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REVIEW PROBLEMS FOR QUIZ 3

QUIZ DATE: Thursday, December 6, 2007, during the normal class time.

COVERAGE: Problem Sets 7, 8, and 9; Lecture Notes 8, 10, and 13 (where
Lecture Notes 10 and 13 can be found on the 2005 Lecture Notes page); Ryden,
Introduction to Cosmology, Chapters 8 and 9, excluding Section 9.3. The quiz
will include big bang nucleosynthesis, at the level discussed in lecture. You
may want to review this topic in Weinberg’s The First Three Minutes, and/or
Ryden’s Chapter 10, but the quiz will not include any questions specifically
aimed at testing this reading. Similarly, the quiz will include inflation at the
level discussed in lecture, through Tuesday, December 4. You may want to
review this topic in my article, “Inflation and the New Era of High-Precision
Cosmology,” at

http://web.mit.edu/physics/alumniandfriends/physicsjournal_fall_02_cosmology.pdf.

and/or in Ryden’s Chapter 11, but the quiz will also not include any questions
specifically aimed at testing this reading.

One of the problems on the quiz will be taken verbatim (or at least
almost verbatim) from either the homework assignments, or from
the starred problems from this set of Review Problems.

PURPOSE: These review problems are not to be handed in, but are being made
available to help you study. They come mainly from quizzes in previous years.
In some cases the number of points assigned to the problem on the quiz is listed
— in all such cases it is based on 100 points for the full quiz.

REVIEW SESSION AND OFFICE HOURS: To help you study for the quiz,
Barton Zwiebach will hold a review session on Wednesday, December 5, at
7:00 pm. Yi Mao will have office hours on Tuesday, December 4, from 1:00 –
2:00 pm (not quite the usual time), and also on Wednesday, December 5, from
5:00 - 6:00 pm. Barton Zwiebach will have office hours on Tuesday evening,
December 4, at 7:00 pm. The rooms for all of these office hours and the review
session will be announced by email and on the website.

INFORMATION TO BE GIVEN ON QUIZ: There will be a formula sheet,
which will include all the formulas from the Quiz 2 formula sheet, plus a few
more. It will be posted in advance of the quiz, but possibly not until late
Wednesday afternoon.
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∗PROBLEM 1: PRESSURE AND ENERGY DENSITY OF MYSTE-
RIOUS STUFF (25 points)

In Lecture Notes 13, a thought experiment involving a piston was used to show
that p = −ρc2 for any substance for which the energy density remains constant
under expansion. In this problem you will apply the same technique to calculate
the pressure of mysterious stuff, which has the property that the energy density
falls off in proportion to 1/

√
V as the volume V is increased.

If the initial energy density of the mysterious stuff is u0 = ρ0c
2, then the initial

configuration of the piston can be drawn as

The piston is then pulled outward, so that its initial volume V is increased to
V +∆V . You may consider ∆V to be infinitesimal, so ∆V 2 can be neglected.

(a) (15 points) Using the fact that the energy density of mysterious stuff falls off
as 1/

√
V , find the amount ∆U by which the energy inside the piston changes

when the volume is enlarged by ∆V . Define ∆U to be positive if the energy
increases.

(b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how
much work ∆W is done by the agent that pulls out the piston?

(c) (5 points) Use your results from (a) and (b) to express the pressure p of the
mysterious stuff in terms of its energy density u. (If you did not answer parts
(a) and/or (b), explain as best you can how you would determine the pressure
if you knew the answers to these two questions.)
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∗PROBLEM 2: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF
(15 points)

Consider a universe that contains nonrelativistic matter, radiation, vacuum en-
ergy, and the same mysterious stuff that was introduced in the previous problem.
Since the mass density of mysterious stuff falls off as 1/

√
V , where V is the volume,

it follows that in an expanding universe the mass density of mysterious stuff falls
off as 1/R3/2(t).

Suppose that you are given the present value of the Hubble parameter H0,
and also the present values of the contributions to Ω ≡ ρ/ρc from each of the
constituents: Ωm,0 (nonrelativistic matter), Ωr,0 (radiation), Ωv,0 (vacuum energy
density), and Ωms,0 (mysterious stuff). Our goal is to express the age of the universe
t0 in terms of these quantities.

(a) (8 points) Let x(t) denote the ratio

x(t) ≡ R(t)
R(t0)

for an arbitrary time t. Write an expression for the total mass density of the
universe ρ(t) in terms of x(t) and the given quantities described above.

(b) (7 points) Write an integral expression for the age of the universe t0. The
expression should depend only on H0 and the various contributions to Ω0 listed
above (Ωm,0 , Ωr,0 , etc.), but it might include x as a variable of integration.

