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P
R

O
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E
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1:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(25
points)

T
he

follow
ing

5
questions

are
each

w
orth

5
points:

(a)
In

the
1940’s,

three
astrophysicists

proposed
a
“steady

state”
theory

of
cos-

m
ology,

in
w
hich

the
universe

has
alw

ays
looked

about
the

sam
e
as

it
does

now
.
State

the
last

nam
e
of

at
least

one
of

these
authors.

(B
onus

points:
you

can
earn

1
point

each
for

nam
ing

the
other

tw
o
authors,

and
hence

up
to

2
additional

points,
but

1
point

w
illbe

taken
off

for
each

incorrect
answ

er.)

A
ns:

(W
einberg,

page
8,

or
R
yden,

page
16):

H
erm

ann
B
ondi,

T
hom

as
G
old,

and
Fred

H
oyle.

(b)
In

1917,
a
D
utch

astronom
er

nam
ed

W
illem

de
Sitter

did
w
hich

one
of

the
follow

ing
accom

plishm
ents:

(i)
m
easured

the
size

of
the

M
ilky

W
ay

galaxy,
finding

it
to

be
about

one
billion

light-years
in

diam
eter.

(ii)
resolved

C
epheid

variable
stars

in
A
ndrom

eda
and

thereby
obtained

per-
suasive

evidence
that

A
ndrom

eda
is

not
w
ithin

our
ow

n
galaxy,

but
is

apparently
another

galaxy
like

our
ow

n.

(iii)
published

a
catalog,

N
ebulae

and
Star

C
lusters,

listing
103

ob
jects

that
astronom

ers
should

avoid
w
hen

looking
for

com
ets.

(iv)
published

a
m
odel

for
the

universe,
based

on
general

relativity,
w
hich

appeared
to

be
static

but
w
hich

produced
a
redshift

proportional
to

the
distance.

(v)
discovered

that
the

orbital
periods

of
the

planets
are

proportional
to

the
3/2

pow
er

of
the

sem
i-m

ajor
axis

of
their

ellipticalorbits.

D
iscussion:

(i)
is

false
in

part
because

de
Sitter

w
as

not
involved

in
the

m
ea-

surem
ent

ofthe
size

ofthe
M
ilky

W
ay,but

the
m
ost

obvious
error

is
in

the
size

of
the

M
ilky

W
ay.

Its
actual

diam
eter

is
reported

by
W
einberg

(p.
16)

to
be

about
100,000

light-years,
although

now
it

is
believed

to
be

about
tw

ice
that

large.
(ii)

is
an

accurate
description

of
an

observation
by

E
dw

in
H
ubble

in
1923

(W
einberg,pp.19-20).

(iii)
describes

the
w
ork

ofC
harles

M
essier

in
1781

(W
einberg,

p.
17).

(v)
is

of
course

one
of

K
epler’s

law
s
of

planetary
m
otion.
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(c)
In

1964–65,
A
rno

A
.
P
enzias

and
R
obert

W
.
W

ilson
observed

a
flux

of
m
i-

crow
ave

radiation
com

ing
from

alldirections
in

the
sky,w

hich
w
as

interpreted
by

a
group

of
physicists

at
a
neighboring

institution
as

the
cosm

ic
background

radiation
left

over
from

the
big

bang.
C
ircle

the
tw

o
item

s
on

the
follow

ing
list

that
w
ere

n
ot

part
of

the
story

behind
this

spectacular
discovery:

(i)
B
ellT

elephone
L
aboratory

(ii)
M
IT

(iii)
P
rinceton

U
niversity

(iv)
pigeons

(v)
ground

hogs
(vi)

H
ubble’s

constant
(vii)

liquid
helium

(viii)
7.35

cm

(G
rading:

3
pts

for
1
correct

answ
er,

5
for

2
correct

answ
ers,

and
-2

for
each

incorrect
answ

er,
but

the
m
inim

um
score

is
zero.)

D
iscussion:

T
he

discovery
of

the
cosm

ic
background

radiation
w
as

described
in

som
e
detail

by
W
einberg

in
C
hapter

3.
T
he

observation
w
as

done
at

B
ell

T
elephone

L
aboratories,in

H
olm

del,N
ew

Jersey.
T
he

detector
w
as

cooled
w
ith

liquid
helium

to
m
inim

ize
electricalnoise,and

the
m
easurem

ents
w
ere

m
ade

at
a
w
avelength

of7.35
cm

.
D
uring

the
course

ofthe
experim

ent
the

astronom
ers

had
to

eject
a
pair

of
pigeons

w
ho

w
ere

roosting
in

the
antenna.

