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PROBLEM 1: DID YOU DO THE READING? (25 points)

The following parts are each worth 5 points.

(a) (CMB basic facts) Which one of the following statements about CMB is not
correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean tem-
perature averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean

square temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of
the observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measure-
ment of an excess temperature of about 3.5 K that was isotropic, unpolar-
ized, and free from seasonal variations. In a companion paper written by
Dicke, Peebles, Roll and Wilkinson, the authors interpreted the radiation
to be a relic of an early, hot, dense, and opaque state of the universe.

Explanation: After subtracting the dipole contribution, the temperature
fluctuation is about 1.1× 10−5.

(b) (CMB experiments) The current mean energy per CMB photon, about 6 ×
10−4 eV, is comparable to the energy of vibration or rotation for a small
molecule such as H2O. Thus microwaves with wavelengths shorter than
λ ∼ 3 cm are strongly absorbed by water molecules in the atmosphere. To
measure the CMB at λ < 3 cm, which one of the following methods is not a
feasible solution to this problem?

(i) Measure CMB from high-altitude balloons, e.g. MAXIMA.

(ii) Measure CMB from the South Pole, e.g. DASI.

(iii) Measure CMB from the North Pole, e.g. BOOMERANG.

(iv) Measure CMB from a satellite above the atmosphere of the Earth, e.g.
COBE, WMAP and PLANCK.

Explanation: The North Pole is at sea level. In contrast, the South Pole
is nearly 3 kilometers above sea level. BOOMERANG is a balloon-borne
experiment launched from Antarctica.
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(c) (Temperature fluctuations) The creation of temperature fluctuations in CMB
by variations in the gravitational potential is known as the Sachs-Wolfe effect.
Which one of the following statements is not correct concerning this effect?

(i) A CMB photon is redshifted when climbing out of a gravitational potential
well, and is blueshifted when falling down a potential hill.

(ii) At the time of last scattering, the nonbaryonic dark matter dominated the
energy density, and hence the gravitational potential, of the universe.

(iii) The large-scale fluctuations in CMB temperatures arise from the grav-
itational effect of primordial density fluctuations in the distribution of
nonbaryonic dark matter.

(iv) The peaks in the plot of temperature fluctuation ∆T vs. multipole l are
due to variations in the density of nonbaryonic dark matter, while the
contributions from baryons alone would not show such peaks.

Explanation: These peaks are due to the acoustic oscillations in the photon-
baryon fluid.

(d) (Dark matter candidates) Which one of the following is not a candidate of
nonbaryonic dark matter?

(i) massive neutrinos

(ii) axions

(iii) matter made of top quarks (a type of quarks with heavy mass of about
171 GeV).

(iv) WIMPs (Weakly Interacting Massive Particles)

(v) primordial black holes

Explanation: Matter made of top quarks is so unstable that it is seen only
fleetingly as a product in high energy particle collisions.

(e) (Signatures of dark matter) By what methods can signatures of dark matter
be detected? List two methods. (Grading: 3 points for one correct answer,
5 points for two correct answers. If you give more than two answers, your
score will be based on the number of right answers minus the number of wrong
answers, with a lower bound of zero.)

Answers:

(i) Galaxy rotation curves. (I.e., measurements of the orbital speed of stars
in spiral galaxies as a function of radius R show that these curves remain
flat at radii far beyond the visible stellar disk. If most of the matter were
contained in the disk, then these velocities should fall off as 1/

√
R.)
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(ii) Use the virial theorem to estimate the mass of a galaxy cluster. (For
example, the virial analysis shows that only 2% of the mass of the Coma
cluster consistes of stars, and only 10% consists of hot intracluster gas.

(iii) Gravitational lensing. (For example, the mass of a cluster can be estimated
from the distortion of the shapes of the galaxies behind the cluster.)

(iv) CMB temperature fluctuations. (I.e., the analysis of the intensity of the
fluctuations as a function of multipole number shows that Ωtot ≈ 1, and
that dark energy contributes ΩΛ ≈ 0.7, baryonic matter contributes Ωbary ≈
0.04, and dark matter contributes Ωdark matter ≈ 0.26.)

There are other possible answers as well, but these are the ones discussed by
Ryden in Chapters 8 and 9.

PROBLEM 2: NEUTRINO NUMBER AND THE NEUTRON/PRO-
TON EQUILIBRIUM

(a) From the chemical equilibrium equation on the front of the exam, the number
densities of neutrons and protons can be written as

nn = gn
(2πmnkT )3/2

(2πh̄)3
e(µn−mnc2)/kT

np = gp
(2πmpkT )3/2

(2πh̄)3
e(µp−mpc2)/kT ,

where gn = gp = 2. Dividing,

nn

np
=

(
mn

mp

)3/2

e−(∆E+µp−µn)/kT ,

where ∆E = (mn −mp)c2 is the proton-neutron mass-energy difference. Ap-
proximating mn/mp ≈ 1, one has

nn

np
= e−(∆E+µp−µn)/kT .

The approximation mn/mp ≈ 1 is very accurate (0.14%), but is clearly not
necessary. Full credit was given whether or not this approximation was used.

(b) For any allowed chemical reaction, the sum of the chemical potentials on the
two sides must be equal. So, from

e+ + n←→ p+ ν̄e ,
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we can infer that
−µe + µn = µp − µν ,

which implies that

µn − µp = µe − µν .