Extra Credit for Super-Sharpies (no partial credit): For 5 points extra credit, you
can calculate the angular diameter ∆θ of the image of a spherical object at
redshift z which had a physical diameter w at the time of emission. You should
assume that Ωtot < 1, and also that ∆θ � 1. The calculation is to be carried
out for the same model universe described above.

PROBLEM 3: TIME SCALES IN COSMOLOGY

In this problem you are asked to give the approximate times at which various
important events in the history of the universe are believed to have taken place.
The times are measured from the instant of the big bang. To avoid ambiguities,
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you are asked to choose the best answer from the following list:

10−43 sec.
10−37 sec.
10−12 sec.
10−5 sec.
1 sec.
4 mins.
10,000 – 1,000,000 years.
2 billion years.
5 billion years.
10 billion years.
13 billion years.
20 billion years.

For this problem it will be sufficient to state an answer from memory, without
explanation. The events which must be placed are the following:

(a) the beginning of the processes involved in big bang nucleosynthesis;

(b) the end of the processes involved in big bang nucleosynthesis;

(c) the time of the phase transition predicted by grand unified theories, which
takes place when kT ≈ 1016 GeV;

(d) “recombination”, the time at which the matter in the universe converted
from a plasma to a gas of neutral atoms;

(e) the phase transition at which the quarks became confined, believed to
occur when kT ≈ 300 MeV.

Since cosmology is fraught with uncertainty, in some cases more than one an-
swer will be acceptable. You are asked, however, to give ONLY ONE of the
acceptable answers.

∗PROBLEM 4: EVOLUTION OF FLATNESS (15 points)

The following problem was Problem 3, Quiz 3, 2004.

The “flatness problem” is related to the fact that during the evolution of the
standard cosmological model, Ω is always driven away from 1.

(a) (9 points) During a period in which the universe is matter-dominated (meaning
that the only relevant component is nonrelativistic matter), the quantity

Ω− 1
Ω
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grows as a power of t. Show that this is true, and derive the power. (Stating
the right power without a derivation will be worth 3 points.)

(b) (6 points) During a period in which the universe is radiation-dominated, the
same quantity will grow like a different power of t. Show that this is true, and
derive the power. (Stating the right power without a derivation will again be
worth 3 points.)

In each part, you may assume that the universe was always dominated by the
specified form of matter.

∗PROBLEM 5: THE SLOAN DIGITAL SKY SURVEY z = 5.82
QUASAR (40 points)

The following problem was Problem 4, Quiz 3, 2004.

On April 13, 2000, the Sloan Digital Sky Survey announced the discovery of
what was then the most distant object known in the universe: a quasar at z = 5.82.
To explain to the public how this object fits into the universe, the SDSS posted on
their website an article by Michael Turner and Craig Wiegert titled “How Can An
Object We See Today be 27 Billion Light Years Away If the Universe is only 14
Billion Years Old?” Using a model with H0 = 65 km-s−1-Mpc−1, Ωm = 0.35, and
ΩΛ = 0.65, they claimed

(a) that the age of the universe is 13.9 billion years.

(b) that the light that we now see was emitted when the universe was 0.95 billion
years old.

(c) that the distance to the quasar, as it would be measured by a ruler today, is
27 billion light-years.

(d) that the distance to the quasar, at the time the light was emitted, was 4.0
billion light-years.

(e) that the present speed of the quasar, defined as the rate at which the distance
between us and the quasar is increasing, is 1.8 times the velocity of light.

The goal of this problem is to check all of these conclusions, although you are
of course not expected to actually work out the numbers. Your answers can be
expressed in terms of H0, Ωm, ΩΛ, and z. Definite integrals need not be evaluated.

Note that Ωm represents the present density of nonrelativistic matter, expressed
as a fraction of the critical density; and ΩΛ represents the present density of vacuum
energy, expressed as a fraction of the critical density. In answering each of the
following questions, you may consider the answer to any previous part — whether
you answered it or not — as a given piece of information, which can be used in your
answer.
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(a) (15 points) Write an expression for the age t0 of this model universe?

(b) (5 points) Write an expression for the time te at which the light which we now
receive from the distant quasar was emitted.

(c) (10 points) Write an expression for the present physical distance �phys,0 to the
quasar.

(d) (5 points) Write an expression for the physical distance �phys,e between us and
the quasar at the time that the light was emitted.

(e) (5 points) Write an expression for the present speed of the quasar, defined as
the rate at which the distance between us and the quasar is increasing.

∗PROBLEM 6: NEUTRON-PROTON RATIO AND BIG-BANG NU-
CLEOSYNTHESIS (20 points)

The following problem was on Quiz 4, 2000, except that part (c) has been modified.
For 2004 a problem about nucleosynthesis, like this one, would be considered a dif-
ficult problem, since the topic was covered only in your readings of Weinberg. If I
were to use a question like this on the coming quiz, I would probably try to make it
easier by adding some hints.

