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PROBLEM 1: DID YOU DO THE READING? (24 points)

(a) (6 points)In 1948 Ralph A. Alpher and Robert Herman wrote a paper predict-

ing a cosmic microwave background with a temperature of 5 K. The paper was
based on a cosmological model that they had developed with George Gamow,
in which the early universe was assumed to have been filled with hot neutrons.
As the universe expanded and cooled the neutrons underwent beta decay into
protons, electrons, and antineutrinos, until at some point the universe cooled
enough for light elements to be synthesized. Alpher and Herman found that to
account for the observed present abundances of light elements, the ratio of pho-
tons to nuclear particles must have been about 10°. Although the predicted
temperature was very close to the actual value of 2.7 K, the theory differed
from our present theory in two ways. Circle the two correct statements in the
following list. (3 points for each right answer; circle at most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but
now the neutron is thought to be absolutely stable.

!H: the current theory, the universe started with nearly equal densities of

protons and neutrons, not all neutrons as Gamow, Alpher, and Herman
assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not
all neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha
particle is the nucleus of a helium atom, composed of two protons and two
neutrons.)

!Hb the current theory, the conversion of neutrons into protons (and vice
versa) took place mainly through collisions with electrons, positrons, neu-
trinos, and antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now be-
lieved to have been about 103, not 10° as Alpher and Herman concluded.

(b) (6 points) In Weinberg’s “Recipe for a Hot Universe,” he described the primor-

dial composition of the universe in terms of three conserved quantities: electric
charge, baryon number, and lepton number. If electric charge is measured in
units of the electron charge, then all three quantities are integers for which
the number density can be compared with the number density of photons. For

number density of this quantity to the number density of photons:

Electric Charge: (i) ~ 10° (i) ~ 1000 (iii) ~ 1
(iv) ~ 1076 7 (v) either zero or :mm:mwgmi

v) ~1 v) anywhere from 1075 to 1
) ~10° ii) ~ 1000 (iii) ~ 1

v) ~107¢ v) could be as high as ~ 1, but
is assumed to be very small

—~

Baryon Number:

Lepton Number:

(i
(i
(i
(i

—~ |

(¢) (12 points) The figure below comes from Weinberg’s Chapter 5, and is labeled

The Shifting Neutron-Proton Balance.
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(i) (3 points) During the period labeled “thermal equilibrium,” the neutron
fraction is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.
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(D) Neutrons and protons can be converted from one into through reac-
tions such as

antineutrino + proton «+— electron + neutron
neutrino 4+ neutron «— positron + proton.

Echﬁdbm and protons can be converted from one into the other
through reactions such as

antineutrino + proton «— positron + neutron
neutrino 4 neutron «— electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such

as
proton + neutrino «— positron + antineutrino

neutron + antineutrino «— electron + positron.

(i1) (3 points) During the period labeled “neutron decay,” the neutron fraction
is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.

EHU@ neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino 4 proton «— electron + neutron
neutrino 4+ neutron «— positron 4 proton.

(E) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton «— positron + neutron
neutrino 4+ neutron «— electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such

as
proton + neutrino «— positron + antineutrino

neutron + antineutrino «— electron + positron.
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(iii) (8 points) The masses of the neutron and proton are not exactly equal,
but instead

(A) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 GeV (1 GeV = 10° eV).

Eﬁg neutron is more massive than a proton with a rest energy differ-
ence of 1.293 MeV (1 MeV = 10° eV).

(C) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 KeV (1 KeV = 103 eV).

(D) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 GeV.

(E) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 MeV.

(F) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 KeV.

(iv) (8 points) During the period labeled “era of nucleosynthesis,” (choose one:)

EMmmm:Sm:% all the neutrons present combine with protons to form
helium nuclei, which mostly survive until the present time.

(B) Essentially all the neutrons present combine with protons to form
deuterium nuclei, which mostly survive until the present time.

(C) About half the neutrons present combine with protons to form helium
nuclei, which mostly survive until the present time, and the other half
of the neutrons remain free.

(D) About half the neutrons present combine with protons to form deu-
terium nuclei, which mostly survive until the present time, and the
other half of the neutrons remain free.

(E) Essentially all the protons present combine with neutrons to form
helium nuclei, which mostly survive until the present time.

