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8.286:
T
he

E
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U
niverse

D
ecem

ber
1,

2007
P
rof.

A
lan

G
uth

Q
U

IZ
2

S
O

L
U

T
IO

N
S

Q
u
iz

D
ate:

N
ovem

b
er

6,
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R
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1:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(24
points)

(a)
(6

points)
In

1948
R
alph

A
.A

lpher
and

R
obert

H
erm

an
w
rote

a
paper

predict-
ing

a
cosm

ic
m
icrow

ave
background

w
ith

a
tem

perature
of5

K
.
T
he

paper
w
as

based
on

a
cosm

ological
m
odel

that
they

had
developed

w
ith

G
eorge

G
am

ow
,

in
w
hich

the
early

universe
w
as

assum
ed

to
have

been
filled

w
ith

hot
neutrons.

A
s
the

universe
expanded

and
cooled

the
neutrons

underw
ent

beta
decay

into
protons,

electrons,
and

antineutrinos,
until

at
som

e
point

the
universe

cooled
enough

for
light

elem
ents

to
be

synthesized.
A
lpher

and
H
erm

an
found

that
to

account
for

the
observed

present
abundances

oflight
elem

ents,the
ratio

ofpho-
tons

to
nuclear

particles
m
ust

have
been

about
10

9.
A
lthough

the
predicted

tem
perature

w
as

very
close

to
the

actual
value

of
2.7

K
,
the

theory
differed

from
our

present
theory

in
tw

o
w
ays.

C
ircle

the
tw

o
correct

statem
ents

in
the

follow
ing

list.
(3

points
for

each
right

answ
er;

circle
at

m
ost

2.)

(i)
G
am

ow
,
A
lpher,

and
H
erm

an
assum

ed
that

the
neutron

could
decay,

but
now

the
neutron

is
thought

to
be

absolutely
stable.

(ii)
In

the
current

theory,
the

universe
started

w
ith

nearly
equal

densities
of

protons
and

neutrons,
not

all
neutrons

as
G
am

ow
,
A
lpher,

and
H
erm

an
assum

ed.

(iii)
In

the
current

theory,the
universe

started
w
ith

m
ainly

alpha
particles,not

all
neutrons

as
G
am

ow
,
A
lpher,

and
H
erm

an
assum

ed.
(N

ote:
an

alpha
particle

is
the

nucleus
ofa

helium
atom

,com
posed

oftw
o
protons

and
tw

o
neutrons.)

(iv)
In

the
current

theory,
the

conversion
of

neutrons
into

protons
(and

vice
versa)

took
place

m
ainly

through
collisions

w
ith

electrons,positrons,neu-
trinos,

and
antineutrinos,

not
through

the
decay

of
the

neutrons.

(v)
T
he

ratio
of

photons
to

nuclear
particles

in
the

early
universe

is
now

be-
lieved

to
have

been
about

10
3,

not
10

9
as

A
lpher

and
H
erm

an
concluded.

(b)
(6

points)
In

W
einberg’s

“R
ecipe

for
a
H
ot

U
niverse,”

he
described

the
prim

or-
dialcom

position
ofthe

universe
in

term
s
ofthree

conserved
quantities:

electric
charge,

baryon
num

ber,
and

lepton
num

ber.
If

electric
charge

is
m
easured

in
units

of
the

electron
charge,

then
all

three
quantities

are
integers

for
w
hich

the
num

ber
density

can
be

com
pared

w
ith

the
num

ber
density

of
photons.

For
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each
quantity,

w
hich

choice
m
ost

accurately
describes

the
initial

ratio
of

the
num

ber
density

of
this

quantity
to

the
num

ber
density

of
photons:

E
lectric

C
harge:

(i)∼
10

9
(ii)∼

1000
(iii)∼

1
(iv)∼

10 −
6

(v)
either

zero
or

negligible

B
aryon

N
um

ber:
(i)∼

10 −
2
0

(ii)∼
10 −

9
(iii)∼

10 −
6

(iv)∼
1

(v)
anyw

here
from

10 −
5
to

1

L
epton

N
um

ber:
(i)∼

10
9

(ii)∼
1000

(iii)∼
1

(iv)∼
10 −

6
(v)

could
be

as
high

as∼
1,

but
is

assum
ed

to
be

very
sm

all

(c)
(12

points)
T
he

figure
below

com
es

from
W
einberg’s

C
hapter

5,and
is
labeled

T
he

Shifting
N

eutron-P
roton

B
alance.

