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PROBLEM 1: DID YOU DO THE READING? (24 points)

(a) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predict-
ing a cosmic microwave background with a temperature of 5 K. The paper was
based on a cosmological model that they had developed with George Gamow,
in which the early universe was assumed to have been filled with hot neutrons.
As the universe expanded and cooled the neutrons underwent beta decay into
protons, electrons, and antineutrinos, until at some point the universe cooled
enough for light elements to be synthesized. Alpher and Herman found that to
account for the observed present abundances of light elements, the ratio of pho-
tons to nuclear particles must have been about 109. Although the predicted
temperature was very close to the actual value of 2.7 K, the theory differed
from our present theory in two ways. Circle the two correct statements in the
following list. (3 points for each right answer; circle at most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but
now the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of
protons and neutrons, not all neutrons as Gamow, Alpher, and Herman
assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not
all neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha
particle is the nucleus of a helium atom, composed of two protons and two
neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice
versa) took place mainly through collisions with electrons, positrons, neu-
trinos, and antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now be-
lieved to have been about 103, not 109 as Alpher and Herman concluded.

(b) (6 points) In Weinberg’s “Recipe for a Hot Universe,” he described the primor-
dial composition of the universe in terms of three conserved quantities: electric
charge, baryon number, and lepton number. If electric charge is measured in
units of the electron charge, then all three quantities are integers for which
the number density can be compared with the number density of photons. For
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each quantity, which choice most accurately describes the initial ratio of the
number density of this quantity to the number density of photons:

Electric Charge: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1
(iv) ∼ 10−6 (v) either zero or negligible

Baryon Number: (i) ∼ 10−20 (ii) ∼ 10−9 (iii) ∼ 10−6

(iv) ∼ 1 (v) anywhere from 10−5 to 1

Lepton Number: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1
(iv) ∼ 10−6 (v) could be as high as ∼ 1, but

is assumed to be very small

(c) (12 points) The figure below comes from Weinberg’s Chapter 5, and is labeled
The Shifting Neutron-Proton Balance.

(i) (3 points) During the period labeled “thermal equilibrium,” the neutron
fraction is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.
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(D) Neutrons and protons can be converted from one into through reac-
tions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such
as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.

(ii) (3 points) During the period labeled “neutron decay,” the neutron fraction
is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such
as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.
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(iii) (3 points) The masses of the neutron and proton are not exactly equal,
but instead

(A) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 GeV (1 GeV = 109 eV).

(B) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 MeV (1 MeV = 106 eV).

(C) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 KeV (1 KeV = 103 eV).

(D) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 GeV.

(E) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 MeV.

(F) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 KeV.

(iv) (3 points) During the period labeled “era of nucleosynthesis,” (choose one:)

(A) Essentially all the neutrons present combine with protons to form
helium nuclei, which mostly survive until the present time.

(B) Essentially all the neutrons present combine with protons to form
deuterium nuclei, which mostly survive until the present time.

(C) About half the neutrons present combine with protons to form helium
nuclei, which mostly survive until the present time, and the other half
of the neutrons remain free.

(D) About half the neutrons present combine with protons to form deu-
terium nuclei, which mostly survive until the present time, and the
other half of the neutrons remain free.

(E) Essentially all the protons present combine with neutrons to form
helium nuclei, which mostly survive until the present time.

(F) Essentially all the protons present combine with neutrons to form
deuterium nuclei, which mostly survive until the present time.
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PROBLEM 2: THE EFFECT OF PRESSURE ON COSMOLOGICAL
EVOLUTION (20 points)

This problem was Problem 2 of Problem Set 6.

(a) This problem is answered most easily by starting from the cosmological formula
for energy conservation, which I remember most easily in the form motivated
by dU = −p dV . Using the fact that the energy density u is equal to ρc2, the
energy conservation relation can be written

dU

dt
= −pdV

dt
=⇒ d

dt

(
ρc2R3

)
= −p d

dt

(
R3
)
.

Setting
ρ =

α

R6

for some constant α, the conservation of energy formula becomes

d

dt

(
αc2

R3

)
= −p d

dt

(
R3
)
,

which implies

−3αc
2

R4

dR

dt
= −3pR2 dR

dt
.

Thus

p =
αc2

R6
= ρc2 .

Alternatively, one may start from the equation for the time derivative of ρ,

ρ̇ = −3 Ṙ
R

(
ρ+

p

c2

)
.