P
enzias

and
W

ilson
w
ere

not
initially

aw
are

that
the

radiation
they

discovered
m
ight

have
com

e
from

the
big

bang,
but

B
ernard

B
urke

of
M
IT

put
them

in
touch

w
ith

a
group

at
P
rinceton

U
niversity

(R
obert

D
icke,

Jam
es

P
eebles,

P.G
.R

oll,and
D
avid

W
ilkinson)

w
ho

w
ere

actively
w
orking

on
this

hypothesis.

(d)
Im

portant
predictions

of
the

C
opernican

theory
w
ere

confirm
ed

by
the

discov-
ery

of
the

aberration
of

starlight
(w

hich
show

ed
that

the
velocity

of
the

E
arth

has
the

tim
e-dependence

expected
for

rotation
about

the
Sun)

and
by

the
be-

havior
ofthe

Foucault
pendulum

(w
hich

show
ed

that
the

E
arth

rotates).
T
hese

discoveries
w
ere

m
ade

(i)
during

C
opernicus’

lifetim
e.

(ii)
approxim

ately
tw

o
and

three
decades

after
C
opernicus’death,respectively.

(iii)
about

one
hundred

years
after

C
opernicus’

death.

(iv)
approxim

ately
tw

o
and

three
centuries

after
C
opernicus’

death,
respec-

tively.

R
yden

discusses
this

on
p.

5.
T
he

aberration
of

starlight
w
as

discovered
in

1728,w
hile

the
Foucault

pendulum
w
as

invented
in

1851.

(e)
If

one
averages

over
suffi

ciently
large

scales,
the

universe
appears

to
be

ho-
m
ogeneous

and
isotropic.

H
ow

large
m
ust

the
averaging

scale
be

before
this

hom
ogeneity

and
isotropy

set
in?
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(i)
1
A
U

(1
A
U

=
1
.496×

10
1
1
m
).

(ii)
100

kpc
(1

kpc
=

1000
pc,

1
pc

=
3.086×

10
1
6
m

=
3.262

light-year).

(iii)
1
M
pc

(1
M
pc

=
10

6
pc).

(iv)
10

M
pc.

(v)
100

M
pc.

(vi)
1000

M
pc.

T
his

issue
is

discussed
in

R
yden’s

book
on

p.
11.

P
R

O
B

L
E
M

2:
A

N
E
X

P
O

N
E
N

T
IA

L
LY

E
X

P
A

N
D

IN
G

U
N

IV
E
R

S
E

(20
points)

(a)
A
ccording

to
E
q.(3.7),the

H
ubble

constant
is

related
to

the
scale

factor
by

H
=

Ṙ
/
R

.

So

H
=

χ
R

0 e
χ

t

R
0 e

χ
t

=
χ

.

(b)
A
ccording

to
E
q.(3.8),the

coordinate
velocity

of
light

is
given

by

d
xd
t
=

c

R
(t)

=
cR
0
e −

χ
t

.

Integrating,

x(t)
=

cR
0 ∫

t

0

e −
χ

t ′d
t ′

=
cR
0 [−

1χ
e −

χ
t ′ ]

t0

=
c

χ
R

0 [1−
e −

χ
t ]

.

(c)
From

E
q.(3.11),or

from
the

form
ula

sheet
given

w
ith

the
quiz,

one
has

1
+

z
=

R
(t

r )
R
(t

e )
.
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H
ere

t
e
=

0,
so

1
+

z
=

R
0 e

χ
t
r

R
0

=⇒
e
χ

t
r
=

1
+

z

=⇒
t
r
=

1χ
ln(1

+
z)

.

(d)
T
he

coordinate
distance

is
x(t

r ),
w
here

x(t)
is

the
function

found
in

part
(b),

and
t
r
is

the
tim

e
found

in
part

(c).
So

e
χ

t
r
=

1
+

z
,

and
x(t

r )
=

c

χ
R

0 [1−
e −

χ
t
r ]

=
c

χ
R

0 [1−
1

1
+

z ]

=
cz

χ
R

0 (1
+

z)
.