(i)
(3

points)
D
uring

the
period

labeled
“therm

al
equilibrium

,”
the

neutron
fraction

is
changing

because
(choose

one):

(A
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
1
second.

(B
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

seconds.

(C
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

m
inutes.



8.286
Q

U
IZ

2
S
O

L
U

T
IO

N
S
,
F
A

L
L

2007
p
.
3

(D
)
N
eutrons

and
protons

can
be

converted
from

one
into

through
reac-

tions
such

asantineutrino
+
proton←→

electron
+

neutron
neutrino

+
neutron←→

positron
+
proton

.

(E
)
N
eutrons

and
protons

can
be

converted
from

one
into

the
other

through
reactions

such
as

antineutrino
+
proton←→

positron
+

neutron
neutrino

+
neutron←→

electron
+
proton

.

(F
)
N
eutrons

and
protons

can
be

created
and

destroyed
by

reactions
such

as
proton

+
neutrino←→

positron
+
antineutrino

neutron
+
antineutrino←→

electron
+

positron
.

(ii)
(3

points)
D
uring

the
period

labeled
“neutron

decay,”
the

neutron
fraction

is
changing

because
(choose

one):

(A
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
1
second.

(B
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

seconds.

(C
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

m
inutes.

(D
)
N
eutrons

and
protons

can
be

converted
from

one
into

the
other

through
reactions

such
as

antineutrino
+
proton←→

electron
+

neutron
neutrino

+
neutron←→

positron
+
proton

.

(E
)
N
eutrons

and
protons

can
be

converted
from

one
into

the
other

through
reactions

such
as

antineutrino
+
proton←→

positron
+

neutron
neutrino

+
neutron←→

electron
+
proton

.

(F
)
N
eutrons

and
protons

can
be

created
and

destroyed
by

reactions
such

as
proton

+
neutrino←→

positron
+
antineutrino

neutron
+
antineutrino←→

electron
+

positron
.
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(iii)
(3

points)
T
he

m
asses

of
the

neutron
and

proton
are

not
exactly

equal,
but

instead

(A
)
T
he

neutron
is

m
ore

m
assive

than
a
proton

w
ith

a
rest

energy
differ-

ence
of

1.293
G
eV

(1
G
eV

=
10

9
eV

).

(B
)
T
he

neutron
is

m
ore

m
assive

than
a
proton

w
ith

a
rest

energy
differ-

ence
of

1.293
M
eV

(1
M
eV

=
10

6
eV

).

(C
)
T
he

neutron
is

m
ore

m
assive

than
a
proton

w
ith

a
rest

energy
differ-

ence
of

1.293
K
eV

(1
K
eV

=
10

3
eV

).

(D
)
T
he

proton
is
m
ore

m
assive

than
a
neutron

w
ith

a
rest

energy
differ-

ence
of

1.293
G
eV

.

(E
)
T
he

proton
is
m
ore

m
assive

than
a
neutron

w
ith

a
rest

energy
differ-

ence
of

1.293
M
eV

.

(F
)
T
he

proton
is
m
ore

m
assive

than
a
neutron

w
ith

a
rest

energy
differ-

ence
of

1.293
K
eV

.

(iv)
(3

points)
D
uring

the
period

labeled
“era

ofnucleosynthesis,”
(choose

one:)

(A
)
E
ssentially

all
the

neutrons
present

com
bine

w
ith

protons
to

form
helium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.

(B
)
E
ssentially

all
the

neutrons
present

com
bine

w
ith

protons
to

form
deuterium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.

(C
)
A
bout

halfthe
neutrons

present
com

bine
w
ith

protons
to

form
helium

nuclei,w
hich

m
ostly

survive
untilthe

present
tim

e,and
the

other
half

of
the

neutrons
rem

ain
free.

