

 (suoxłnəu
 paunsse
 now the neutron is thought to be absolutely stable.
(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but following list. (3 points for each right answer; circle at most 2.) from our present theory in two ways. Circle the two correct statements in the
 tons to nuclear particles must have been about 10^{9}. Although the predicted
 enough for light elements to be synthesized. Alpher and Herman found that to protons, electrons, and antineutrinos, until at some point the universe cooled

(a) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predict-

 SNOilntos z zinơ Prof. Alan Guth Physics 8.286: The Early Universe

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
tineutrino with a lifetime of about 15 minutes. tineutrino with a lifetime of about 15 seconds.
(B) The neutron is unstable, and decays into a proton, electron, and an-

 fraction is changing because (choose one):
(i) (3 points) During the period labeled "thermal equilibrium," the neutron

 -әәлу и!̣ешәл suoıənәи әчд јо

(F) The proton is more massive than a neutron with a rest energy differ-

(E) The proton is more massive than a neutron with a rest energy differ-
 ence of $1.293 \mathrm{KeV}\left(1 \mathrm{KeV}=10^{3} \mathrm{eV}\right)$.

ence of $1.293 \mathrm{MeV}\left(1 \mathrm{MeV}=10^{6} \mathrm{eV}\right)$.
 ence of $1.293 \mathrm{GeV}\left(1 \mathrm{GeV}=10^{9} \mathrm{eV}\right)$.
(A) The neutron is more massive than a proton with a rest energy differ-
but instead
(iii) (3 points) The masses of the neutron and proton are not exactly equal,

positron + antineutrino
(F) Neutrons and protons can be created and destroyed by reactions such

through reactions such as

 through reactions such as

\because
 tions such as
(D) Neutrons and protons can be converted from one into through reac-
8.286 QUIZ 2 SOLUTIONS, FALL 2007

8.286 QUIZ 2 SOLUTIONS, FALL 2007
(squepd 9\%) NOSGIN HO SGIOGdS MGN V : E INGTGOYd
(a) Since $k T \gg m_{X} c^{2}$, we can treat the X particles as if they were massless, so we can use the thermal equilibrium formula for the number density of massless
particles. From the formula sheet, the number density is given by
antiparticles, and only one spin state per species, so $g^{*}=3$. Thus,

$$
\frac{\varepsilon(\partial \underline{q})}{\varepsilon\left(L^{y}\right)} \frac{z^{\perp}}{(\mathcal{\varepsilon}) S^{2}} *=u
$$

p. 7
 mass density given by

$$
\frac{q^{3} q}{\varepsilon^{2}\left(L^{y} y\right.} \frac{0 \varepsilon}{z^{\perp}} \delta=\frac{z^{\jmath}}{n}=d
$$

the disappearance, then
while
where s denotes the entro let t_{i} denote a time before the disappearance of the X 's, and t_{f} a time after

§
As with the freeze-out of electron-positron pairs, we use entropy to calculat
the temperature shifts. When the X 's disappear they give essentially all thei
 Note that unit conversions were crucial to first two methods, but that the 3.75:

From the metric:
(spuıod
PROBLEM 4: THE STABILITY OF SCHWARZSCHILD ORBITS* (30
or
Thus, it follows that at time t_{f} (after the disappearance of the X 's),
${ }^{7}\left|\left[_{\varepsilon} L_{\varepsilon} Y\right]={ }^{f_{7}}\right|\left[{ }_{\varepsilon}^{n} L_{\varepsilon} Y\right]$

' ${ }_{L} \quad\left(\frac{\mathrm{II}}{I \mathrm{I}}\right)={ }^{{ }^{\prime}} L$
\&/

(9)	
(c)	
(t)	
(¢)	
	:әле sұиәиодшоз э!̣дәш рие эฺ̣ұәи
	:ว!̣立ш әч

Knowing that the answer is proportional to $1 / g^{1 / 4}$, the formula above can be

8.286 QUIZ 2 SOLUTIONS, FALL 2007

$6 \cdot d$

(b) Dividing the expression (3) for the metric by $d \tau^{2}$ we readily find

Using left-hand side:

 for the index value $\mu=r$ takes the form
8.286 QUIZ 2 SOLUTIONS, FALL 2007
 Since we are told that a circular orbit with radius r_{0} exists, the function $r(\tau)=r_{0}$ where we have introduced the function $H(r)$ (recall that L is a constant!). The
differential equation then takes the form ${ }^{\prime}(\iota) H \equiv{ }_{z} T \frac{{ }^{\iota} \iota}{(\iota)^{L} f}+(\iota)^{0} f=\frac{z^{\iota p}}{\iota_{z} p}$ stated in the problem:

