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PROBLEM 1: DID YOU DO THE READING? (25 points)

The following 5 questions are each worth 5 points:

(a) In the 1940’s, three astrophysicists proposed a “steady state” theory of cos-
mology, in which the universe has always looked about the same as it does
now. State the last name of at least one of these authors. (Bonus points: you
can earn 1 point each for naming the other two authors, and hence up to 2
additional points, but 1 point will be taken off for each incorrect answer.)

Ans: (Weinberg, page 8, or Ryden, page 16): Hermann Bondi, Thomas Gold,
and Fred Hoyle.

(b) In 1917, a Dutch astronomer named Willem de Sitter did which one of the
following accomplishments:

(i) measured the size of the Milky Way galaxy, finding it to be about one
billion light-years in diameter.

(ii) resolved Cepheid variable stars in Andromeda and thereby obtained per-
suasive evidence that Andromeda is not within our own galaxy, but is
apparently another galaxy like our own.

(iii) published a catalog, Nebulae and Star Clusters, listing 103 objects that
astronomers should avoid when looking for comets.

(iv) published a model for the universe, based on general relativity, which
appeared to be static but which produced a redshift proportional to the
distance.

(v) discovered that the orbital periods of the planets are proportional to the
3/2 power of the semi-major axis of their elliptical orbits.

Discussion: (i) is false in part because de Sitter was not involved in the mea-
surement of the size of the Milky Way, but the most obvious error is in the size
of the Milky Way. Its actual diameter is reported by Weinberg (p. 16) to be
about 100,000 light-years, although now it is believed to be about twice that
large. (ii) is an accurate description of an observation by Edwin Hubble in
1923 (Weinberg, pp. 19-20). (iii) describes the work of Charles Messier in 1781
(Weinberg, p. 17). (v) is of course one of Kepler’s laws of planetary motion.
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(c) In 1964–65, Arno A. Penzias and Robert W. Wilson observed a flux of mi-
crowave radiation coming from all directions in the sky, which was interpreted
by a group of physicists at a neighboring institution as the cosmic background
radiation left over from the big bang. Circle the two items on the following list
that were not part of the story behind this spectacular discovery:

(i) Bell Telephone Laboratory (ii) MIT (iii) Princeton University
(iv) pigeons (v) ground hogs (vi) Hubble’s constant
(vii) liquid helium (viii) 7.35 cm

(Grading: 3 pts for 1 correct answer, 5 for 2 correct answers, and -2 for each
incorrect answer, but the minimum score is zero.)

Discussion: The discovery of the cosmic background radiation was described
in some detail by Weinberg in Chapter 3. The observation was done at Bell
Telephone Laboratories, in Holmdel, New Jersey. The detector was cooled with
liquid helium to minimize electrical noise, and the measurements were made at
a wavelength of 7.35 cm. During the course of the experiment the astronomers
had to eject a pair of pigeons who were roosting in the antenna. Penzias and
Wilson were not initially aware that the radiation they discovered might have
come from the big bang, but Bernard Burke of MIT put them in touch with
a group at Princeton University (Robert Dicke, James Peebles, P.G. Roll, and
David Wilkinson) who were actively working on this hypothesis.

(d) Important predictions of the Copernican theory were confirmed by the discov-
ery of the aberration of starlight (which showed that the velocity of the Earth
has the time-dependence expected for rotation about the Sun) and by the be-
havior of the Foucault pendulum (which showed that the Earth rotates). These
discoveries were made

(i) during Copernicus’ lifetime.

(ii) approximately two and three decades after Copernicus’ death, respectively.

(iii) about one hundred years after Copernicus’ death.

(iv) approximately two and three centuries after Copernicus’ death, respec-
tively.

Ryden discusses this on p. 5. The aberration of starlight was discovered in
1728, while the Foucault pendulum was invented in 1851.

(e) If one averages over sufficiently large scales, the universe appears to be ho-
mogeneous and isotropic. How large must the averaging scale be before this
homogeneity and isotropy set in?
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(i) 1 AU (1 AU = 1.496× 1011 m).

(ii) 100 kpc (1 kpc = 1000 pc, 1 pc = 3.086× 1016 m = 3.262 light-year).

(iii) 1 Mpc (1 Mpc = 106 pc).

(iv) 10 Mpc.

(v) 100 Mpc.

(vi) 1000 Mpc.

This issue is discussed in Ryden’s book on p. 11.

PROBLEM 2: AN EXPONENTIALLY EXPANDING UNIVERSE (20
points)

(a) According to Eq. (3.7), the Hubble constant is related to the scale factor by

H = Ṙ/R .