(D
)
A
bout

half
the

neutrons
present

com
bine

w
ith

protons
to

form
deu-

terium
nuclei,

w
hich

m
ostly

survive
until

the
present

tim
e,

and
the

other
half

of
the

neutrons
rem

ain
free.

(E
)
E
ssentially

all
the

protons
present

com
bine

w
ith

neutrons
to

form
helium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.

(F
)
E
ssentially

all
the

protons
present

com
bine

w
ith

neutrons
to

form
deuterium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.



8.286
Q

U
IZ

2
S
O

L
U

T
IO

N
S
,
F
A

L
L

2007
p
.
5

P
R
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2:
T

H
E

E
F
F
E
C

T
O

F
P

R
E
S
S
U

R
E

O
N

C
O

S
M

O
L
O

G
IC

A
L

E
V

O
L
U

T
IO

N
(20

points)

T
his

problem
w
as

P
roblem

2
of

P
roblem

Set
6.

(a)
T
his

problem
is
answ

ered
m
ost

easily
by

starting
from

the
cosm

ologicalform
ula

for
energy

conservation,
w
hich

I
rem

em
ber

m
ost

easily
in

the
form

m
otivated

by
d
U

=
−
p
d
V
.
U
sing

the
fact

that
the

energy
density

u
is

equal
to

ρ
c
2,

the
energy

conservation
relation

can
be

w
ritten

d
Ud
t
=
−
p
d
Vd
t

=⇒
dd
t (ρ

c
2R

3 )
=
−
p
dd
t (R

3 )
.

Setting
ρ
=

αR
6

for
som

e
constant

α
,
the

conservation
of

energy
form

ula
becom

es

dd
t (

α
c
2

R
3 )

=
−
p
dd
t (R

3 )
,

w
hich

im
plies

−
3
α
c
2

R
4

d
Rd
t
=
−
3
p
R

2
d
Rd
t
.

T
hus

p
=

α
c
2

R
6

=
ρ
c
2
.

A
lternatively,one

m
ay

start
from

the
equation

for
the

tim
e
derivative

of
ρ,

ρ̇
=
−
3
ṘR (

ρ
+

pc
2 )

.

Since
ρ
=

αR
6 ,w

e
take

the
tim

e
derivative

to
find

ρ̇
=
−
6(Ṙ

/
R
)ρ,and

therefore

−
6
ṘR
ρ
=
−
3
ṘR (

ρ
+

pc
2 )

,

and
therefore

p
=
ρ
c
2.

(b)
For

a
flat

universe,
the

Friedm
ann

equation
reduces

to

(
ṘR )

2

=
8
π3
G
ρ
.
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U
sing

ρ∝
1
/
R

6,
this

im
plies

that

Ṙ
=

βR
2
,

for
som

e
constant

β
.
R
ew

riting
this

as

R
2
d
R

=
β
d
t
,

w
e
can

integrate
the

equation
to

give

13
R

3
=
β
t+

const
,

w
here

the
constant

of
integration

has
no

effect
other

than
to

shift
the

origin
of

the
tim

e
variable

t.
U
sing

the
standard

big
bang

convention
that

R
=

0
w
hen

t
=

0,
the

constant
of

integration
vanishes.

T
hus,

R
∝
t
1
/
3
.

T
he

arbitrary
constant

of
proportionality

in
this

answ
er

is
consistent

w
ith

the
w
ording

of
the

problem
,
w
hich

states
that

“Y
ou

should
be

able
to

determ
ine

the
function

R
(t)

up
to

a
constant

factor.”
N
ote

that
w
e
could

have
expressed

the
constant

ofproportionality
in

term
s
of

the
constant

α
that

w
e
used

in
part

(a),but
there

w
ould

not
really

be
any

point
in

doing
that.

T
he

constant
α
w
as

not
a
given

variable.
If

the
com

oving
coordinates

are
m
easured

in
“notches,”

then
R

is
m
easured

in
m
eters

per
notch,and

the
constant

ofproportionality
in

our
answ

er
can

be
changed

by
changing

the
arbitrary

definition
of

the
notch.

(c)
W
e
start

from
the

conservation
of

energy
equation

in
the

form

ρ̇
=
−
3
ṘR (

ρ
+

pc
2 )

.