(a) (5 points) When the temperature of the early universe was 5 × 1010 K, what
was the ratio of neutrons to protons? You may assume thermal equilibrium,
and that the mass difference is given by (mn −mp)c2 = 1.293 MeV.

Questions (b), (c), and (d) all refer to calculations that describe a hypothetical
world, which differs from the real world in a specified way. In each case you are
asked about the calculation of the predicted helium abundance for this hypothetical
world. Each of these three parts are to be answered independently; that is, in each
part you are to consider a hypothetical world that differs from the real world only
by the characteristics stated in that part.

(b) (5 points) Suppose the proton-neutron mass difference were larger than the
actual value of 1.293 MeV/c2. Would the predicted helium abundance be
larger or smaller than in the standard calculation? Explain your answer in a
sentence, or in a few sentences.

(c) (5 points) Suppose that the nucleosynthesis calculations were carried out with
an electron mass given by mec

2 = 1 KeV, instead of the physical value of
0.511 MeV. This change would affect the production of helium in several ways.
Describe one way in which the helium production process would be affected,
and explain in a few sentences whether this change would increase or decrease
the predicted helium abundance.

(d) (5 points) Suppose, due to some significant difference in the nuclear reaction
rates, that nucleosynthesis occurred suddenly at a temperature of 5×1010 K. In
that case, what would be the predicted value of Y , the fraction of the baryonic
mass density of the universe which is helium?
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∗PROBLEM 7: NEUTRINO NUMBER AND THE NEUTRON/PRO-
TON EQUILIBRIUM (35 points)

The following problem was 1998 Quiz 4, Problem 4.

In the standard treatment of big bang nucleosynthesis it is assumed that at
early times the ratio of neutrons to protons is given by the Boltzmann formula,

nn

np
= e−∆E/kT , (1)

where k is Boltzmann’s constant, T is the temperature, and ∆E = 1.29 MeV is
the proton-neutron mass-energy difference. This formula is believed to be very
accurate, but it assumes that the chemical potential for neutrons µn is the same as
the chemical potential for protons µp.

(a) (10 points) Give the correct version of Eq. (1), allowing for the possibility that
µn �= µp.

The equilibrium between protons and neutrons in the early universe is sustained
mainly by the following reactions:

e+ + n←→ p+ ν̄e

νe + n←→ p+ e− .

Let µe and µν denote the chemical potentials for the electrons (e−) and the electron
neutrinos (νe) respectively. The chemical potentials for the positrons (e+) and the
anti-electron neutrinos (ν̄e) are then –µe and –µν , respectively, since the chemi-
cal potential of a particle is always the negative of the chemical potential for the
antiparticle.*

(b) (10 points) Express the neutron/proton chemical potential difference µn − µp

in terms of µe and µν .

The black-body radiation formulas at the beginning of the quiz did not allow for the
possibility of a chemical potential, but they can easily be generalized. For example,
the formula for the number density ni (of particles of type i) becomes

ni = g∗i
ζ(3)
π2

(kT )3

(h̄c)3
eµi/kT .

* This fact is a consequence of the principle that the chemical potential of a
particle is the sum of the chemical potentials associated with its conserved quanti-
ties, while particle and antiparticle always have the opposite values of all conserved
quantities.
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(c) (10 points) Suppose that the density of anti-electron neutrinos n̄ν in the early
universe was higher than the density of electron neutrinos nν . Express the
thermal equilibrium value of the ratio nn/np in terms of ∆E, T , and the
antineutrino excess ∆n = n̄ν−nν . (Your answer may also contain fundamental
constants, such as k, h̄, and c.)

(d) (5 points) Would an excess of anti-electron neutrinos, as considered in part (c),
increase or decrease the amount of helium that would be produced in the early
universe? Explain your answer.
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SOLUTIONS
PROBLEM 1: PRESSURE AND ENERGY DENSITY OF MYSTERI-

OUS STUFF

(a) If u ∝ 1/
√
V , then one can write

u(V +∆V ) = u0

√
V

V +∆V
.

(The above expression is proportional to 1/
√
V +∆V , and reduces to u = u0

when ∆V = 0.) Expanding to first order in ∆V ,

u =
u0√

1 + ∆V
V

=
u0

1 + 1
2
∆V
V

= u0

(
1− 1

2
∆V
V

)
.

The total energy is the energy density times the volume, so

U = u(V +∆V ) = u0

(
1− 1

2
∆V
V

)
V

(
1 +

∆V
V

)
= U0

(
1 +

1
2
∆V
V

)
,

where U0 = u0V . Then

∆U =
1
2
∆V
V

U0 .

(b) The work done by the agent must be the negative of the work done by the gas,
which is p∆V . So

∆W = −p∆V .

