψ, giving

sin θ cos θ
(
dφ

dψ

)2

=
√

1− sin2 ψ sin2 α sinψ sinα
cos2 α[

1− sin2 ψ sin2 α
]2

=
sinψ sinα cos2 α[

1− sin2 ψ sin2 α
]3/2 .

So the left- and right-hand sides are equal.
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PROBLEM 9: GEODESICS IN A CLOSED UNIVERSE

(a) (7 points) For purely radial motion, dθ = dφ = 0, so the line element reduces
do

−c2 dτ2 = −c2 dt2 +R2(t)
{

dr2

1− r2

}
.

Dividing by dt2,

−c2
(
dτ

dt

)2

= −c2 + R2(t)
1− r2

(
dr

dt

)2

.

Rearranging,

dτ

dt
=

√
1− R2(t)

c2(1− r2)

(
dr

dt

)2

.

(b) (3 points)

dt

dτ
=

1
dτ

dt

=
1√

1− R2(t)
c2(1− r2)

(
dr

dt

)2
.

(c) (10 points) During any interval of clock time dt, the proper time that would
be measured by a clock moving with the object is given by dτ , as given by the
metric. Using the answer from part (a),

dτ =
dτ

dt
dt =

√
1− R2(t)

c2(1− r2p)

(
drp
dt

)2

dt .

Integrating to find the total proper time,

τ =
∫ t2

t1

√
1− R2(t)

c2(1− r2p)

(
drp
dt

)2

dt .

(d) (10 points) The physical distance d� that the object moves during a given time
interval is related to the coordinate distance dr by the spatial part of the metric:

d�2 = ds2 = R2(t)
{

dr2

1− r2

}
=⇒ d� =

R(t)√
1− r2

dr .
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Thus

vphys =
d�

dt
=

R(t)√
1− r2

dr

dt
.

Discussion: A common mistake was to include −c2 dt2 in the expression for
d�2. To understand why this is not correct, we should think about how an
observer would measure d�, the distance to be used in calculating the velocity
of a passing object. The observer would place a meter stick along the path of the
object, and she would mark off the position of the object at the beginning and
end of a time interval dtmeas. Then she would read the distance by subtracting
the two readings on the meter stick. This subtraction is equal to the physical
distance between the two marks, measured at the same time t. Thus, when
we compute the distance between the two marks, we set dt = 0. To compute
the speed she would then divide the distance by dtmeas, which is nonzero.

(e) (10 points) We start with the standard formula for a geodesic, as written on
the front of the exam:

d

dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
.

This formula is true for each possible value of µ, while the Einstein summation
convention implies that the indices ν, λ, and σ are summed. We are trying to
derive the equation for r, so we set µ = r. Since the metric is diagonal, the
only contribution on the left-hand side will be ν = r. On the right-hand side,
the diagonal nature of the metric implies that nonzero contributions arise only
when λ = σ. The term will vanish unless dxλ/dτ is nonzero, so λ must be
either r or t (i.e., there is no motion in the θ or φ directions). However, the
right-hand side is proportional to

∂gλσ
∂r

.

Since gtt = −c2, the derivative with respect to r will vanish. Thus, the only
nonzero contribution on the right-hand side arises from λ = σ = r. Using

grr =
R2(t)
1− r2

,

the geodesic equation becomes

d

dτ

{
grr

dr

dτ

}
=

1
2
(∂rgrr)

dr

dτ

dr

dτ
,
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or
d

dτ

{
R2

1− r2
dr

dτ

}
=

1
2

[
∂r

(
R2

1− r2

)]
dr

dτ

dr

dτ
,

or finally

d

dτ

{
R2

1− r2
dr

dτ

}
= R2 r

(1− r2)2

(
dr

dτ

)2

.

This matches the form shown in the question, with

A =
R2

1− r2
, and C = R2 r

(1− r2)2
,

with B = D = E = 0.

(f) (5 points EXTRA CREDIT) The algebra here can get messy, but it is not too
bad if one does the calculation in an efficient way. One good way to start is to
simplify the expression for p. Using the answer from (d),

p =
mvphys√
1− v2

phys
c2

=
m R(t)√

1−r2
dr
dt√

1− R2

c2(1−r2)

(
dr
dt

)2 .

Using the answer from (b), this simplifies to

p = m
R(t)√
1− r2

dr

dt

dt

dτ
= m

R(t)√
1− r2

dr

dτ
.