Substituting
ρ̇
=
−
n(Ṙ

/
R
)ρ

and
p
=

(1
/2)ρ

c
2,

w
e
have

−
n
H
ρ
=
−
3
H (

32
ρ )

and
therefore

n
=

92
.
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A

N
E
W

S
P

E
C

IE
S

O
F

M
E
S
O

N
(26

points)

(a)
Since

k
T
�

m
X
c
2,

w
e
can

treat
the

X
particles

as
if
they

w
ere

m
assless,

so
w
e
can

use
the

therm
alequilibrium

form
ula

for
the

num
ber

density
ofm

assless
particles.

From
the

form
ula

sheet,
the

num
ber

density
is

given
by

n
=
g ∗
ζ(3)
π

2

(k
T
)
3

(h̄
c)

3
.

T
he

X
is
a
boson,so

g ∗
is
1
per

spin
state.

T
here

are
three

species,no
additional

antiparticles,
and

only
one

spin
state

per
species,

so
g ∗

=
3.

T
hus,

(b)
T
he

m
ass

density
of

a
flat

radiation-dom
inated

universe
does

not
depend

on
the

num
ber

of
particle

species
present,

but
is

alw
ays

given
by

ρ
=

3
32
π
G
t
2
,

as
w
ritten

in
the

form
ula

sheet.
N
um

erically,

ρ
=

3
32
π×

6
.673×

10 −
8
cm

3-g −
1-s −

2×
(10 −

3
s)

2

=
4
.472×

10
1
1

g
cm

3
.

(c)
T
here

are
three

sensible
w
ays

to
attack

this
problem

,
so

I
w
ill

show
all

three.
A
ll
the

m
ethods

require
that

w
e
know

the
value

of
g
for

this
range

of
tem

per-
atures.

T
he

contribution
from

the
X

particles
is
3,the

sam
e
as

for
g ∗,and

the
contributions

from
the

other
particles

are

2
︸︷︷︸
photons +

214
︸ ︷︷︸
neutrinos +

72
︸ ︷︷︸

e
+
e −

pairs

=
10

34
.
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T
hus,

for
the

X
’s

and
the

other
particles

together,
g
=

13
34 .

T
he

first
m
ethod

equates
the

m
ass

density
found

in
part

(b)
to

the
therm

al
m
ass

density
given

by

ρ
=

uc
2
=
g
π

2

30
(k
T
)
4

h̄
3c

5
.

T
hus

T
he

second
m
ethod

uses
the

general
form

ula
for

the
energy

density
of

a
flat,

radiation-dom
inated

universe.
From

the
form

ula
sheet,

T
he

finalm
ethod

uses
the

form
ula

from
the

form
ula

sheet
w
hich

is
an

evaluation
ofthe

form
ula

above
for

the
specialcase

of
g
=

10
.75,w

hich
applies

to
the

real
universe

for
106

M
eV
�

k
T
�

0
.511

M
eV

:

k
T

=
0
.860

M
eV

√
t
(in

sec)
.
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K
now

ing
that

the
answ

er
is

proportional
to

1/
g
1
/
4,

the
form

ula
above

can
be

corrected
for

g
=

13
.75:

k
T

=
0
.860

M
eV

√
10 −

3

(
10
.75

13
.75 )

1
/
4

=
25
.57

M
eV

.

N
ote

that
unit

conversions
w
ere

crucial
to

first
tw

o
m
ethods,

but
that

the
right

answ
er

can
be

found
by

m
ultiplying

by
one

and
keeping

track
of

the
unit

cancellations.

(d)
A
s
w
ith

the
freeze-out

of
electron-positron

pairs,
w
e
use

entropy
to

calculate
the

tem
perature

shifts.
W

hen
the

X
’s

disappear
they

give
essentially

all
their

entropy
to

the
electrons

and
photons,

and
none

to
the

neutrinos.
T
hus,

if
w
e

let
t
i
denote

a
tim

e
before

the
disappearance

of
the

X
’s,

and
t
f
a
tim

e
after

the
disappearance,

then

[R
3(s

X
+
s

γ
+
s

e
+

e −
)] ∣∣t

i
=

[R
3(s

γ
+
s

e
+

e −
)] ∣∣t

f
,

w
hile

[R
3s

ν ] ∣∣t
i
=

[R
3s

ν ] ∣∣t
f
,

w
here

s
denotes

the
entropy

density.
W
e
know

that
for

each
particle

species

s∝
g
T

3
,

so
the

relations
above

im
ply

that

[R
3(g

X
+
g

γ
+
g

e
+

e −
)T

3] ∣∣t
i
=

[R
3(g

γ
+
g

e
+

e −
)T

3γ ] ∣∣t
f
,

(1)