T
he

physical
distance

at
the

tim
e
of

reception
is

found
by

m
ultiplying

by
the

scale
factor

at
the

tim
e
of

reception,
so



p (t

r )
=

R
(t

r )x(t
r )

=
cz

e
χ

t
r

χ
(1

+
z)

=
czχ

.

P
R

O
B

L
E
M

3:
A

T
W

O
-L

E
V

E
L

H
IG

H
-S

P
E
E
D

M
E
R

R
Y

-G
O

-R
O

U
N

D
(15

points)
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(a)
Since

the
relative

positions
of

all
the

cars
rem

ain
fixed

as
the

m
erry-go-round

rotates,
each

successive
pulse

from
any

given
car

to
any

other
car

takes
the

sam
e
am

ount
of

tim
e
to

com
plete

its
trip.

T
hus

there
w
illbe

no
D
oppler

shift
caused

by
pulses

taking
different

am
ounts

of
tim

e;
the

only
D
oppler

shift
w
ill

com
e
from

tim
e
dilation.

W
e
w
ill

describe
the

events
from

the
point

of
view

of
an

inertial
reference

fram
e
at

rest
relative

to
the

hub
of

the
m
erry-go-round,

w
hich

w
e
w
illcall

the
laboratory

fram
e.

T
his

is
the

fram
e
in

w
hich

the
problem

is
described,in

w
hich

the
inner

cars
are

m
oving

at
speed

v,
and

the
outer

cars
are

m
oving

at
speed

2
v.

In
the

laboratory
fram

e,the
tim

e
intervalbetw

een
the

w
ave

crests
em

itted
by

the
source

∆
t
L
a
b

S
w
ill

be
exactly

equal
to

the
tim

e
interval

∆
t
L
a
b

O
betw

een
tw

o
crests

reaching
the

observer:∆
t
L
a
b

O
=

∆
t
L
a
b

S
.

T
he

clocks
on

the
m
erry-go-round

cars
are

m
oving

relative
to

the
laboratory

fram
e,

so
they

w
illappear

to
be

running
slow

ly
by

the
factor

γ
1
=

1
√

1−
v
2/

c
2

for
the

inner
cars,

and
by

the
factor

γ
2
=

1
√
1−

4
v
2/

c
2

for
the

outer
cars.

T
hus,

if
w
e
let

∆
t
S

denote
the

tim
e
betw

een
crests

as
m
easured

by
a
clock

on
the

source,
and

∆
t
O

as
the

tim
e
betw

een
crests

as
m
easured

by
a
clock

m
oving

w
ith

the
observer,then

these
quantities

are
related

to
the

laboratory
fram

e
tim

es
by

γ
2 ∆

t
S
=

∆
t
L
a
b

S
and

γ
1 ∆

t
O
=

∆
t
L
a
b

O
.

T
o
m
ake

sure
that

the
γ-factors

are
on

the
right

side
of

the
equation,

you
should

keep
in

m
ind

that
any

tim
e
interval

should
be

m
easured

as
shorter

on
the

m
oving

clocks
than

on
the

lab
clocks,

since
these

clocks
appear

to
run

slow
ly.

P
utting

together
the

equations
above,

one
has

im
m
ediately

that

∆
t
O
=

γ
2

γ
1 ∆

t
S

.

T
he

redshift
z
is

defined
by

∆
t
O
≡

(1
+

z)∆
t
S

,
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so

z
=

γ
2

γ
1 −

1
= √

1−
v
2

c
2

1−
4
v
2

c
2

−
1

.

(b)
For

this
part

of
the

problem
is
useful

to
im

agine
a
relay

station
located

just
to

the
right

of
car

6
in

the
diagram

,
at

rest
in

the
laboratory

fram
e.

T
he

relay
station

rebroadcasts
the

w
aves

as
it

receives
them

,
and

hence
has

no
effect

on
the

frequency
received

by
the

observer,
but

serves
the

purpose
of

allow
ing

us
to

clearly
separate

the
problem

into
tw

o
parts.

T
he

first
part

of
the

discussion
concerns

the
redshift

of
the

signalas
m
easured

by
the

relay
station.