Multiply the geodesic equation by m, and then use the above result to rewrite
it as

d

dτ

{
Rp√
1− r2

}
= mR2 r

(1− r2)2

(
dr

dτ

)2

.

Expanding the left-hand side,

LHS =
d

dτ

{
Rp√
1− r2

}
=

1√
1− r2

d

dτ
{Rp}+Rp

r

(1− r2)3/2
dr

dτ

=
1√

1− r2
d

dτ
{Rp}+mR2 r

(1− r2)2

(
dr

dτ

)2

.

Inserting this expression back into left-hand side of the original equation, one
sees that the second term cancels the expression on the right-hand side, leaving

1√
1− r2

d

dτ
{Rp} = 0 .
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Multiplying by
√
1− r2, one has the desired result:

d

dτ
{Rp} = 0 =⇒ p ∝ 1

R(t)
.

PROBLEM 10: A TWO-DIMENSIONAL CURVED SPACE (40 points)

(a) For θ = constant, the expression for the metric reduces
to

ds2 =
a du2

4u(a− u)
=⇒

ds =
1
2

√
a

u(a− u)
du .

To find the length of the radial line shown,
one must integrate this expression from the value
of u at the center, which is 0, to the value of u at the outer edge, which is a.
So

R =
1
2

∫ a

0

√
a

u(a− u)
du .

You were not expected to do it, but the integral can be carried out, giving
R = (π/2)

√
a.
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(b) For u = constant, the expression for the metric reduces
to

ds2 = u dθ2 =⇒ ds =
√
udθ .

Since θ runs from 0 to 2π, and u = a for the circumfer-
ence of the space,

S =
∫ 2π

0

√
a dθ = 2π

√
a .

(c) To evaluate the answer to first order in du means to
neglect any terms that would be proportional to du2

or higher powers. This means that we can treat the
annulus as if it were arbitrarily thin, in which case
we can imagine bending it into a rectangle without
changing its area. The area is then equal to the cir-
cumference times the width. Both the circumference
and the width must be calculated by using the metric:

dA = circumference × width

= [2π
√
u0 ]×

[
1
2

√
a

u0(a− u0)
du
]

= π

√
a

(a− u0)
du .

(d) We can find the total area by imagining that it is broken up into annuluses,
where a single annulus starts at radial coordinate u and extends to u + du.
As in part (a), this expression must be integrated from the value of u at the
center, which is 0, to the value of u at the outer edge, which is a.

A = π

∫ a

0

√
a

(a− u)
du .
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You did not need to carry out this integration, but the answer would be A =
2πa.

(e) From the list at the front of the exam, the general formula for a geodesic is
written as

d
ds

[
gij

dxj

ds

]
=

1
2
∂gk	
∂xi

dxk

ds
dx	

ds
.

The metric components gij are related to ds2 by

ds2 = gij dxi dxj ,

where the Einstein summation convention (sum over repeated indices) is as-
sumed. In this case

g11 ≡ guu =
a

4u(a− u)

g22 ≡ gθθ = u

g12 = g21 = 0 ,

where I have chosen x1 = u and x2 = θ. The equation with du/ds on the left-
hand side is found by looking at the geodesic equations for i = 1. Of course j,
k, and � must all be summed, but the only nonzero contributions arise when
j = 1, and k and � are either both equal to 1 or both equal to 2:

d
ds

[
guu

du
ds

]
=

1
2
∂guu
∂u

(
du
ds

)2

+
1
2
∂gθθ
∂u

(
dθ
ds

)2

.

d
ds

[
a

4u(a− u)
du
ds

]
=

1
2

[
d
du

(
a

4u(a− u)

)](
du
ds

)2

+
1
2

[
d
du

(u)
](

dθ
ds

)2

=
1
2

[
a

4u(a− u)2
− a

4u2(a− u)

](
du
ds

)2

+
1
2

(
dθ
ds

)2

=
1
8
a(2u− a)
u2(a− u)2

(
du
ds

)2

+
1
2

(
dθ
ds

)2

.