(c) The agent must supply the full change in energy, so

∆W = ∆U =
1
2
∆V
V

U0 .

Combining this with the expression for ∆W from part (b), one sees immediately
that

p = −1
2
U0
V

= − 1
2
u0 .
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PROBLEM 2: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF

(a) The critical density ρc is defined as that density for which k = 0, where the
Friedmann equation from the front of the exam implies that

H2 =
8π
3
Gρ− kc2

R2
.

Thus the critical density today is given by

ρc =
3H2

0

8πG
.

The mass density today of any species X is then related to ΩX,0 by

ρX,0 = ρcΩX,0 =
3H2

0ΩX,0

8πG
.

The total mass density today is then expressed in terms of its four components
as

ρ0 =
3H2

0

8πG
[Ωm,0 + Ωr,0 + Ωv,0 +Ωms,0] .

But we also know how each of these contributions to the mass density scales
with x(t): ρm ∝ 1/x3, ρr ∝ 1/x4, ρv ∝ 1, and ρms ∝ 1/

√
V ∝ 1/x3/2. Inserting

these factors,

ρ(t) =
3H2

0

8πG

[
Ωm,0

x3
+

Ωr,0

x4
+Ωv,0 +

Ωms,0

x3/2

]
.

(b) The Friedmann equation then becomes

(
ẋ

x

)2
=

8πG
3

3H2
0

8πG

[
Ωm,0

x3
+

Ωr,0

x4
+ Ωv,0 +

Ωms,0

x3/2

]
− kc2

R2
.

Defining

H2
0Ωk,0 = − kc2

R2(t0)
,

so

− kc2

R2(t)
= − kc2

R2(t0)
1
x2

=
H2
0Ωk,0

x2
,

and then the Friedmann equation becomes

(
ẋ

x

)2
= H2

0

[
Ωm,0

x3
+

Ωr,0

x4
+Ωv,0 +

Ωms,0

x3/2
+

Ωk,0

x2

]
.
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Applying this equation today, when ẋ/x = H0, one finds that

Ωk,0 = 1− Ωm,0 − Ωr,0 − Ωv,0 − Ωms,0 .

Rearranging the equation for (ẋ/x)2 above,

H0 dt =
dx

x
√

Ωm,0
x3 + Ωr,0

x4 +Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

.

The age of the universe is found by integrating over the full range of x, which
starts from 0 when the universe is born, and is equal to 1 today. So

t0 =
1
H0

∫ 1

0

dx

x
√

Ωm,0
x3 + Ωr,0

x4 + Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

.

Extra Credit for Super-Sharpies (no partial credit):

Since Ωtot < 1, we use the Robertson-Walker open universe form

ds2 = −c2 dτ2 = −c2 dt2 +R2(t)
{

dr2

1 + r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where I have started with the general form from the front of the exam, and
replaced k by −1. To discuss the radial transmission of light rays it is useful
to define a new radial coordinate

r = sinhψ ,

so
dr = coshψ dψ =

√
1 + r2 dψ ,

where I used the identity that cosh2 ψ = 1 + sinh2 ψ. The metric can then be
rewritten as

ds2 = −c2 dτ2 = −c2 dt2 +R2(t)
{
dψ2 + sinh2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

Light rays then travel with dτ2 = 0, so

dψ
dt

=
c

R(t)
.
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If a light ray leaves the object at time te and arrives at Earth today, then it
will travel an interval of ψ given by

ψ =
∫ t0

te

c

R(t′)
dt′ .

We will need to know ψ, but we don’t know either te or R(t). So we need to
manipulate the right-hand side of the above equation to express it in terms of
things that we do know. Changing integration variables from t′ to x, where
x = R(t′)/R(t0), one finds dx = ẋ dt′, and then

ψ =
∫ 1

xe

c

R(t0)
1
x

dx
ẋ

.

Using H = ẋ/x,

ψ =
c

R(t0)

∫ 1

xe

dx
x2H

.

Now use the formula for H = ẋ/x from part (b), so

ψ =
c

R(t0)H0

∫ 1

xe

dx

x2
√

Ωm,0
x3 + Ωr,0

x4 +Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

.

Here

xe =
R(te)
R(t0)

=
1

1 + z
,

and the coefficient in front of the integral can be evaluated using the Friedman
equation for k = −1:

H2
0 =

8π
3
Gρ0 +

c2

R2(t0)
= H2

0Ω0 +
c2

R2(t0)
,

so
c2

R2(t0)H2
0

= 1−Ω0 = Ωk,0 .

Finally, then, the expression for ψ can be written

ψ =
√
Ωk,0

∫ 1

xe

dx

x2
√

Ωm,0
x3 + Ωr,0

x4 +Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

,
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where xe is given by the boxed equation above.