and
[R

3g
ν
T

3] ∣∣t
i
=

[R
3g

ν T
3ν ] ∣∣t

f
.

(2)

N
ote

that
before

the
freeze-out

of
the

X
’s

all
particles

w
ere

in
equilibrium

,
so

they
w
ere

described
by

one
com

m
on

tem
perature

T
.

A
fterw

ard,
T

γ
de-

scribes
the

tem
perature

of
the

photons
and

e
+
e −

pairs,w
hile

T
ν
describes

the
tem

perature
of

the
neutrinos.

From
E
q.(1)

w
e
learn

that

[R
3T

3γ ] ∣∣t
f
=

g
X
+
g

γ
+
g

e
+

e −

g
γ
+
g

e
+

e −
[R

3T
3] ∣∣t

i

=
3
+

2
+

72

2
+

72

[R
3T

3] ∣∣t
i

=
1711

[R
3T

3] ∣∣t
i
,
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w
hile

from
E
q.(2)

w
e
learn

that

[R
3T

3ν ] ∣∣t
f
=

[R
3T

3] ∣∣t
i
.

T
hus,

it
follow

s
that

at
tim

e
t
f
(after

the
disappearance

of
the

X
’s),

T
γ
= (

1711 )
1
/
3

T
ν
,

or

T
γ

T
ν
= (

1711 )
1
/
3

.

P
R

O
B

L
E
M

4:
T

H
E

S
T
A

B
IL

IT
Y

O
F

S
C

H
W

A
R

Z
S
C

H
IL

D
O

R
B

IT
S ∗

(30
points)

From
the

m
etric:

d
s
2
=
−
c
2d
τ

2
=
−
h(r)

c
2d
t
2
+
h(r) −

1d
r
2
+
r
2d
θ
2
+
r
2
sin

2
θ
d
φ

2
,

(1)

and
the

convention
d
s
2
=
g

µ
ν
d
x

µ
d
x

ν
w
e
read

the
nonvanishing

m
etric

com
ponents:

g
tt
=
−
h(r)c

2
,
g

r
r
=

1
h(r)

,
g

θ
θ
=
r
2
,
g

φ
φ
=
r
2
sin

2
θ
.

(2)

W
e
are

told
that

the
orbit

has
θ
=

π
/2,

so
on

the
orbit

d
θ
=

0
and

the
relevant

m
etric

and
m
etric

com
ponents

are:

d
s
2
=
−
c
2d
τ

2
=
−
h(r)

c
2d
t
2
+
h(r) −

1d
r
2
+
r
2d
φ

2
,

(3)

g
tt
=
−
h(r)c

2
,
g

r
r
=

1
h(r)

,
g

φ
φ
=
r
2
.

(4)

W
e
also

know
that

h(r)
=

1−
R

Sr
.

(5)

(a)
T
he

geodesic
equationdd

τ [
g

µ
ν
d
x

ν

d
τ ]

=
12
∂
g

λ
σ

∂
x

µ

d
x

λ

d
τ

d
x

σ

d
τ
,

(6)

*
Solution

by
B
arton

Z
w
iebach.
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for
the

index
value

µ
=
r
takes

the
form

dd
τ [

g
r
r
d
r

d
τ ]

=
12
∂
g

λ
σ

∂
r

d
x

λ

d
τ

d
x

σ

d
τ

.

E
xpanding

out

dd
τ [

1h

d
r

d
τ ]

=
12
∂
g

tt

∂
r (

d
t

d
τ )

2

+
12
∂
g

r
r

∂
r (

d
r

d
τ )

2

+
12
∂
g

φ
φ

∂
r (

d
φ

d
τ )

2

.