(F) Essentially all the protons present combine with neutrons to form
deuterium nuclei, which mostly survive until the present time.
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PROBLEM 2: THE EFFECT OF PRESSURE ON COSMOLOGICAL
EVOLUTION (20 points)

This problem was Problem 2 of Problem Set 6.

(a) This problem is answered most easily by starting from the cosmological formula
for energy conservation, which I remember most easily in the form motivated
by dU = —pdV. Using the fact that the energy density u is equal to pc?, the
energy conservation relation can be written

aw __ dv A opyy_ 43
i =g = g R =g (B

Setting
!
$= R

for some constant «, the conservation of energy formula becomes

d [ ac? B d 3
&A%V@&af

which implies

ac? dR ,dR
g = Py
Thus
o 9
s

Alternatively, one may start from the equation for the time derivative of p,

p= -3 (o 5)-

Since p = 55, we take the time derivative to find p = —6(R/R)p, and therefore

m m @
ambﬂwmﬂiwv
and therefore

p=pc.

(b) For a flat universe, the Friedmann equation reduces to

. 2

R 87

) =T,
R 3P
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Using p oc 1/RS, this implies that

for some constant 3. Rewriting this as
R?*dR = Gdt ,
we can integrate the equation to give

1
wmu = (Bt + const ,
where the constant of integration has no effect other than to shift the origin of
the time variable ¢. Using the standard big bang convention that R = 0 when
t = 0, the constant of integration vanishes. Thus,

R t'/3 .

The arbitrary constant of proportionality in this answer is consistent with the
wording of the problem, which states that “You should be able to determine
the function R(t) up to a constant factor.” Note that we could have expressed
the constant of proportionality in terms of the constant o that we used in part
(a), but there would not really be any point in doing that. The constant o was
not a given variable. If the comoving coordinates are measured in “notches,”
then R is measured in meters per notch, and the constant of proportionality in
our answer can be changed by changing the arbitrary definition of the notch.

We start from the conservation of energy equation in the form

R D
)
p = P+

Substituting p = —n(R/R)p and p = (1/2)pc?, we have

—nHp=—-3H AW@V

and therefore

N ©
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PROBLEM 3: A NEW SPECIES OF MESON (26 points)

(a) Since KT > mxc?, we can treat the X particles as if they were massless, so
we can use the thermal equilibrium formula for the number density of massless
particles. From the formula sheet, the number density is given by

LC3) (KT)°

"TITE (hep

The X is a boson, so g* is 1 per spin state. There are three species, no additional
antiparticles, and only one spin state per species, so ¢g* = 3. Thus,

1.202
nx =3 5 A
m

uoi u
6.582 x 10716 p¥ g x 2.998 x 100¢cars~T
y 106 0¥ 100 car

1MV 1m

=| 1.28x 10*? m—®

(b) The mass density of a flat radiation-dominated universe does not depend on
the number of particle species present, but is always given by

B 3
 32rGt2

as written in the formula sheet. Numerically,

3
327 x 6.673 x 10~8 cm3-g—1-s=2 x (10-3 )2

p

b”

—| 4472x 10"
cm

(¢) There are three sensible ways to attack this problem, so I will show all three.
All the methods require that we know the value of g for this range of temper-
atures. The contribution from the X particles is 3, the same as for g*, and the
contributions from the other particles are

21 7
4 2
—— ——
neutrinos ete~ pairs

2+

——
photons

AT
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Thus, for the X’s and the other particles together, g = wa.

The first method equates the mass density found in part (b) to the thermal
mass density given by

u 72 (kT)*
P=""5=957 13
c 30 R3ch
Thus
35 1/4
VT — ﬁvomwn J
m2g
_ y H\A—
_ [30(6.582 x 10~1° 5¥5)°(2.998 x 101 cars7")? x 4.472 x 101 £
72 x (13.75)
1/4
y 16X 1 erg LMV
1.602 x 1012 erg 1 gremZ-s=% \ 106 0¥~
=| 25.55 MeV .