Since ρ = α
R6 , we take the time derivative to find ρ̇ = −6(Ṙ/R)ρ, and therefore

−6 Ṙ
R
ρ = −3 Ṙ

R

(
ρ+

p

c2

)
,

and therefore
p = ρc2.

(b) For a flat universe, the Friedmann equation reduces to(
Ṙ

R

)2

=
8π
3
Gρ .
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Using ρ ∝ 1/R6, this implies that

Ṙ =
β

R2
,

for some constant β. Rewriting this as

R2 dR = β dt ,

we can integrate the equation to give

1
3
R3 = βt+ const ,

where the constant of integration has no effect other than to shift the origin of
the time variable t. Using the standard big bang convention that R = 0 when
t = 0, the constant of integration vanishes. Thus,

R ∝ t1/3 .

The arbitrary constant of proportionality in this answer is consistent with the
wording of the problem, which states that “You should be able to determine
the function R(t) up to a constant factor.” Note that we could have expressed
the constant of proportionality in terms of the constant α that we used in part
(a), but there would not really be any point in doing that. The constant α was
not a given variable. If the comoving coordinates are measured in “notches,”
then R is measured in meters per notch, and the constant of proportionality in
our answer can be changed by changing the arbitrary definition of the notch.

(c) We start from the conservation of energy equation in the form

ρ̇ = −3 Ṙ
R

(
ρ+

p

c2

)
.

Substituting ρ̇ = −n(Ṙ/R)ρ and p = (1/2)ρc2, we have

−nHρ = −3H
(
3
2
ρ

)

and therefore

n =
9
2
.
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PROBLEM 3: A NEW SPECIES OF MESON (26 points)

(a) Since kT � mXc
2, we can treat the X particles as if they were massless, so

we can use the thermal equilibrium formula for the number density of massless
particles. From the formula sheet, the number density is given by

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
.

TheX is a boson, so g∗ is 1 per spin state. There are three species, no additional
antiparticles, and only one spin state per species, so g∗ = 3. Thus,

(b) The mass density of a flat radiation-dominated universe does not depend on
the number of particle species present, but is always given by

ρ =
3

32πGt2
,

as written in the formula sheet. Numerically,

ρ =
3

32π × 6.673× 10−8 cm3-g−1-s−2 × (10−3 s)2

= 4.472× 1011 g
cm3

.

(c) There are three sensible ways to attack this problem, so I will show all three.
All the methods require that we know the value of g for this range of temper-
atures. The contribution from the X particles is 3, the same as for g∗, and the
contributions from the other particles are

2︸ ︷︷ ︸
photons

+
21
4︸ ︷︷ ︸

neutrinos

+
7
2︸ ︷︷ ︸

e+e− pairs

= 10
3
4
.
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Thus, for the X ’s and the other particles together, g = 13 3
4 .

The first method equates the mass density found in part (b) to the thermal
mass density given by

ρ =
u

c2
= g

π2

30
(kT )4

h̄3c5
.

Thus

The second method uses the general formula for the energy density of a flat,
radiation-dominated universe. From the formula sheet,

The final method uses the formula from the formula sheet which is an evaluation
of the formula above for the special case of g = 10.75, which applies to the real
universe for 106 MeV� kT � 0.511 MeV:

kT =
0.860 MeV√
t (in sec)

.
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Knowing that the answer is proportional to 1/g1/4, the formula above can be
corrected for g = 13.75:

kT =
0.860 MeV√

10−3

(
10.75
13.75

)1/4

= 25.57 MeV .

Note that unit conversions were crucial to first two methods, but that the
right answer can be found by multiplying by one and keeping track of the unit
cancellations.