(c) Applying the formula given in the problem to the number densities of electron
neutrinos and the corresponding antineutrinos,

nν = g∗ν
ζ(3)
π2

(kT )3

(h̄c)3
eµν/kT

n̄ν = g∗ν
ζ(3)
π2

(kT )3

(h̄c)3
e−µν/kT ,

since the chemical potential for the antineutrinos (ν̄) is the negative of the
chemical potential for neutrinos. A neutrino has only one spin state, so gν =
3/4, where the factor of 3/4 arises because neutrinos are fermions. Setting

x ≡ e−µν/kT

and

A ≡ 3
4
ζ(3)
π2

(kT )3

(h̄c)3
,

the number density equations can be written compactly as

nν =
A

x
, n̄ν = xA .

To express x in terms of the ratio n̄ν/nν , divide the second equation by the
first to obtain

n̄ν

nν
= x2 =⇒ x =

√
n̄ν

nν
.

Alternatively, x can be expressed in terms of the difference in number densities
n̄ν − nν by starting with

∆n = n̄ν − nν = xA− A

x
.

Rewriting the above formula as an explicit quadratic,

Ax2 −∆nx− A = 0 ,
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one finds

x =
∆n±√∆n2 + 4A2

2A
.

Since the definition of x implies x > 0, only the positive root is relevant. Since
the number of electrons is still assumed to be equal to the number of positrons,
µe = 0, so the answer to (b) reduces to µn − µp = −µν . From (a),

nn

np
= e−(∆E+µp−µn)/kT

= e−(∆E+µν )/kT

= xe−∆E/kT

=
√

n̄ν

nν
e−∆E/kT .

Alternatively, one can write the answer as

nn

np
=
√
∆n2 + 4A2 +∆n

2A
e−∆E/kT ,

where

A ≡ 3
4
ζ(3)
π2

(kT )3

(h̄c)3
.

(d) For ∆n > 0, the answer to (c) implies that the ratio nn/np would be larger
than in the usual case (∆n = 0). This is consistent with the expectation that
an excess of antineutrinos will tend to cause p’s to turn into n’s according to
the reaction

p+ ν̄e −→ e+ + n .

Since the amount of helium produced is proportional to the number of neu-
trons that survive until the breaking of the deuterium bottleneck, starting
with a higher equilibrium abundance of neutrons will increase the production
of helium.
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PROBLEM 3: SECOND HUBBLE CROSSING (40 points)

(a) From the formula sheets, we know that for a flat radiation-dominated universe,

a(t) ∝ t1/2 .

Since
H =

ȧ

a
,

(which is also on the formula sheets),

H =
1
2t

.

Then

�H(t) ≡ cH−1(t) = 2ct .

(b) We are told that the energy density is dominated by photons and neutrinos,
so we need to add together these two contributions to the energy density. For
photons, the formula sheet reminds us that gγ = 2, so

uγ = 2
π2

30
(kTγ)4

(h̄c)3
.

For neutrinos the formula sheet reminds us that

gν =
7
8︸ ︷︷ ︸

Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21
4

,

so

uν =
21
4

π2

30
(kTν)4

(h̄c)3
.

Combining these two expressions and using Tν = (4/11)1/3 Tγ , one has

u = uγ + uν =

[
2 +

21
4

(
4
11

)4/3
]

π2

30
(kTγ)4

(h̄c)3
,

so finally

g1 = 2 +
21
4

(
4
11

)4/3

.



8.286 QUIZ 3 SOLUTIONS, FALL 2007 p. 7

(c) The Friedmann equation tells us that, for a flat universe,

H2 =
8π
3
Gρ ,

where in this case H = 1/(2t) and

ρ =
u

c2
= g1

π2

30
(kTγ)4

h̄3c5
.

Thus (
1
2t

)2

=
8πG
3

g1
π2

30
(kTγ)4

h̄3c5
.

Solving for Tγ ,

Tγ =
1
k

(
45h̄3c5

16π3g1G

)1/4
1√
t
.

(d) The condition for Hubble crossing is

λ(t) = cH−1(t) ,

and the first Hubble crossing always occurs during the inflationary era. Thus
any Hubble crossing during the radiation-dominated era must be the second
Hubble crossing.

If λ is the present physical wavelength of the density perturbations under dis-
cussion, the wavelength at time t is scaled by the scale factor a(t):

λ(t) =
a(t)
a(t0)

λ .

Between the second Hubble crossing and now, there have been no freeze-outs
of particle species. Today the entropy of the universe is still dominated by
photons and neutrinos, so the conservation of entropy implies that aTγ has
remained essentially constant between then and now. Thus,

λ(t) =
Tγ,0

Tγ(t)
λ .

Using the previous results for cH−1(t) and for Tγ(t), the condition λ(t) =
cH−1(t) can be rewritten as

kTγ,0

(
16π3g1G
45h̄3c5

)1/4 √
t λ = 2ct .
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Solving for t, the time of second Hubble crossing is found to be

tH2(λ) = (kTγ,0λ)2
(
π3g1G

45h̄3c9

)1/2

.

Extension: You were not asked to insert numbers, but it is of course interesting
to know where the above formula leads. If we take λ = 106 lt-yr, it gives

tH2(106 lt-yr) = 1.04× 107 s = 0.330 year .

For λ = 1 Mpc,

tH2(1 Mpc) = 1.11× 108 s = 3.51 year .

Taking λ = 2.5 × 106 lt-yr, the distance to Andromeda, the nearest spiral
galaxy,

tH2(2.5× 106 lt-yr) = 6.50× 107 sec = 2.06 year .