The second method uses the general formula for the energy density of a flat,
radiation-dominated universe. From the formula sheet,

1/4 1

Vit
B Tma.@mw x 10716 2¥-4)3(2.998 x 100 Qa.mwaj /4

=43 .5
\aﬂﬂﬁwcwn %

16m3gG

N 1673(13.75)(6.673 x 10—8 cardg=1-g—2) V10-3 g
4 1/4

X

g% H@ﬁ is%
1.602 x 1012 epg 1 gremr?-s=% \ 106 o¥

=| 25.55 MeV .

The final method uses the formula from the formula sheet which is an evaluation
of the formula above for the special case of g = 10.75, which applies to the real
universe for 106 MeV > kT > 0.511 MeV:

0.860 MeV

/t (in sec)

kT =
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Knowing that the answer is proportional to 1/ g'/*, the formula above can be
corrected for g = 13.75:

Ly 0860 MeV (1075 /!
/103 13.75

=| 25.57 MeV .

Note that unit conversions were crucial to first two methods, but that the
right answer can be found by multiplying by one and keeping track of the unit
cancellations.

As with the freeze-out of electron-positron pairs, we use entropy to calculate
the temperature shifts. When the X’s disappear they give essentially all their
entropy to the electrons and photons, and none to the neutrinos. Thus, if we
let ¢; denote a time before the disappearance of the X’s, and t; a time after
the disappearance, then

[R*(5x + 8y + Sete- )]

o Twwmme + Mm+m\v:$ )

while
ﬁmw%T:? = ﬁmw%T:wx Y

where s denotes the entropy density. We know that for each particle species
§ X mﬂw ,

so the relations above imply that

[R*(9x + gy + gere ) T°]|, = [R*(gy + gere ) T3], (1)

ty

and
(R, T°l|,, = [RP,T]]],, - (2)

Note that before the freeze-out of the X'’s all particles were in equilibrium,
so they were described by one common temperature 7. Afterward, T, de-
scribes the temperature of the photons and e™e™ pairs, while T}, describes the
temperature of the neutrinos. From Eq. (1) we learn that

33 |QN|T.Q\<+.Qm+m\
R, = Ot G
.QQ:T.Qerm

2+1
17

7 BT

R3T3)

ti

t;

t
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while from Eq. (2) we learn that

RT3, = (RT)

:ﬁ% t;

Thus, it follows that at time ¢ (after the disappearance of the X'’s),

17 1/3
T, =\~ MJN\Q
(1)

T, _ (1)
T, \11

PROBLEM 4: THE STABILITY OF SCHWARZSCHILD ORBITS* (30
points)

or

From the metric:
ds® = —c*dr? = —h(r) Adt*> + h(r) " rdr? 4 r2d6* + r? sin® 0d¢? (1)
and the convention ds? = g, dx*dz” we read the nonvanishing metric components:

1
gt = —h(r)e®, G = ——, goo =17"

) y Yoo = r?sin?@. (2)

We are told that the orbit has § = 7/2, so on the orbit df = 0 and the relevant
metric and metric components are:

ds? = —c?dr? = —h(r) dt* + h(r) " tdr® + r?d¢? (3)
1
= — 2 = — = 2
git = ?A%VQ s Grr \.@T\.vu 9o . A%v
We also know that R
h(r)=1-— % (5)

(a) The geodesic equation

A ] 10 o de
dr v dr |~ 2 8zt dr dr’

* Solution by Barton Zwiebach.
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for the index value p = r takes the form

d ﬁ &; 10¢ro da™ da®
Grr

2 or dr dr

dr dr

Expanding out

d [1dr]  18gy (dt + 18g, (dr\>  10gss (do\>

dr |hdr] 2 or \dr 2 Or \dr 2 Or dr

Using the values in (4) to evaluate the right-hand side and taking the derivatives
on the left-hand side:

AN N N A Y C AN LA
h? \dr hdr2 2 dr 2h2 \dr dr)

Here b/ = % and we have supressed the arguments of h and b’ to avoid clutter.
Collecting the underlined terms to the right and multiplying by h, we find
&r dt Lh [ dr do
— =—= @\ hc? —— [ = h 7
dr? ¢ A%v 3% A%v T A%v 0

(b) Dividing the expression (3) for the metric by dr? we readily find

dt\? 1 [dr\? de\?
|MH| 2 el - - 2 -
¢ = —he A%v +:A%v tr A%v “
dt dr do\?
2 [ @b _ =0 227
he A%v ¢ +:A%v tr A%v . (8)