(d) As with the freeze-out of electron-positron pairs, we use entropy to calculate
the temperature shifts. When the X ’s disappear they give essentially all their
entropy to the electrons and photons, and none to the neutrinos. Thus, if we
let ti denote a time before the disappearance of the X ’s, and tf a time after
the disappearance, then

[R3(sX + sγ + se+e−)]
∣∣
ti
= [R3(sγ + se+e−)]

∣∣
tf

,

while
[R3sν ]

∣∣
ti
= [R3sν ]

∣∣
tf

,

where s denotes the entropy density. We know that for each particle species

s ∝ gT 3 ,

so the relations above imply that

[R3(gX + gγ + ge+e−)T 3]
∣∣
ti
= [R3(gγ + ge+e−)T 3

γ ]
∣∣
tf

, (1)

and
[R3gνT

3]
∣∣
ti
= [R3gνT

3
ν ]
∣∣
tf

. (2)

Note that before the freeze-out of the X ’s all particles were in equilibrium,
so they were described by one common temperature T . Afterward, Tγ de-
scribes the temperature of the photons and e+e− pairs, while Tν describes the
temperature of the neutrinos. From Eq. (1) we learn that

[R3T 3
γ ]
∣∣
tf

=
gX + gγ + ge+e−

gγ + ge+e−
[R3T 3]

∣∣
ti

=
3 + 2 + 7

2

2 + 7
2

[R3T 3]
∣∣
ti

=
17
11

[R3T 3]
∣∣
ti

,



8.286 QUIZ 2 SOLUTIONS, FALL 2007 p. 10

while from Eq. (2) we learn that

[R3T 3
ν ]
∣∣
tf

= [R3T 3]
∣∣
ti

.

Thus, it follows that at time tf (after the disappearance of the X ’s),

Tγ =
(
17
11

)1/3

Tν ,

or

Tγ

Tν
=
(
17
11

)1/3

.

PROBLEM 4: THE STABILITY OF SCHWARZSCHILD ORBITS∗ (30
points)

From the metric:

ds2 = −c2dτ2 = −h(r) c2dt2 + h(r)−1dr2 + r2dθ2 + r2 sin2 θdφ2 , (1)

and the convention ds2 = gµνdx
µdxν we read the nonvanishing metric components:

gtt = −h(r)c2 , grr =
1

h(r)
, gθθ = r2 , gφφ = r2 sin2 θ . (2)

We are told that the orbit has θ = π/2, so on the orbit dθ = 0 and the relevant
metric and metric components are:

ds2 = −c2dτ2 = −h(r) c2dt2 + h(r)−1dr2 + r2dφ2 , (3)

gtt = −h(r)c2 , grr =
1

h(r)
, gφφ = r2 . (4)

We also know that
h(r) = 1− RS

r
. (5)

(a) The geodesic equation

d

dτ

[
gµν

dxν

dτ

]
=

1
2
∂gλσ

∂xµ

dxλ

dτ

dxσ

dτ
, (6)

* Solution by Barton Zwiebach.
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for the index value µ = r takes the form

d

dτ

[
grr

dr

dτ

]
=

1
2
∂gλσ

∂r

dxλ

dτ

dxσ

dτ
.

Expanding out

d

dτ

[
1
h

dr

dτ

]
=

1
2
∂gtt

∂r

(
dt

dτ

)2

+
1
2
∂grr

∂r

(
dr

dτ

)2

+
1
2
∂gφφ

∂r

(
dφ

dτ

)2

.

Using the values in (4) to evaluate the right-hand side and taking the derivatives
on the left-hand side:

− h′

h2

(
dr

dτ

)2

+
1
h

d2r

dτ2
= −1

2
c2h′

(
dt

dτ

)2

−1
2
h′

h2

(
dr

dτ

)2

+ r

(
dφ

dτ

)2

.

Here h′ ≡ dh
dr

and we have supressed the arguments of h and h′ to avoid clutter.
Collecting the underlined terms to the right and multiplying by h, we find

d2r

dτ2
= −1

2
h′ hc2

(
dt

dτ

)2

+
1
2
h′

h

(
dr

dτ

)2

+ rh

(
dφ

dτ

)2

. (7)

(b) Dividing the expression (3) for the metric by dτ2 we readily find

−c2 = −hc2
(
dt

dτ

)2

+
1
h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2

,

and rearranging,

hc2
(
dt

dτ

)2

= c2 +
1
h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2

. (8)

This is the most useful form of the answer. Of course, we also have(
dt

dτ

)2

=
1
h
+

1
h2c2

(
dr

dτ

)2

+
r2

hc2

(
dφ

dτ

)2

. (9)

We use now (8) to simplify (7):

d2r

dτ2
= −1

2
h′
(
c2 +

1
h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2
)

+
1
2
h′

h

(
dr

dτ

)2

+ rh

(
dφ

dτ

)2

.
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Expanding out, the terms with ( dr
dτ )