T
his

calculation
w
ould

involve
both

the
tim

e
dilation

and
a
change

in
path

lengths
betw

een
successive

pulses,
but

w
e
do

not
need

to
do

it.
It

is
the

standard
situation

of
a
source

and
observer

m
oving

directly
aw

ay
from

each
other,as

discussed
at

the
end

ofL
ecture

N
otes

1.
T
he

D
oppler

shift
is

given
by

E
q.

(1.33),
w
hich

w
as

included
in

the
form

ula
sheet.

W
riting

the
form

ula
for

a
recession

speed
u,

it
becom

es

(1
+

z)|re
la

y
= √

1
+

uc

1−
uc

.

If
w
e
again

use
the

sym
bol

∆
t
S
for

the
tim

e
betw

een
w
ave

crests
as

m
easured

by
a
clock

on
the

source,
then

the
tim

e
betw

een
the

receipt
of

w
ave

crests
as

m
easured

by
the

relay
station

is

∆
t
R
= √

1
+

uc

1−
uc

∆
t
S

.
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T
he

second
part

of
the

discussion
concerns

the
transm

ission
from

the
relay

station
to

car
6.

T
he

velocity
of

car
6
is

perpendicular
to

the
direction

from
w
hich

the
pulse

is
being

received,
so

this
is

a
transverse

D
oppler

shift.
A
ny

change
in

path
length

betw
een

successive
pulses

is
second

order
in

∆
t,so

it
can

be
ignored.

T
he

only
effect

is
therefore

the
tim

e
dilation.

A
s
described

in
the

laboratory
fram

e,
the

tim
e
separation

betw
een

crests
reaching

the
observer

is
the

sam
e
as

the
tim

e
separation

m
easured

by
the

relay
station:

∆
t
L
a
b

O
=

∆
t
R

.

A
s
in

part
(a),the

tim
e
dilation

im
plies

that

γ
2 ∆

t
O
=

∆
t
L
a
b

O
.

C
om

bining
the

form
ulas

above,

∆
O
=

1γ
2 √

1
+

uc

1−
uc

∆
t
S

.

A
gain

∆
t
O
≡

(1
+

z)∆
t
S ,

so

z
=

1γ
2 √

1
+

uc

1−
uc

−
1
= √(1−

4
v
2

c
2 )(1

+
uc )

1−
uc

−
1

.
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P
R

O
B

L
E
M

4:
A

T
O

Y
U

N
IV

E
R

S
E

W
IT

H
M

A
T

T
E
R

A
N

D
P

U
R

P
L
E

E
N

E
R

G
Y

(40
points)

(a)
T
he

function
F
(R̃

)
is

defined
by

F
(R̃

)≡
2
αR̃
−

2
β

R̃
2 −

1
,

w
hich

looks
like

For
sm

all
R̃

the
function

is
dom

inated
by−

2
β
/
R̃

2,so
it
becom

es
negative

and
approaches

−∞
as

R̃
→

0.
For

large
R̃

the
inverse

pow
ers

of
R̃

approach
zero,

so
the

function
approaches

-1.
Y
ou

w
ere

not
required

to
say

this,
but

it
approaches

-1
from

above,
since

the
next-to-leading

term
is

2
α
/R̃

,
w
hich

is
positive.

W
e
are

told
that

α
and

β
have

been
chosen

so
that

the
function

is
positive

som
ew

here,
so

the
positive

values
m
ust

occur
at

interm
ediate

values
of

R̃
,
as

show
n.

(b)
Since

(
d
R̃d
t̃ )

2≥
0

,

the
universe

can
satisfy

E
q.

(1)
only

if
F
(R̃

)≥
0.

T
hus

R̃
m

in
and

R̃
m

a
x
are

located
at

the
zeros

of
the

function
F
(R̃

),
as

show
n

in
the

diagram
above.

A
nalytically,

F
( R̃

)
=

2
αR̃
−

2
β

R̃
2 −

1
=

0

=⇒
R̃

2−
2
α
R̃
+
2
β
=

0

=⇒
R̃

=
α± √

α
2−

2
β

.
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T
hus

R̃
m

in
=

α− √
α

2−
2
β

,

R̃
m

a
x
=

α
+ √

α
2−

2
β

.