(f) This part is solved by the same method, but it is simpler. Here we consider the
geodesic equation with i = 2. The only term that contributes on the left-hand
side is j = 2. On the right-hand side one finds nontrivial expressions when k
and � are either both equal to 1 or both equal to 2. However, the terms on
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the right-hand side both involve the derivative of the metric with respect to
x2 = θ, and these derivatives all vanish. So

d
ds

[
gθθ

dθ
ds

]
=

1
2
∂guu
∂θ

(
du
ds

)2

+
1
2
∂gθθ
∂θ

(
dθ
ds

)2

,

which reduces to

d
ds

[
u
dθ
ds

]
= 0 .

PROBLEM 11: EVOLUTION OF MODEL UNIVERSES (30 points)

(a) For an empty universe, the Friedmann equation is(
Ṙ

R

)2

= −kc2

R2
.

Since the left-hand side cannot be negative, an empty universe cannot have
k > 0, i.e. it cannot be closed.

Now consider k = 0, i.e. a flat universe. In this case the above equation has
the solution

R(t) = R0 ,

where R0 is independent of time. So an empty universe can be flat as long as
it is static.

Finally consider k < 0, i.e. an open universe. From the Friedmann equation we
get

Ṙ =
√

|k|c =⇒ R(t) =
√

|k|ct+ const ,

where the constant of integration const can be set to zero by using the conven-
tion that t = 0 when R(t) = 0. So, an empty universe can be open with a scale
factor that increases linearly with time.

(b)

(i) Nonrelativistic matter: w = 0.

(ii) Relativistic matter: w = 1/3.

(iii) The cosmological constant: w = −1.

(c) The fluid equation is

ρ̇ = −3
Ṙ

R
(1 + w)ρ ,
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where we have used the equation of state to express p in terms of ρ. Now
we’re given that ρ ∝ R−b and so ρ̇ ∝ −bR−b−1Ṙ, with the same constant of
proportionality. Plugging these expressions into the fluid equation,

−bR−b−1Ṙ = −3
Ṙ

R
(1 + w)R−b

=⇒ b = 3(1 + w) .

(d) We can use the Friedmann equation for a flat universe to determine R(t):(
Ṙ

R

)2

=
8π
3
Gρ .

For ρ ∝ R−b, the above equation can be written as(
Ṙ

R

)2

∝ R−b .

First consider the case b = 0, for which we find

Ṙ

R
= const = H0 =⇒ dR

R
= H0 dt .

Integrating,

lnR = H0t+ const =⇒ R(t) ∝ eH0t .

Next consider the case b �= 0, for which we find

Ṙ

R
∝ R−b/2 =⇒ Rb/2−1 dR ∝ dt .

Integrating,

Rb/2 ∝ t+ const =⇒ Rb/2 ∝ t =⇒ R(t) ∝ t2/b ,

where again the constant of integration was set to zero by our convention for
choosing the origin of time t.

— Problem and solution written by Vishesh Khemani.
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PROBLEM 12: ROTATING FRAMES OF REFERENCE (35 points)

(a) The metric was given as

−c2 dτ2 = −c2 dt2 +
[
dr2 + r2 (dφ+ ω dt)2 + dz2

]
,

and the metric coefficients are then just read off from this expression:

g11 ≡ grr = 1

g00 ≡ gtt = coefficient of dt2 = −c2 + r2ω2

g20 ≡ g02 ≡ gφt ≡ gtφ =
1
2
× coefficient of dφ dt = r2ω2

g22 ≡ gφφ = coefficient of dφ2 = r2

g33 ≡ gzz = coefficient of dz2 = 1 .

Note that the off-diagonal term gφt must be multiplied by 1/2, because the
expression

3∑
µ=0

3∑
ν=0

gµν dx
µ dxν

includes the two equal terms g20 dφ dt+ g02 dt dφ, where g20 ≡ g02.

(b) Starting with the general expression

d
dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ
dxσ

dτ
,

we set µ = r:
d
dτ

{
grν

dxν

dτ

}
=

1
2
(∂rgλσ)

dxλ

dτ
dxσ

dτ
.

When we sum over ν on the left-hand side, the only value for which grν �= 0 is
ν = 1 ≡ r. Thus, the left-hand side is simply

LHS =
d
dτ

(
grr

dx1

dτ

)
=

d
dτ

(
dr
dτ

)
=

d2r

dτ2
.