Once we know ψ, the rest is straightforward. We draw a picture in comoving
coordinates of the light rays leaving the object and arriving at Earth:

In this picture ∆θ is the angular size that would be measured. Using the dθ2

part of the metric,
ds2 = R2(t) sinh2 ψ dθ2 ,

we can relate w, the physical size of the object at the time of emission, to ∆θ:

w = R(te) sinhψ∆θ .

To evaluate R(te) we can use

R(te) = xeR(t0) =
xec

H0

√
Ωk,0

.

Finally, then,

∆θ =
wH0

√
Ωk,0

xec sinhψ
,

where ψ is given by the boxed equation above.

PROBLEM 3: TIME SCALES IN COSMOLOGY

(a) 1 sec. [This is the time at which the weak interactions begin to “freeze out”,
so that free neutron decay becomes the only mechanism that can interchange
protons and neutrons. From this time onward, the relative number of protons
and neutrons is no longer controlled by thermal equilibrium considerations.]

(b) 4 mins. [By this time the universe has become so cool that nuclear reactions
are no longer initiated.]
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(c) 10−37 sec. [We learned in Lecture Notes 7 that kT was about 1 MeV at t = 1
sec. Since 1 GeV = 1000 MeV, the value of kT that we want is 1019 times
higher. In the radiation-dominated era T ∝ R−1 ∝ t−1/2, so we get 10−38 sec.]

(d) 10,000 – 1,000,000 years. [This number was estimated in Lecture Notes 7 as
200,000 years.]

(e) 10−5 sec. [As in (c), we can use t ∝ T−2, with kT ≈ 1 MeV at t = 1 sec.]

PROBLEM 4: EVOLUTION OF FLATNESS (15 points)

(a) We start with the Friedmann equation from the formula sheet on the quiz:

H2 =

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2
.

The critical density is the value of ρ corresponding to k = 0, so

H2 =
8π
3
Gρc .

Using this expression to replace H2 on the left-hand side of the Friedmann
equation, and then dividing by 8πG/3, one finds

ρc = ρ− 3kc2

8πGR2
.

Rearranging,
ρ− ρc

ρ
=

3kc2

8πGR2ρ
.

On the left-hand side we can divide the numerator and denominator by ρc, and
then use the definition Ω ≡ ρ/ρc to obtain

Ω− 1
Ω

=
3kc2

8πGR2ρ
. (1)

For a matter-dominated universe we know that ρ ∝ 1/R3(t), and so

Ω− 1
Ω
∝ R(t) .

If the universe is nearly flat we know that R(t) ∝ t2/3, so

Ω− 1
Ω
∝ t2/3 .
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(b) Eq. (1) above is still true, so our only task is to re-evaluate the right-hand side.
For a radiation-dominated universe we know that ρ ∝ 1/R4(t), so

Ω− 1
Ω
∝ R2(t) .

If the universe is nearly flat then R(t) ∝ t1/2, so

Ω− 1
Ω
∝ t .

PROBLEM 5: THE SLOAN DIGITAL SKY SURVEY z = 5.82
QUASAR (40 points)

(a) Since Ωm + ΩΛ = 0.35 + 0.65 = 1, the universe is flat. It therefore obeys a
simple form of the Friedmann equation,

H2 =

(
Ṙ

R

)2

=
8π
3
G(ρm + ρΛ) ,

where the overdot indicates a derivative with respect to t, and the term pro-
portional to k has been dropped. Using the fact that ρm ∝ 1/R3(t) and ρΛ =
const, the energy densities on the right-hand side can be expressed in terms of
their present values ρm,0 and ρΛ ≡ ρΛ,0. Defining

x(t) ≡ R(t)
R(t0)

,

one has (
ẋ

x

)2
=

8π
3
G
(ρm,0

x3
+ ρΛ

)

=
8π
3
Gρc,0

(
Ωm,0

x3
+ΩΛ,0

)

= H2
0

(
Ωm,0

x3
+ ΩΛ,0

)
.

Here we used the facts that

Ωm,0 ≡ ρm,0

ρc,0
; ΩΛ,0 ≡ ρΛ

ρc,0
,
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and
H2
0 =

8π
3
Gρc,0 .

The equation above for (ẋ/x)2 implies that

ẋ = H0 x

√
Ωm,0

x3
+ ΩΛ,0 ,

which in turn implies that

dt =
1
H0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.

Using the fact that x changes from 0 to 1 over the life of the universe, this
relation can be integrated to give

t0 =
∫ t0

0

dt =
1
H0

∫ 1

0

dx

x
√

Ωm,0
x3 +ΩΛ,0

.

The answer can also be written as

t0 =
1
H0

∫ 1

0

x dx√
Ωm,0x+ΩΛ,0x4

or

t0 =
1
H0

∫ ∞

0

dz
(1 + z)

√
Ωm,0(1 + z)3 +ΩΛ,0

,

where in the last answer I changed the variable of integration using

x =
1

1 + z
; dx = − dz

(1 + z)2
.