U
sing

the
values

in
(4)

to
evaluate

the
right-hand

side
and

taking
the

derivatives
on

the
left-hand

side:

−
h ′

h
2 (

d
r

d
τ )

2

+
1h

d
2r

d
τ

2
=
−
12
c
2h ′ (

d
t

d
τ )

2−
12
h ′

h
2 (

d
r

d
τ )

2

+
r (

d
φ

d
τ )

2

.

H
ere

h ′≡
d
h

d
r
and

w
e
have

supressed
the

argum
ents

of
h
and

h ′
to

avoid
clutter.

C
ollecting

the
underlined

term
s
to

the
right

and
m
ultiplying

by
h,

w
e
find

d
2r

d
τ

2
=
−
12
h ′h

c
2 (

d
t

d
τ )

2

+
12
h ′h (

d
r

d
τ )

2

+
rh (

d
φ

d
τ )

2

.
(7)

(b)
D
ividing

the
expression

(3)
for

the
m
etric

by
d
τ

2
w
e
readily

find

−
c
2
=
−
h
c
2 (

d
t

d
τ )

2

+
1h (

d
r

d
τ )

2

+
r
2 (

d
φ

d
τ )

2

,

and
rearranging,

h
c
2 (

d
t

d
τ )

2

=
c
2
+

1h (
d
r

d
τ )

2

+
r
2 (

d
φ

d
τ )

2

.
(8)

T
his

is
the

m
ost

useful
form

of
the

answ
er.

O
f
course,

w
e
also

have

(
d
t

d
τ )

2

=
1h
+

1
h

2c
2 (

d
r

d
τ )

2

+
r
2

h
c
2 (

d
φ

d
τ )

2

.
(9)

W
e
use

now
(8)

to
sim

plify
(7):

d
2r

d
τ

2
=
−
12
h ′ (

c
2
+

1h (
d
r

d
τ )

2

+
r
2 (

d
φ

d
τ )

2 )
+

12
h ′h (

d
r

d
τ )

2

+
rh (

d
φ

d
τ )

2

.
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E
xpanding

out,
the

term
s
w
ith

(
d
r

d
τ )

2
cancel

and
w
e
find

d
2r

d
τ

2
=
−
12
h ′c

2
+ (

rh−
12
h ′r

2 )(
d
φ

d
τ )

2

.
(10)

T
his

is
an

acceptable
answ

er.
O
ne

can
sim

plify
(10)

further
by

noting
that

h ′
=

R
S
/
r
2
and

rh
=
r−

R
S :

d
2r

d
τ

2
=
−
12
R

S
c
2

r
2

+ (
r−

32
R

S )(
d
φ

d
τ )

2

.
(11)

In
the

notation
of

the
problem

statem
ent,

w
e
have

f
0 (r)

=
−
12
R

S
c
2

r
2

,
f
1 (r)

=
r−

32
R

S
.

(12)

(c)
T
he

geodesic
equation

(6)
for

µ
=
φ
gives

dd
τ [

g
φ

φ
d
φ

d
τ ]

=
12
∂
g

λ
σ

∂
φ

d
x

λ

d
τ

d
x

σ

d
τ
.

Since
no

m
etric

com
ponent

depends
on

φ,
the

right-hand
side

vanishes
and

w
e
get:

dd
τ [

r
2
d
φ

d
τ ]

=
0
→

dd
τ
L
=

0
,

w
here

L
≡
r
2
d
φ

d
τ
.

(13)

T
he

quantity
L

is
a
constant

of
the

m
otion,nam

ely,
it

is
a
num

ber
independent

of
τ.(d)

U
sing

(13)
the

second-order
differential

equation
(11)

for
r(τ)

takes
the

form
stated

in
the

problem
:

d
2r

d
τ

2
=
f
0 (r)+

f
1 (r)
r
4

L
2≡

H
(r)

,
(14)

w
here

w
e
have

introduced
the

function
H
(r)

(recall
that

L
is

a
constant!).