The RHS includes every combination of λ and σ for which gλσ depends on r,
so that ∂r gλσ �= 0. This means gtt, gφφ, and gφt. So,

RHS =
1
2
∂r(−c2 + r2ω2)

(
dt
dτ

)2

+
1
2
∂r(r2)

(
dφ
dτ

)2

+ ∂r(r2ω)
dφ
dτ

dt
dτ

= rω2

(
dt
dτ

)2

+ r

(
dφ
dτ

)2

+ 2rω
dφ
dτ

dt
dτ

= r

(
dφ
dτ

+ ω
dt
dτ

)2

.
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Note that the final term in the first line is really the sum of the contributions
from gφt and gtφ, where the two terms were combined to cancel the factor of
1/2 in the general expression. Finally,

d2r

dτ2
= r

(
dφ
dτ

+ ω
dt
dτ

)2

.

If one expands the RHS as

d2r

dτ2
= r

(
dφ
dτ

)2

+ rω2

(
dt
dτ

)2

+ 2rω
dφ
dτ

dt
dτ

,

then one can identify the term proportional to ω2 as the centrifugal force, and
the term proportional to ω as the Coriolis force.

(c) Substituting µ = φ,

d
dτ

{
gφν

dxν

dτ

}
=

1
2
(∂φgλσ)

dxλ

dτ
dxσ

dτ
.

But none of the metric coefficients depend on φ, so the right-hand side is zero.
The left-hand side receives contributions from ν = φ and ν = t:

d
dτ

(
gφφ

dφ
dτ

+ gφt
dt
dτ

)
=

d
dτ

(
r2

dφ
dτ

+ r2ω
dt
dτ

)
= 0 ,

so

d
dτ

(
r2

dφ
dτ

+ r2ω
dt
dτ

)
= 0 .

Note that one cannot “factor out” r2, since r can depend on τ . If this equation
is expanded to give an equation for d2φ/dτ2, the term proportional to ω would
be identified as the Coriolis force. There is no term proportional to ω2, since
the centrifugal force has no component in the φ direction.

(d) If Eq. (1) of the problem is divided by c2dt2, one obtains(
dτ
dt

)2

= 1− 1
c2

[(
dr
dt

)2

+ r2
(
dφ
dt

+ ω

)2

+
(
dz
dt

)2
]
.

Then using
dt
dτ

=
1(
dτ
dt

) ,
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one has

dt
dτ

=
1√√√√1− 1

c2

[(
dr
dt

)2

+ r2
(
dφ
dt

+ ω

)2

+
(
dz
dt

)2
] .

Note that this equation is really just

dt
dτ

=
1√

1− v2/c2
,

adapted to the rotating cylindrical coordinate system.

PROBLEM 13: PRESSURE AND ENERGY DENSITY OF
MYSTERIOUS STUFF

(a) If u ∝ 1/
√
V , then one can write

u(V +∆V ) = u0

√
V

V +∆V
.

(The above expression is proportional to 1/
√
V +∆V , and reduces to u = u0

when ∆V = 0.) Expanding to first order in ∆V ,

u =
u0√

1 + ∆V
V

=
u0

1 + 1
2

∆V
V

= u0

(
1− 1

2
∆V
V

)
.

The total energy is the energy density times the volume, so

U = u(V +∆V ) = u0

(
1− 1

2
∆V
V

)
V

(
1 +

∆V
V

)
= U0

(
1 +

1
2
∆V
V

)
,

where U0 = u0V . Then

∆U =
1
2
∆V
V

U0 .

(b) The work done by the agent must be the negative of the work done by the gas,
which is p∆V . So

∆W = −p∆V .
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(c) The agent must supply the full change in energy, so

∆W = ∆U =
1
2
∆V
V

U0 .

Combining this with the expression for ∆W from part (b), one sees immediately
that

p = −1
2
U0

V
= − 1

2
u0 .

PROBLEM 14: NUMBER DENSITIES IN THE COSMIC BACK-
GROUND RADIATION

In general, the number density of a particle in the black-body radiation is given
by

n = g∗
ξ(3)
π2

(
kT

h̄c

)3

For photons, one has g∗ = 2. Then

k = 1.381× 10−16erg/◦K

T = 2.7 ◦K

h̄ = 1.055× 10−27erg-sec

c = 2.998× 1010cm/sec




=⇒
(
kT

h̄c

)3

= 1.638× 103cm−3 .

Then using ξ(3) � 1.202, one finds

nγ = 399/cm3 .

For the neutrinos,

g∗ν = 2× 3
4
=

3
2

per species.