(c)
λ ′can

be
found

easily,since
the

relation
betw

een
R

and
θ
is
determ

ined
by

the
relationship

used
to

replace
R

by
θ
in

the
integration.

T
his

relation
is

stated
in

the
problem

as
E
q.(3),R̃

=
α− √

α
2−

2
β
cos

θ
.

B
y
com

paring
w
ith

E
q.(4)

of
the

problem
statem

ent,

R√
k
=

R̃
=

α
(1−

λ ′cos
θ)

,

one
sees

im
m
ediately

that
the

tw
o
equations

m
atch

only
if

λ ′= √
α

2−
2
β

α
.

T
o
find

λ
one

can
carry

out
the

integral,
but

m
uch

of
the

w
ork

has
already

been
done

in
the

statem
ent

of
the

problem
.
From

the
Friedm

ann
equation

in
the

form
(

d
R̃d
t̃ )

2

=
F
(R̃

)
,

one
finds

d
t̃
=

d
R̃

√
F
(R̃

)
.

If
one

chooses
to

define
t̃
=

0
to

be
the

tim
e
w
hen

R̃
=

R̃
m

in ,
then

the
above

equation
can

be
integrated

from
t̃
=

0
until

som
e
arbitrary

final
tim

e
t̃
f :

∫
t̃
f

0

d
t̃
=

t̃
f
= ∫

R̃
f

R̃
m

in

d
R̃

√
F
(R̃

)

= ∫
R̃

f

R̃
m

in

R̃
d
R̃

√
2
α
R̃
−

2
β−

R̃
2

.
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U
sing

the
substitution

suggested
in

the
problem

,

R̃
=

α− √
α

2−
2
β
cos

θ
,

w
ith

the
identity

2
α
R̃
−
2
β−

R̃
2
=

(α
2−

2
β
)sin

2
θ

from
the

problem
statem

ent,
this

becom
es

t̃
f
= ∫

θ
f

0

[α− √
α

2−
2
β
cos

θ ]√
α

2−
2
β
sin

θ
d
θ

√
α

2−
2
β
sin

θ

= ∫
θ

f

0 [α− √
α

2−
2
β
cos

θ ]
d
θ

=
α
θ

f − √
α

2−
2
β
sin

θ
f

.

W
e
can

now
drop

the
subscript

f,w
hich

w
as

used
only

to
distinguish

the
lim

its
of

integration
from

the
variables

of
integration.

T
hus

t̃
=

α (
θ− √

α
2−

2
β

α
sin

θ )
,

so

λ
= √

α
2−

2
β

α
=

λ ′
.

(d)
From

R√
k
=

α
(1−

λ ′cos
θ)

,

one
can

see
that

R
goes

through
one

cycle
as

θ
goes

through
one

cycle,
say

from
θ
=

0
to

θ
=

2
π
.
T
hen

from

ct
=

α
(θ−

λ
sin

θ)
,

one
sees

that
as

θ
varies

from
0
to

2
π
,
ct

increases
by

2
π
α
.
(T

he
term

propor-
tional

to
sin

θ
returns

to
its

original
value,

and
so

does
not

contribute
to

the
increm

ent
in

ct.)
T
hus,

the
period

is

P
=

2
π
αc

.
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(e)
W
e
know

that
H

=
1R

d
Rd
t ,

w
here

d
R

/
d
t
can

be
evaluated

by
noting

that
the

chain
rule

im
plies

d
Rd
θ

=
d
Rd
t

d
t

d
θ

.

T
hus,

H
=

1R

d
R

/
d
θ

d
t/

d
θ

,

w
here

differentiation
of

E
qs.

(4)
gives

d
Rd
θ

=
α √

k
λ ′sin

θ

and
d
t

d
θ
=

αc
(1−

λ
cos

θ)
.

So

H
=

1
√

k
α
(1−

λ ′cos
θ)

α √
k
λ ′sin

θ
αc (1−

λ
cos

θ)
,

w
hich

sim
plifies

to

H
=

cλ ′sin
θ

α
(1−

λ ′cos
θ)(1−

λ
cos

θ)
.

T
here

w
as

no
need

to
go

further,
but

if
you

substituted
the

values
for

λ
and

λ ′,
you

w
ould

have
foundH

=
c √

α
2−

2
β
sin

θ
(
α− √

α
2−

2
β
cos

θ )
2

.