T
he

differential
equation

then
takes

the
form

d
2r

d
τ

2
=
H
(r)

.
(15)

Since
w
e
are

told
that

a
circular

orbit
w
ith

radius
r
0
exists,

the
function

r(τ)
=
r
0

m
ust

solve
this

equation.
B
eing

the
constant

function,
the

left-hand
side

vanishes
and,

consequently,
the

right-hand
side

m
ust

also
vanish:

H
(r

0 )
=
f
0 (r

0 )
+
f
1 (r

0 )
r
40

L
2
=

0
.

(16)
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T
o
investigate

stability
w
e
consider

a
sm

allperturbation
δr(τ)

of
the

orbit:

r(τ)
=
r
0
+
δr(τ)

,
w
ith

δr(τ)�
r
0
at

som
e
initial

τ
.

Substituting
this

into
(15)

w
e
get,

to
first

nontrivialapproxim
ation

d
2δr

d
τ

2
=
H
(r

0
+
δr)�

H
(r

0 )+
δrH

′(r
0 )

=
δr
H

′(r
0 )
,

w
here

H
′(r)

=
d
H

(r
)

d
r

and
w
e
used

H
(r

0 )
=

0
from

(16).
T
he

resulting
equation

d
2δr(τ)
d
τ

2
=
H

′(r
0 )
δr(τ)

,
(17)

is
fam

iliar
because

H
′(r

0 )
is

just
a
num

ber.
T
he

condition
of

stability
is

that
this

num
ber

is
negative:

H
′(r

0 )
<

0.
Indeed,in

this
case

(17)
is
the

harm
onic

oscillator
equationd

2x

d
t
2
=
−
ω

2x
,

w
ith

replacem
ents

x↔
δr,

t↔
τ
,
−
ω

2↔
H

′(r
0 )
,

and
the

solution
describes

bounded
oscillations.

So
stability

requires:

Stability
C
ondition:

H
′(r

0 )
=

dd
r [

f
0 (r)+

f
1 (r)
r
4

L
2 ]

r
=

r
0

<
0
.

(18)

T
his

is
the

answ
er

to
part

(d).

−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−−

For
students

interested
in

getting
the

fam
ous

result
that

orbits
are

stable
for

r
>

3
R

S
w
e
com

plete
this

part
of

the
analysis

below
.
F
irst

w
e
evaluate

H
′(r

0 )
in

(18)
using

the
values

of
f
0
and

f
1
in

(12):

H
′(r

0 )
=

dd
r [−

12
R

S
c
2

r
2

+ (
1r
3 −

3
R

S

2
r
4 )

L
2 ]

r
=

r
0

=
R

S
c
2

r
30

−
3
L

2

r
50

(r
0 −

2
R

S )
.

T
he

inequality
in

(18)
then

gives
us

R
S
c
2−

3
L

2

r
20

(r
0 −

2
R

S )
<

0
,

(19)
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w
here

w
e
m
ultiplied

by
r
30
>

0.
T
o
com

plete
the

calculation
w
e
need

the
value

of
L

2
for

the
orbit

w
ith

radius
r
0 .

T
his

value
is
determ

ined
by

the
vanishing

of
H
(r

0 ):

−
12
R

S
c
2

r
20

+
(r

0 −
32
R

S )
L

2

r
40

=
0
→

L
2

r
20

=
12

R
S
c
2

(r
0 −

32
R

S )
.

N
ote,

incidentally,
that

the
equality

to
the

right
dem

ands
that

for
a
circular

orbit
r
0
>

32
R

S .
Substituting

the
above

value
of
L

2/
r
20
in

(19)
w
e
get:

R
S
c
2−

32
R

S
c
2

(r
0 −

32
R

S ) (r
0 −

2
R

S )
<

0
.

C
ancelling

the
com

m
on

factors
of
R

S
c
2
w
e
find

1−
32
(r

0 −
2
R

S )
(r

0 −
32
R

S )
<

0
,

w
hich

is
equivalent

to
32
(r

0 −
2
R

S )
(r

0 −
32
R

S )
>

1
.

For
r
0
>

32
R

S ,
w
e
get

3(r
0 −

2
R

S )
>

2(r
0 −

32
R

S )
→

r
0
>

3
R

S
.

(20)

T
his

is
the

desired
condition

for
stable

orbits
in

the
Schw

arzschild
geom

etry.