The factor of 2 is to account for ν and ν̄, and the factor of 3/4 arises from the
Pauli exclusion principle. So for three species of neutrinos one has

g∗ν =
9
2
.

Using the result

T 3
ν =

4
11
T 3
γ
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from Problem 8 of Problem Set 3 (2000), one finds

nν =
(
g∗ν
g∗γ

)(
Tν
Tγ

)3

nγ

=
(
9
4

)(
4
11

)
399cm−3

=⇒ nν = 326/cm3 (for all three species combined).

PROBLEM 15: PROPERTIES OF BLACK-BODY RADIATION

(a) The average energy per photon is found by dividing the energy density by the
number density. The photon is a boson with two spin states, so g = g∗ = 2.
Using the formulas on the front of the exam,

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
π4

30ζ(3)
kT .

You were not expected to evaluate this numerically, but it is interesting to
know that

E = 2.701 kT .

Note that the average energy per photon is significantly more than kT , which
is often used as a rough estimate.

(b) The method is the same as above, except this time we use the formula for the
entropy density:

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
2π4

45ζ(3)
k .
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Numerically, this gives 3.602 k, where k is the Boltzman constant.

(c) In this case we would have g = g∗ = 1. The average energy per particle and
the average entropy particle depends only on the ratio g/g∗, so there would be
no difference from the answers given in parts (a) and (b).

(d) For a fermion, g is 7/8 times the number of spin states, and g∗ is 3/4 times the
number of spin states. So the average energy per particle is

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
π2

30
(kT )4

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

180ζ(3)
kT .

Numerically, E = 3.1514 kT .

Warning: the Mathematician General has determined
that the memorization of this number may adversely
affect your ability to remember the value of π.

If one takes into account both neutrinos and antineutrinos, the average energy
per particle is unaffected — the energy density and the total number density
are both doubled, but their ratio is unchanged.

Note that the energy per particle is higher for fermions than it is for bosons.
This result can be understood as a natural consequence of the fact that fermions
must obey the exclusion principle, while bosons do not. Large numbers of
bosons can therefore collect in the lowest energy levels. In fermion systems,
on the other hand, the low-lying levels can accommodate at most one particle,
and then additional particles are forced to higher energy levels.
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(e) The values of g and g∗ are again 7/8 and 3/4 respectively, so

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
2π2

45
k4T 3

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

135ζ(3)
k .

Numerically, this gives S = 4.202 k.

PROBLEM 16: A NEW SPECIES OF LEPTON

a) The number density is given by the formula at the start of the exam,

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
.

Since the 8.286ion is like the electron, it has g∗ = 3; there are 2 spin states
for the particles and 2 for the antiparticles, giving 4, and then a factor of 3/4
because the particles are fermions. So

Then

Answer = 3
ζ(3)
π2

×
(

3× 106 × 102

6.582× 10−16 × 2.998× 1010

)3

.
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You were not asked to evaluate this expression, but the answer is 1.29× 1039.

b) For a flat cosmology κ = 0 and one of the Einstein equations becomes

(
Ṙ

R

)2

=
8π
3
Gρ .

During the radiation-dominated era R(t) ∝ t1/2, as claimed on the front cover
of the exam. So,

Ṙ

R
=

1
2t

.

Using this in the above equation gives

1
4t2

=
8π
3
Gρ .

Solve this for ρ,

ρ =
3

32πGt2
.

The question asks the value of ρ at t = 0.01 sec. With G = 6.6732 ×
10−8 cm3 sec−2 g−1, then

ρ =
3

32π × 6.6732× 10−8 × (0.01)2

in units of g/cm3. You weren’t asked to put the numbers in, but, for reference,
doing so gives ρ = 4.47× 109 g/cm3.

c) The mass density ρ = u/c2, where u is the energy density. The energy density
for black-body radiation is given in the exam,

u = ρc2 = g
π2

30
(kT )4

(h̄c)3
.

We can use this information to solve for kT in terms of ρ(t) which we found
above in part (b). At a time of 0.01 sec, g has the following contributions:

Photons: g = 2

e+e−: g = 4× 7
8 = 3 1

2

νe, νµ, ντ : g = 6× 7
8 = 5 1

4

8.286ion− anti8.286ion g = 4× 7
8 = 3 1

2
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gtot = 14
1
4

.

Solving for kT in terms of ρ gives

kT =
[
30
π2

1
gtot

h̄3c5ρ

]1/4
.

