

 Discussion: (i) is false in part because de Sitter was not involved in the mea-

 -әэиеұธ!
 astronomers should avoid when looking for comets.
 apparently another galaxy like our own.
 ii) resolved Cepheid variable stars in Andromeda and thereby obtained perbillion light-years in diameter
(i) measured the size of the Milky Way galaxy, finding it to be about one following accomplishments:

In 1917, a Dutch astronomer named Willem de Sitter did which one of the -әКон рәды рие

additional points, but 1 point will be taken off for each incorrect answer.)

The following 5 questions are each worth 5 points:
PROBLEM 1: DID YOU DO THE READING? (25 points)

> Prof. Alan Guth Physics 8.286: The Early
 (e) If one averages over sufficiently large scales, the universe appears to be ho-
mogeneous and isotropic. How large must the averaging scale be before this
homogeneity and isotropy set in? 1728, while the Foucault pendulum was invented in 1851. Ryden discusses this on p. 5. The aberration of starlight was discovered in tively.
 (iii) about one hundred years after Copernicus' death. (ii) approximately two and three decades after Copernicus' death, respectively, әшu!əә!! s snọurədo刀 su!̣np (!) discoveries were made

 ery of the aberration of starlight (which showed that the velocity of the Earth
(d) Important predictions of the Copernican theory were confirmed by the discovDavid Wilkinson) who were actively working on this hypothesis. a group at Princeton University (Robert Dicke, James Peebles, P.G. Roll, and

 had to eject a pair of pigeons who were roosting in the antenna. Penzias and a wavelength of 7.35 cm . During the course of the experiment the astronomers
 Telephone Laboratories, in Holmdel, New Jersey. The detector was cooled with in some detail by Weinberg in Chapter 3. The observation was done at Bell Discussion: The discovery of the cosmic background radiation was described incorrect answer, but the minimum score is zero.) (Grading: 3 pts for 1 correct answer, 5 for 2 correct answers, and -2 for each
 (iv) pigeons (v) ground hogs К.оұе.лочет әиочдәәәL IIə ${ }^{\text {(! }}$ (!) that were not part of the story behind this spectacular discovery:

 crowave radiation coming from all directions in the sky, which was interpreted
(c) In 1964-65, Arno A. Penzias and Robert W. Wilson observed a flux of mi-

Кq рәшџəр s! z भ!!чspəı әчL
$s_{7} \nabla(z+\mathrm{I}) \equiv o_{7} \nabla$
$\cdot s_{7} \nabla \frac{\text { Ll }}{\text { 亿l }}=o_{7} \nabla$

$s_{7} \nabla \frac{\mathrm{Ll}}{z_{\gamma l}}=o_{7} \nabla$

 measured by a clock on the source, and Δt_{O} as the time between crests as

$\frac{z^{3} / z^{n \varnothing}-I /}{I}=z \swarrow$

 for the inner cars, and by the factor
1
The clocks on the merry-go-round cars are moving relative to the laboratory
frame, so they will appear to be running slowly by the factor

 two crests reaching the observer:
 laboratory frame. This is the frame in which the problem is described, in which

 come from time dilation. caused by pulses taking different amounts of time; the only Doppler shift will

 (a) Since the relative positions of all the cars remain fixed as the merry-go-round measured by the relay station is by a clock on the source, then the time between the receipt of wave crests as

$\left.\frac{\frac{\partial}{n}-\mathrm{I}}{\frac{\partial}{n}+\mathrm{I}} \|^{\mathrm{Ke}_{\mathrm{e}}{ }^{\partial \mathrm{I}}} \right\rvert\,(z+\mathrm{I})$

 is given by Eq. (1.33), which was included in the formula sheet. Writing theformula for a recession speed u, it becomes from each other, as discussed at the end of Lecture Notes 1. The Doppler shift it. It is the standard situation of a source and observer moving directly away a change in path lengths between successive pulses, but we do not need to do by the relay station. This calculation would involve both the time dilation and The first part of the discussion concerns the redshift of the signal as measured

As in part (a), the time dilation implies that

$$
\gamma_{2} \Delta t_{O}=\Delta t_{O}^{\mathrm{Lab}} .
$$

Combining the formulas above,

$$
\Delta_{O}=\frac{1}{\gamma_{2}} \sqrt{\frac{1+\frac{u}{c}}{1-\frac{u}{c}} \Delta t_{S} \cdot}
$$

Again $\Delta t_{O} \equiv(1+z) \Delta t_{S}$, so
$z=\frac{1}{\gamma_{2}} \sqrt{\frac{1+\frac{u}{c}}{1-\frac{u}{c}}}-1=\sqrt{\frac{\left(1-\frac{4 v^{2}}{c^{2}}\right)\left(1+\frac{u}{c}\right)}{1-\frac{u}{c}}}-1$.

- ${ }^{4} 7 \nabla={ }_{q \mathrm{q}}{ }_{\mathrm{T}}^{7} \nabla$
laboratory frame, the time separation between crests reaching the observer is
the same as the time separation measured by the relay station: be ignored. The only effect is therefore the time dilation. As described in the
laboratory frame, the time separation between crests reaching the observer is change in path length between successive pulses is second order in Δt, so it can which the pulse is being received, so this is a transverse Doppler shift. Any station to car 6 . The velocity of car 6 is perpendicular to the direction from The second part of the discussion concerns the transmission from the relay
$L \cdot d$

әч!़ SYooI Чכ!̣м
Kq рәицәр s!̣ $(\underset{\sim}{\underset{\sim}{y}})_{\boldsymbol{H}}$ uо!̣əunf әчL (e)

$$
\frac{z \underset{\sim}{U}}{\partial z}-\frac{\underset{\sim}{U}}{\partial z} \equiv(\underset{\sim}{\underset{\sim}{y}})_{\underline{H}}
$$

PROBLEM 4: A TOY UNIVERSE WITH MATTER AND PURPLE
8.286 QUIZ 1 SOLUTIONS, FALL 2007