2 cancel and we find

d2r

dτ2
= −1

2
h′ c2 +

(
rh− 1

2
h′r2

) (
dφ

dτ

)2

. (10)

This is an acceptable answer. One can simplify (10) further by noting that h′ =
RS/r

2 and rh = r −RS:

d2r

dτ2
= −1

2
RSc

2

r2
+
(
r − 3

2
RS

) (
dφ

dτ

)2

. (11)

In the notation of the problem statement, we have

f0(r) = −1
2
RSc

2

r2
, f1(r) = r − 3

2
RS . (12)

(c) The geodesic equation (6) for µ = φ gives

d

dτ

[
gφφ

dφ

dτ

]
=

1
2
∂gλσ

∂φ

dxλ

dτ

dxσ

dτ
.

Since no metric component depends on φ, the right-hand side vanishes and we get:

d

dτ

[
r2 dφ

dτ

]
= 0 → d

dτ
L = 0 , where L ≡ r2 dφ

dτ
. (13)

The quantity L is a constant of the motion, namely, it is a number independent of
τ .

(d) Using (13) the second-order differential equation (11) for r(τ) takes the form
stated in the problem:

d2r

dτ2
= f0(r) +

f1(r)
r4

L2 ≡ H(r) , (14)

where we have introduced the function H(r) (recall that L is a constant!). The
differential equation then takes the form

d2r

dτ2
= H(r) . (15)

Since we are told that a circular orbit with radius r0 exists, the function r(τ) = r0
must solve this equation. Being the constant function, the left-hand side vanishes
and, consequently, the right-hand side must also vanish:

H(r0) = f0(r0) +
f1(r0)
r4
0

L2 = 0 . (16)
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To investigate stability we consider a small perturbation δr(τ) of the orbit:

r(τ) = r0 + δr(τ) , with δr(τ)� r0 at some initial τ .

Substituting this into (15) we get, to first nontrivial approximation

d2δr

dτ2
= H(r0 + δr) � H(r0) + δrH ′(r0) = δrH ′(r0) ,

where H ′(r) = dH(r)
dr

and we used H(r0) = 0 from (16). The resulting equation

d2δr(τ)
dτ2

= H ′(r0) δr(τ) , (17)

is familiar because H ′(r0) is just a number. The condition of stability is that this
number is negative: H ′(r0) < 0. Indeed, in this case (17) is the harmonic oscillator
equation

d2x

dt2
= −ω2x , with replacements x↔ δr, t↔ τ , −ω2 ↔ H ′(r0) ,

and the solution describes bounded oscillations. So stability requires:

Stability Condition: H ′(r0) =
d

dr

[
f0(r) +

f1(r)
r4

L2

]
r=r0

< 0 . (18)

This is the answer to part (d).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

For students interested in getting the famous result that orbits are stable for r >
3RS we complete this part of the analysis below. First we evaluate H ′(r0) in (18)
using the values of f0 and f1 in (12):

H ′(r0) =
d

dr

[
−1
2
RSc

2

r2
+
(

1
r3
− 3RS

2r4

)
L2

]
r=r0

=
RSc

2

r3
0

− 3L2

r5
0

(r0 − 2RS) .

The inequality in (18) then gives us

RSc
2 − 3L2

r2
0

(r0 − 2RS) < 0 , (19)
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where we multiplied by r3
0 > 0. To complete the calculation we need the value of

L2 for the orbit with radius r0. This value is determined by the vanishing of H(r0):

−1
2
RSc

2

r2
0

+ (r0 − 3
2
RS)

L2

r4
0

= 0 → L2

r2
0

=
1
2

RSc
2

(r0 − 3
2
RS)

.

Note, incidentally, that the equality to the right demands that for a circular orbit
r0 >

3
2RS. Substituting the above value of L2/r2

0 in (19) we get:

RSc
2 − 3

2
RSc

2

(r0 − 3
2RS)

(r0 − 2RS) < 0 .

Cancelling the common factors of RSc
2 we find

1− 3
2
(r0 − 2RS)
(r0 − 3

2RS)
< 0 ,

which is equivalent to
3
2
(r0 − 2RS)
(r0 − 3

2
RS)

> 1 .

For r0 > 3
2RS, we get

3(r0 − 2RS) > 2(r0 − 3
2
RS) → r0 > 3RS . (20)

This is the desired condition for stable orbits in the Schwarzschild geometry.