Note that the minus sign in the expression for dx is canceled by the interchange
of the limits of integration: x = 0 corresponds to z =∞, and x = 1 corresponds
to z = 0.
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Your answer should look like one of the above boxed answers. You were not
expected to complete the numerical calculation, but for pedagogical purposes
I will continue. The integral can actually be carried out analytically, giving

∫ 1

0

x dx√
Ωm,0x+ΩΛ,0x4

=
2

3
√
ΩΛ,0

ln

(√
Ωm + ΩΛ,0 +

√
ΩΛ,0√

Ωm

)
.

Using
1
H0

=
9.778× 109

h0
yr ,

where H0 = 100h0 km-sec−1-Mpc−1, one finds for h0 = 0.65 that

1
H0

= 15.043× 109 yr .

Then using Ωm = 0.35 and ΩΛ,0 = 0.65, one finds

t0 = 13.88× 109 yr .

So the SDSS people were right on target.

(b) Having done part (a), this part is very easy. The dynamics of the universe is
of course the same, and the question is only slightly different. In part (a) we
found the amount of time that it took for x to change from 0 to 1. The light
from the quasar that we now receive was emitted when

x =
1

1 + z
,

since the cosmological redshift is given by

1 + z =
R(tobserved)
R(temitted)

.

Using the expression for dt from part (a), the amount of time that it took the
universe to expand from x = 0 to x = 1/(1 + z) is given by

te =
∫ te

0

dt =
1
H0

∫ 1/(1+z)

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.
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Again one could write the answer other ways, including

t0 =
1
H0

∫ ∞

z

dz′

(1 + z′)
√
Ωm,0(1 + z′)3 +ΩΛ,0

.

Again you were expected to stop with an expression like the one above. Con-
tinuing, however, the integral can again be done analytically:

∫ xmax

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

=
2

3
√

ΩΛ,0

ln

(√
Ωm +ΩΛ,0x3max +

√
ΩΛ,0 x

3/2
max√

Ωm

)
.

Using xmax = 1/(1 + 5.82) = .1466 and the other values as before, one finds

te =
0.06321
H0

= 0.9509× 109 yr .

So again the SDSS people were right.

(c) To find the physical distance to the quasar, we need to figure out how far light
can travel from z = 5.82 to the present. Since we want the present distance,
we multiply the coordinate distance by R(t0). For the flat metric

ds2 = −c2 dτ2 = −c2dt2 +R2(t)
{
dr2 + r2(dθ2 + sin2 θ dφ2)

}
,

the coordinate velocity of light (in the radial direction) is found by setting
ds2 = 0, giving

dr
dt

=
c

R(t)
.

So the total coordinate distance that light can travel from te to t0 is

�c =
∫ t0

te

c

R(t)
dt .

This is not the final answer, however, because we don’t explicitly know R(t).
We can, however, change variables of integration from t to x, using

dt =
dt
dx

dx =
dx
ẋ

.
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So

�c =
c

R(t0)

∫ 1

xe

dx
x ẋ

,

where xe is the value of x at the time of emission, so xe = 1/(1+ z). Using the
equation for ẋ from part (a), this integral can be rewritten as

�c =
c

H0R(t0)

∫ 1

1/(1+z)

dx

x2
√

Ωm,0
x3 + ΩΛ,0

.

Finally, then

�phys,0 = R(t0) �c =
c

H0

∫ 1

1/(1+z)

dx

x2
√

Ωm,0
x3 +ΩΛ,0

.

Alternatively, this result can be written as

�phys,0 =
c

H0

∫ 1

1/(1+z)

dx√
Ωm,0 x+ΩΛ,0 x4

,

or by changing variables of integration to obtain

�phys,0 =
c

H0

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Continuing for pedagogical purposes, this time the integral has no analytic
form, so far as I know. Integrating numerically,

∫ 5.82

0

dz′√
0.35 (1 + z′)3 + 0.65

= 1.8099 ,

and then using the value of 1/H0 from part (a),

�phys,0 = 27.23 light-yr .
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Right again.

(d) �phys,e = R(te)�c, so

�phys,e =
R(te)
R(t0)

�phys,0 =
�phys,0
1 + z

.

Numerically this gives

�phys,e = 3.992× 109 light-yr .

The SDSS announcement is still okay.

(e) The speed defined in this way obeys the Hubble law exactly, so

v = H0 �phys,0 = c

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Then

v

c
=
∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Numerically, we have already found that this integral has the value

v

c
= 1.8099 .

The SDSS people get an A.