The quantity L is a constant of the motion, namely, it is a number independent of
τ. $0=\left[\frac{\lrcorner p}{\phi p} z^{\iota}\right] \frac{\lrcorner p}{p}$
Since no metric component depends on ϕ, the right-hand side vanishes and we get:

(c) The geodesic equation (6) for $\mu=\phi$ gives

In the notation of the problem statement, we have

(عI) $\quad \frac{\llcorner p}{\iota p}{ }_{z} \iota \equiv T \quad$ әләчм $\quad{ }^{\iota} 0=T \frac{\llcorner p}{p}$
Since no metric compone den $\overline{d \tau^{2}}=-\frac{1}{2} \frac{R_{S}{ }^{2}}{r^{2}}+\left(r-\frac{3}{2} R_{S}\right)\left(\frac{d \phi}{d \tau}\right)$:SY $-\iota=y^{\prime} \iota$ рие ${ }_{z} \iota /{ }^{S Y}$

Expanding out, the terms with $\left(\frac{d r}{d \tau}\right)^{2}$ cancel and we find

8.286 QUIZ 2 SOLUTIONS, FALL 2007 p. 13	8.286 QUIZ 2 SOLUTIONS, FALL 2007 p. 14
To investigate stability we consider a small perturbation $\delta r(\tau)$ of the orbit:	where we multiplied by $r_{0}^{3}>0$. To complete the calculation we need the value of L^{2} for the orbit with radius r_{0}. This value is determined by the vanishing of $H\left(r_{0}\right)$:
$r(\tau)=r_{0}+\delta r(\tau) \text {, with } \delta r(\tau) \ll r_{0} \text { at some initial } \tau .$ Substituting this into (15) we get, to first nontrivial approximation	$-\frac{1}{2} \frac{R_{S} c^{2}}{r_{0}^{2}}+\left(r_{0}-\frac{3}{2} R_{S}\right) \frac{L^{2}}{r_{0}^{4}}=0 \quad \rightarrow \quad \frac{L^{2}}{r_{0}^{2}}=\frac{1}{2} \frac{R_{S} c^{2}}{\left(r_{0}-\frac{3}{2} R_{S}\right)}$
$\frac{d^{2} \delta r}{d \tau^{2}}=H\left(r_{0}+\delta r\right) \simeq H\left(r_{0}\right)+\delta r H^{\prime}\left(r_{0}\right)=\delta r H^{\prime}\left(r_{0}\right)$	Note, incidentally, that the equality to the right demands that for a circular orbit $r_{0}>\frac{3}{2} R_{S}$. Substituting the above value of L^{2} / r_{0}^{2} in (19) we get:
where $H^{\prime}(r)=\frac{d H(r)}{d r}$ and we used $H\left(r_{0}\right)=0$ from (16). The resulting equation $\frac{d^{2} \delta r(\tau)}{d \tau^{2}}=H^{\prime}\left(r_{0}\right) \delta r(\tau)$	$R_{S} c^{2}-\frac{3}{2} \frac{R_{S} c^{2}}{\left(r_{0}-\frac{3}{2} R_{S}\right)}\left(r_{0}-2 R_{S}\right)<0$ Cancelling the common factors of $R_{S} c^{2}$ we find
is familiar because $H^{\prime}\left(r_{0}\right)$ is just a number. The condition of stability is that this number is negative: $H^{\prime}\left(r_{0}\right)<0$. Indeed, in this case (17) is the harmonic oscillator equation	$1-\frac{3}{2} \frac{\left(r_{0}-2 R_{S}\right)}{\left(r_{0}-\frac{3}{2} R_{S}\right)}<0$,
$\frac{d^{2} x}{d t^{2}}=-\omega^{2} x, \quad$ with replacements $\quad x \leftrightarrow \delta r, \quad t \leftrightarrow \tau, \quad-\omega^{2} \leftrightarrow H^{\prime}\left(r_{0}\right)$,	which is equivalent to $\frac{3}{2} \frac{\left(r_{0}-2 R_{S}\right)}{\left(r_{0}-\frac{3}{2} R_{S}\right)}>1 .$
and the solution describes bounded oscillations. So stability requires:	For $r_{0}>\frac{3}{2} R_{S}$, we get
Stability Condition: $H^{\prime}\left(r_{0}\right)=\frac{d}{d r}\left[f_{0}(r)+\frac{f_{1}(r)}{r^{4}} L^{2}\right]_{r=r_{0}}<0$.	$3\left(r_{0}-2 R_{S}\right)>2\left(r_{0}-\frac{3}{2} R_{S}\right) \quad \rightarrow \quad r_{0}>3 R_{S} . \quad$ (20)
This is the answer to part (d).	This is the desired condition for stable orbits in the Schwarzschild geometry.