This is the most useful form of the answer. Of course, we also have
a\°> 1 1 [dr r2 (do\?
Aﬂv =% e @lv e Clv : ©)
We use now (8) to simplify (7):

1 /dr\? do\*\ 1K [dr\? de\ >
2 - - 2 s - - hatd
¢ +¢A%v tr A%v t3% A%v +rh A%v .

and rearranging,
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Expanding out, the terms with Am\ﬂvm cancel and we find

Pr1, 1,5\ (do)°

This is an acceptable answer. One can simplify (10) further by noting that b’ =
Rs/r? and rh = r — Rg:

d2r 1 Rgc? 3 do\?
Z = -z = . 11
dr2 2 2 + Aﬁ wmmv A&ﬂv (11)
In the notation of the problem statement, we have
1 mwmn 3
folr) = 5,2 filr)y=r— mmm. (12)

(¢) The geodesic equation (6) for u = ¢ gives

da |, do) _
dr 9¢¢ dr

Since no metric component depends on ¢, the right-hand side vanishes and we get:

10grs daz? da®
m oo} dr dr

&&\ & \m%
&ﬂﬁ &Llo l %.hlo érgohl I va

The quantity L is a constant of the motion, namely, it is a number independent of
T.

(d) Using (13) the second-order differential equation (11) for r(7) takes the form
stated in the problem:

d?r f ?v
dar? folr)+

where we have introduced the function H G;v (recall that L is a constant!). The
differential equation then takes the form

L*=H(r), (14)

d?r

— = H(r). 15

=) (15)
Since we are told that a circular orbit with radius rg exists, the function r(7) = r¢
must solve this equation. Being the constant function, the left-hand side vanishes
and, consequently, the right-hand side must also vanish:

Esv ~0. (16)

o

H(ro) = fo(ro) + —7—
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To investigate stability we consider a small perturbation or(7) of the orbit: where we multiplied by r§ > 0. To complete the calculation we need the value of
L? for the orbit with radius ro. This value is determined by the vanishing of H (rg):
r(t) =719+ 0r(r), with dr(r) < ro at some initial 7.
1 Rsc? 3 L? L? 1 Rgc?
. . P .. . . —= P) +Aﬁo||~wm‘v|&”0 — q”l‘w
Substituting this into (15) we get, to first nontrivial approximation 2 rd 2 g 3 2 (ro — 3Rs)
d?ér / , Note, incidentally, that the equality to the right demands that for a circular orbit
dr? H(ro +0r) = H(ro) + orH'(ro) = or H'(ro) ro > 3 Rg. Substituting the above value of L?/rg in (19) we get:
where H'(r) = &MS and we used H(rg) = 0 from (16). The resulting equation 5 3  Rgc?
" Rsc® — o —5——(r0 —2Rs) < 0.
26 2o = zfts)
) _ g1 (r0) sr(r), (17) . )
dr Cancelling the common factors of Rgc® we find
is familiar because H'(rg) is just a number. The condition of stability is that this 3 (ro — 2Rs)
number is negative: H'(r9) < 0. Indeed, in this case (17) is the harmonic oscillator 1- M?I‘mmmv <0,
equation 072
P2 which is equivalent to
x
- = —w?x, with replacements x < 6r, t <1, —w? < H'(rg), 3 (ro — 2Rs) >1.
dt 2 (ro — 3Rs)

and the solution describes bounded oscillations. So stability requires: For 1o > w Rg, we get
w
GS

N . d G
Stability Condition: H'(ro) = — T%i w@& <0. (1) 3(r0 ~ 2Rs) > 2070 — JRs) — 19> 3Rs.
r=ro

This is the desired condition for stable orbits in the Schwarzschild geometry.

This is the answer to part (d).

For students interested in getting the famous result that orbits are stable for r >
3Rg we complete this part of the analysis below. First we evaluate H'(rg) in (18)

using the values of fp and f; in (12):

d 1 Rgc? 1 3Rg mmnwwhw
H(ro) = 5|3 i Bl ol 2 ~ =2 (ro — 2Rs).
o) = gy ﬁ 2 2 " Aﬁu 2rt rero 7o rg (ro = 2Rs)

The inequality in (18) then gives us

3L2
Rgc® — ﬁ|M§ —2Rg) <0, (19)
0