PROBLEM 6: NEUTRON-PROTON RATIO AND BIG-BANG NU-
CLEOSYNTHESIS

(a) In thermal equilibrium, the ratio of neutrons to protons is given by a Boltzmann
factor,

nn

np
= e−∆m c2/kT ,
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where ∆m = (mn−mp). For ∆mc2 = 1.293×106 eV, k = 8.617×10−5 eV/K,
and T = 5× 1010 K, this gives

nn

np
= exp

{−1.293× 106/(8.617× 10−5 × 5× 1010)
}
= 0.741 .

Caveat (for stat mech experts): The above formula would be a precise con-
sequence of statistical mechanics if the neutron and proton were two possible
energy levels of the same system. In this case one would describe the system
using the canonical ensemble, which implies that the probability of the system
existing in any specific state i is proportional to exp(−Ei/kT ), where Ei is the
energy of the state. However, the neutron and proton are not really different
energy levels of the same system, because the conversion between neutrons and
protons involves other particles as well; a sample conversion reaction would be

n+ νe ←→ p+ e− ,

where νe is the electron neutrino, and e− is the electron. This means that
if the universe contained a very large density of electron neutrinos, then n-
νe collisions would occur more frequently, and the reaction would be driven
in the forward direction. Thus, a large density of electron neutrinos would
lead to a lower ratio of neutrons to protons than the Boltzmann factor given
above. Similarly, if the universe contained a large density of electrons, then
the reaction would be driven in the reverse direction, and the ratio of neutrons
to protons would be higher than the Boltzmann factor. A complete statistical
mechanical treatment of this situation would use the grand canonical ensemble,
which describes systems in which the number of particles of a given type can
change by chemical reactions. In this formalism the density of each type of
particle is related to a quantity called the chemical potential µ, where in general
the relationship is given by

n =
g

2π2

∫ ∞

m

(E2 −m2)1/2

exp [(E − µ)/(kT )]± 1
E dE

where the + sign holds for Fermi particles, the − sign holds for Bose particles,
and the factor g has the same meaning as in Lecture Notes 7. The ratio of
neutrons to protons is then given by

nn

np
= e−(∆m c2+µν−µe)/kT ,

where µν and µe represent the chemical potentials for electron neutrinos and
electrons, respectively. In the early universe, however, the standard theories
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imply that the chemical potentials for electrons and neutrinos were both neg-
ligible.

(b) A larger ∆m would mean that the Boltzmann factor described in the previous
answer would be smaller, so that there would be fewer neutrons at any given
temperature. Fewer neutrons implies less helium, since essentially all the neu-
trons that exist when the temperature falls enough for deuterium to become
stable become bound into helium.

(c) There are at least four effects that occur when the electron mass/energy is
taken as 1 KeV instead of 0.511 MeV:

(i) For the real mass/energy of 0.511 MeV the electron-positron pairs freeze
out before nucleosynthesis, but a mass/energy of 1 KeV would mean that
electron-positron pairs would behave as massless particles throughout the
nucleosynthesis process. Just like adding an extra species of neutrino, this
additional massless particle would mean that the expansion rate would be
larger, since for a flat universe,

H2 =
8π
3
Gρ ,

and

ρ =
u

c2
= g

π2

30
(kT )4

h̄3c5
.

Faster expansion means that the weak interactions “freeze out” earlier,
since the freeze-out point is the time at which the interactions can no longer
maintain equilibrium as the universe expands. An earlier freeze-out means
a higher temperature of freeze-out and hence more neutrons at the time
of freeze-out. In addition, the faster expansion rate means faster cooling,
which means less time before the temperature of nucleosynthesis is reached,
and therefore less time for neutrons to decay. Thus, faster expansion
means more neutrons. Since essentially all the neutrons present when the
deuterium bottleneck breaks are collected into helium, this implies more
helium.

(ii) The most important reactions that keep protons and neutrons in thermal
equilibrium all involve electrons and positrons:

n+ e+ ←→ p+ ν̄e

n+ νe ←→ p+ e− .

If the electron-positron mass/energy were smaller, then the rates of all of
these reactions would be enhanced. The reactions in which an e+ or e−

appears in the initial state will be enhanced by the presence of more e+’s
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and e−’s, and the reactions in which they appear in the final state will be
enhanced because a lighter final state is easier to produce. The enhanced
rate for these reactions will keep neutrons and protons in thermal equi-
librium longer, and hence to lower temperatures, and this would decrease
the final abundance of neutrons. Thus this effect will go in the opposite
direction as effect (i), leading to the production of less helium.

(iii) If the electron mass is decreased, then the neutron decay

n −→ p+ e− + ν̄e

becomes more exothermic, so it will happen more quickly. Thus more
neutrons can decay, leading to less helium.