So

H =
χR0e

χt

R0eχt
= χ .

(b) According to Eq. (3.8), the coordinate velocity of light is given by

dx

dt
=

c

R(t)
=

c

R0
e−χt .

Integrating,

x(t) =
c

R0

∫ t

0

e−χt′dt′

=
c

R0

[
− 1

χ
e−χt′

]t

0

=
c

χR0

[
1− e−χt

]
.

(c) From Eq. (3.11), or from the formula sheet given with the quiz, one has

1 + z =
R(tr)
R(te)

.
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Here te = 0, so

1 + z =
R0e

χtr

R0

=⇒ eχtr = 1 + z

=⇒ tr =
1
χ
ln(1 + z) .

(d) The coordinate distance is x(tr), where x(t) is the function found in part (b),
and tr is the time found in part (c). So

eχtr = 1 + z ,

and
x(tr) =

c

χR0

[
1− e−χtr

]

=
c

χR0

[
1− 1

1 + z

]

=
cz

χR0(1 + z) .

The physical distance at the time of reception is found by multiplying by the
scale factor at the time of reception, so

p(tr) = R(tr)x(tr) =
czeχtr

χ(1 + z)
=

cz

χ
.

PROBLEM 3: A TWO-LEVEL HIGH-SPEED MERRY-GO-ROUND
(15 points)
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(a) Since the relative positions of all the cars remain fixed as the merry-go-round
rotates, each successive pulse from any given car to any other car takes the
same amount of time to complete its trip. Thus there will be no Doppler shift
caused by pulses taking different amounts of time; the only Doppler shift will
come from time dilation.

We will describe the events from the point of view of an inertial reference
frame at rest relative to the hub of the merry-go-round, which we will call the
laboratory frame. This is the frame in which the problem is described, in which
the inner cars are moving at speed v, and the outer cars are moving at speed
2v. In the laboratory frame, the time interval between the wave crests emitted
by the source ∆tLab

S will be exactly equal to the time interval ∆tLab
O between

two crests reaching the observer:

∆tLab
O = ∆tLab

S .

The clocks on the merry-go-round cars are moving relative to the laboratory
frame, so they will appear to be running slowly by the factor

γ1 =
1√

1− v2/c2

for the inner cars, and by the factor

γ2 =
1√

1− 4v2/c2

for the outer cars. Thus, if we let ∆tS denote the time between crests as
measured by a clock on the source, and ∆tO as the time between crests as
measured by a clock moving with the observer, then these quantities are related
to the laboratory frame times by

γ2∆tS = ∆tLab
S and γ1∆tO = ∆tLab

O .

To make sure that the γ-factors are on the right side of the equation, you
should keep in mind that any time interval should be measured as shorter on
the moving clocks than on the lab clocks, since these clocks appear to run
slowly. Putting together the equations above, one has immediately that

∆tO =
γ2

γ1
∆tS .

The redshift z is defined by

∆tO ≡ (1 + z)∆tS ,
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so

z =
γ2

γ1
− 1 =

√
1− v2

c2

1− 4v2

c2

− 1 .

(b) For this part of the problem is useful to imagine a relay station located just to
the right of car 6 in the diagram, at rest in the laboratory frame. The relay
station rebroadcasts the waves as it receives them, and hence has no effect on
the frequency received by the observer, but serves the purpose of allowing us
to clearly separate the problem into two parts.

The first part of the discussion concerns the redshift of the signal as measured
by the relay station. This calculation would involve both the time dilation and
a change in path lengths between successive pulses, but we do not need to do
it. It is the standard situation of a source and observer moving directly away
from each other, as discussed at the end of Lecture Notes 1. The Doppler shift
is given by Eq. (1.33), which was included in the formula sheet. Writing the
formula for a recession speed u, it becomes

(1 + z)|relay =

√
1 + u

c

1− u
c

.

If we again use the symbol ∆tS for the time between wave crests as measured
by a clock on the source, then the time between the receipt of wave crests as
measured by the relay station is

∆tR =

√
1 + u

c

1− u
c

∆tS .
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The second part of the discussion concerns the transmission from the relay
station to car 6. The velocity of car 6 is perpendicular to the direction from
which the pulse is being received, so this is a transverse Doppler shift. Any
change in path length between successive pulses is second order in ∆t, so it can
be ignored. The only effect is therefore the time dilation. As described in the
laboratory frame, the time separation between crests reaching the observer is
the same as the time separation measured by the relay station:

∆tLab
O = ∆tR .

As in part (a), the time dilation implies that

γ2∆tO = ∆tLab
O .

Combining the formulas above,

∆O =
1
γ2

√
1 + u

c

1− u
c

∆tS .