Using the result for ρ from part (b) as well as the list of fundamental constants
from the cover sheet of the exam gives

kT =
[
90× (1.055× 10−27)3 × (2.998× 1010)5

14.24× 32π3 × 6.6732× 10−8 × (0.01)2

]1/4
× 1

1.602× 10−6

where the answer is given in units of MeV. Putting in the numbers yields
kT = 8.02 MeV.

d) The production of helium is increased. At any given temperature, the addi-
tional particle increases the energy density. Since H ∝ ρ1/2, the increased
energy density speeds the expansion of the universe— the Hubble constant at
any given temperature is higher if the additional particle exists, and the tem-
perature falls faster. The weak interactions that interconvert protons and neu-
trons “freeze out” when they can no longer keep up with the rate of evolution
of the universe. The reaction rates at a given temperature will be unaffected
by the additional particle, but the higher value of H will mean that the tem-
perature at which these rates can no longer keep pace with the universe will
occur sooner. The freeze-out will therefore occur at a higher temperature. The
equilibrium value of the ratio of neutron to proton densities is larger at higher
temperatures: nn/np ∝ exp(−∆mc2/kT ), where nn and np are the number
densities of neutrons and protons, and ∆m is the neutron-proton mass differ-
ence. Consequently, there are more neutrons present to combine with protons
to build helium nuclei. In addition, the faster evolution rate implies that the
temperature at which the deuterium bottleneck breaks is reached sooner. This
implies that fewer neutrons will have a chance to decay, further increasing the
helium production.

e) After the neutrinos decouple, the entropy in the neutrino bath is conserved
separately from the entropy in the rest of the radiation bath. Just after neu-
trino decoupling, all of the particles in equilibrium are described by the same
temperature which cools as T ∝ 1/R. The entropy in the bath of particles still
in equilibrium just after the neutrinos decouple is

S ∝ grestT
3(t)R3(t)
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where grest = gtot − gν = 9. By today, the e+ − e− pairs and the 8.286ion-
anti8.286ion pairs have annihilated, thus transferring their entropy to the pho-
ton bath. As a result the temperature of the photon bath is increased relative
to that of the neutrino bath. From conservation of entropy we have that the
entropy after annihilations is equal to the entropy before annihilations

gγT
3
γR

3(t) = grestT
3(t)R3(t) .

So,
Tγ
T (t)

=
(
grest
gγ

)1/3

.

Since the neutrino temperature was equal to the temperature before annihila-
tions, we have that

Tν
Tγ

=
(
2
9

)1/3

.

PROBLEM 17: DID YOU DO THE READING?

(a) This is a total trick question. Lepton number is, of course, conserved, so the
factor is just 1. See Weinberg chapter 4, pages 91-4.

(b) The correct answer is (i). The others are all real reasons why it’s hard to
measure, although Weinberg’s book emphasizes reason (v) a bit more than
modern astrophysicists do: astrophysicists have been looking for other ways
that deuterium might be produced, but no significant mechanism has been
found. See Weinberg chapter 5, pages 114-7.

(c) The most obvious answers would be proton, neutron, and pi meson. However,
there are many other possibilities, including many that were not mentioned by
Weinberg. See Weinberg chapter 7, pages 136-8.

(d) The correct answers were the neutrino and the antiproton. The neutrino
was first hypothesized by Wolfgang Pauli in 1932 (in order to explain the kine-
matics of beta decay), and first detected in the 1950s. After the positron was
discovered in 1932, the antiproton was thought likely to exist, and the Bevatron
in Berkeley was built to look for antiprotons. It made the first detection in the
1950s.

(e) The correct answers were (ii), (v) and (vi). The others were incorrect for the
following reasons:

(i) the earliest prediction of the CMB temperature, by Alpher and Herman
in 1948, was 5 degrees, not 0.1 degrees.
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(iii) Weinberg quotes his experimental colleagues as saying that the 3◦ K radi-
ation could have been observed “long before 1965, probably in the mid-
1950s and perhaps even in the mid-1940s.” To Weinberg, however, the
historically interesting question is not when the radiation could have been
observed, but why radio astronomers did not know that they ought to try.

(iv) Weinberg argues that physicists at the time did not pay attention to either
the steady state model or the big bang model, as indicated by the sentence
in item (v) which is a direct quote from the book: “It was extraordinarily
difficult for physicists to take seriously any theory of the early universe”.