(iv) As mentioned in (i), lowering the mass/energy of electron-positron pairs
to 1 KeV would mean that their freeze-out would not occur until after
nucleosynthesis is over. In the real case, however, withmec

2 = 0.511 MeV,
the electron-positron pairs start to freeze out at t ≈ 10 sec. The energy
released by this freeze-out heats the photons, protons, and neutrons, and
this extra heat delays the time when the universe cools enough to break the
deuterium bottleneck so that helium production can proceed. The delay
allows more time for the neutrons to decay, resulting in less helium. Since
the freeze-out that occurs for mec

2 = 0.511 MeV results in less helium, the
absence of this freeze-out if mec

2 = 1 KeV would result in more helium.

Since the effects point in different directions, there is no easy way to know what
the net effect will be. I (AHG) tried carrying out a full numerical integration,
using the equations from P.J.E. Peebles, “Primordial helium abundance and
the primordial fireball II,” Astrophysical Journal 146, 542-552 (1966). I found
that the net effect of changing mec

2 to 1 KeV was to produce less helium.
Apparently effects (ii) and (iii) above are the most significant. Of course I did
not expect students to figure this out in doing their problem sets.

(d) Part (a) asked for the ratio of neutrons to protons, so its answer is

A =
nneutron
nproton

.

The fraction of the baryonic mass in neutrons is then

nneutron
nB

=
nneutron

nneutron + nproton
=

nneutron
nproton

nneutron
nproton

+ 1
=

A

1 + A
.

The fraction of the baryonic mass in helium is twice this number, since after
nucleosynthesis essentially all neutrons are in helium, and the mass of each
helium nucleus is twice the mass of the neutrons within it. Thus

Y =
2A

1 + A
.

This gives Y = 0.851.
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PROBLEM 7: NEUTRINO NUMBER AND THE NEUTRON/PRO-
TON EQUILIBRIUM

(a) From the chemical equilibrium equation on the front of the exam, the number
densities of neutrons and protons can be written as

nn = gn
(2πmnkT )3/2

(2πh̄)3
e(µn−mnc2)/kT

np = gp
(2πmpkT )3/2

(2πh̄)3
e(µp−mpc2)/kT ,

where gn = gp = 2. Dividing,

nn

np
=
(
mn

mp

)3/2
e−(∆E+µp−µn)/kT ,

where ∆E = (mn −mp)c2 is the proton-neutron mass-energy difference. Ap-
proximating mn/mp ≈ 1, one has

nn

np
= e−(∆E+µp−µn)/kT .

The approximation mn/mp ≈ 1 is very accurate (0.14%), but is clearly not
necessary. Full credit was given whether or not this approximation was used.

(b) For any allowed chemical reaction, the sum of the chemical potentials on the
two sides must be equal. So, from

e+ + n←→ p+ ν̄e ,

we can infer that
−µe + µn = µp − µν ,

which implies that

µn − µp = µe − µν .

(c) Applying the formula given in the problem to the number densities of electron
neutrinos and the corresponding antineutrinos,

nν = g∗ν
ζ(3)
π2

(kT )3

(h̄c)3
eµν/kT

n̄ν = g∗ν
ζ(3)
π2

(kT )3

(h̄c)3
e−µν/kT ,
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since the chemical potential for the antineutrinos (ν̄) is the negative of the
chemical potential for neutrinos. A neutrino has only one spin state, so gν =
3/4, where the factor of 3/4 arises because neutrinos are fermions. Setting

x ≡ e−µν/kT

and

A ≡ 3
4
ζ(3)
π2

(kT )3

(h̄c)3
,

the number density equations can be written compactly as

nν =
A

x
, n̄ν = xA .

The quantity x can then be determined from

∆n = n̄ν − nν = xA− A

x
.

Rewriting the above formula as an explicit quadratic,

Ax2 −∆nx− A = 0 ,

one finds

x =
∆n±√∆n2 + 4A2

2A
.

Since the definition of x implies x > 0, only the positive root is relevant. Since
the number of electrons is still assumed to be equal to the number of positrons,
µe = 0, so the answer to (b) reduces to µn − µp = −µν . From (a),

nn

np
= e−(∆E+µp−µn)/kT

= e−(∆E+µν )/kT

= xe−∆E/kT

=
√
∆n2 + 4A2 +∆n

2A
e−∆E/kT ,

where

A ≡ 3
4
ζ(3)
π2

(kT )3

(h̄c)3
.
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(d) For ∆n > 0, the answer to (c) implies that the ratio nn/np would be larger
than in the usual case (∆n = 0). This is consistent with the expectation that
an excess of antineutrinos will tend to cause p’s to turn into n’s according to
the reaction

p+ ν̄e −→ e+ + n .

Since the amount of helium produced is proportional to the number of neu-
trons that survive until the breaking of the deuterium bottleneck, starting
with a higher equilibrium abundance of neutrons will increase the production
of helium.