Again ∆tO ≡ (1 + z)∆tS, so

z =
1
γ2

√
1 + u

c

1− u
c

− 1 =

√(
1− 4v2

c2

) (
1 + u

c

)
1− u

c

− 1 .
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PROBLEM 4: A TOY UNIVERSE WITH MATTER AND PURPLE
ENERGY (40 points)

(a) The function F (R̃) is defined by

F (R̃) ≡ 2α
R̃

− 2β
R̃2

− 1 ,

which looks like

For small R̃ the function is dominated by −2β/R̃2, so it becomes negative and
approaches −∞ as R̃ → 0. For large R̃ the inverse powers of R̃ approach
zero, so the function approaches -1. You were not required to say this, but
it approaches -1 from above, since the next-to-leading term is 2α/R̃, which is
positive. We are told that α and β have been chosen so that the function is
positive somewhere, so the positive values must occur at intermediate values
of R̃, as shown.

(b) Since (
dR̃

dt̃

)2

≥ 0 ,

the universe can satisfy Eq. (1) only if F (R̃) ≥ 0. Thus R̃min and R̃max are
located at the zeros of the function F (R̃), as shown in the diagram above.
Analytically,

F (R̃) =
2α
R̃

− 2β
R̃2

− 1 = 0

=⇒ R̃2 − 2αR̃ + 2β = 0

=⇒ R̃ = α ±
√

α2 − 2β .
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Thus

R̃min = α −
√

α2 − 2β ,

R̃max = α +
√

α2 − 2β .

(c) λ′ can be found easily, since the relation between R and θ is determined by the
relationship used to replace R by θ in the integration. This relation is stated
in the problem as Eq. (3),

R̃ = α −
√

α2 − 2β cos θ .

By comparing with Eq. (4) of the problem statement,

R√
k
= R̃ = α(1− λ′ cos θ) ,

one sees immediately that the two equations match only if

λ′ =

√
α2 − 2β

α
.

To find λ one can carry out the integral, but much of the work has already
been done in the statement of the problem. From the Friedmann equation in
the form (

dR̃

dt̃

)2

= F (R̃) ,

one finds

dt̃ =
dR̃√
F (R̃)

.

If one chooses to define t̃ = 0 to be the time when R̃ = R̃min, then the above
equation can be integrated from t̃ = 0 until some arbitrary final time t̃f :

∫ t̃f

0

dt̃ = t̃f =
∫ R̃f

R̃min

dR̃√
F (R̃)

=
∫ R̃f

R̃min

R̃ dR̃√
2αR̃ − 2β − R̃2

.
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Using the substitution suggested in the problem,

R̃ = α −
√

α2 − 2β cos θ ,

with the identity
2αR̃ − 2β − R̃2 = (α2 − 2β) sin2 θ

from the problem statement, this becomes

t̃f =
∫ θf

0

[
α −

√
α2 − 2β cos θ

] √
α2 − 2β sin θ dθ√

α2 − 2β sin θ

=
∫ θf

0

[
α −

√
α2 − 2β cos θ

]
dθ

= αθf −
√

α2 − 2β sin θf .

We can now drop the subscript f , which was used only to distinguish the limits
of integration from the variables of integration. Thus

t̃ = α

(
θ −

√
α2 − 2β

α
sin θ

)
,

so

λ =

√
α2 − 2β

α
= λ′ .

(d) From
R√
k
= α(1− λ′ cos θ) ,

one can see that R goes through one cycle as θ goes through one cycle, say
from θ = 0 to θ = 2π. Then from

ct = α(θ − λ sin θ) ,

one sees that as θ varies from 0 to 2π, ct increases by 2πα. (The term propor-
tional to sin θ returns to its original value, and so does not contribute to the
increment in ct.) Thus, the period is

P =
2πα

c
.
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(e) We know that H = 1
R

dR
dt , where dR/dt can be evaluated by noting that the

chain rule implies
dR

dθ
=

dR

dt

dt

dθ
.

Thus,

H =
1
R

dR/dθ

dt/dθ
,

where differentiation of Eqs. (4) gives

dR

dθ
= α

√
kλ′ sin θ

and
dt

dθ
=

α

c
(1− λ cos θ) .

So

H =
1√

kα(1− λ′ cos θ)
α
√

kλ′ sin θ
α
c (1− λ cos θ)

,

which simplifies to

H =
cλ′ sin θ

α(1− λ′ cos θ)(1− λ cos θ)
.

There was no need to go further, but if you substituted the values for λ and
λ′, you would have found

H =
c
√

α2 − 2β sin θ(
α −

√
α2 − 2β cos θ

)2 .


