
flat at radii far beyond the visible stellar disk. If most of the matter were
contained in the disk, then these velocities should fall off as $1 / \sqrt{R}$.)

s.ıəmsu ${ }_{V}$

 answers, with a lower bound of zero.) score will be based on the number of right answers minus the number of wrong 5 points for two correct answers. If you give more than two answers, your be detected? List two methods. (Grading: 3 points for one correct answer,

 (v) primordial black holes
 171 GeV)
 suotexe (!!) (i) massive neutrinos nonbaryonic dark matter? (d) (Dark matter candidates) Which one of the following is not a candidate of baryon fluid.

 nonbaryonic dark matter.

(iii) The large-scale fluctuations in CMB temperatures arise from the grav-

(ii) At the time of last scattering, the nonbaryonic dark matter dominated the well, and is blueshifted when falling down a potential hill.

路

[^0]LO0Z TIVG 'SNOILATOS \& ZInÔ 987'8

-OYd/NOYLЛGN GHL GNV צGGNON ONIYLЯ'GN :Z N'GTGOYd There are other possible answers as well, but these are the ones discussed by
Ryden in Chapters 8 and 9 . 0.04 , and dark matter contributes $\left.\Omega_{\text {dark matter }} \approx 0.26.\right)$
There are other possible answers as well, but these are the ones discussed by

(iv) $C M B$ temperature fluctuations. (I.e., the analysis of the intensity of the

$\varepsilon \cdot d$
${ }^{\prime} 0=V-x u \nabla-{ }_{Z}{ }^{x} V$

$\cdot \frac{x}{V}-V^{x}={ }^{\wedge} u-{ }^{\wedge} \underline{u}=u \nabla$
 Alternatively, x can be expressed in terms of the difference in number densities u!eqqo of 7S.5
To express x in terms of the ratio \bar{n}_{ν} / n_{ν}, divide the second equation by the

$3 / 4$, where the factor of $3 / 4$ arises because neutrinos are fermions. Setting

(c) Applying the formula given in the problem to the number densities of electron
neutrinos and the corresponding antineutrinos,

ұеч7 тәји! шеэ әм

 $\cdot u++^{2} \longleftarrow{ }^{2} \underline{\underline{n}}+d$ иоџ̣วеә. әч7

where | $\frac{n_{n}}{n_{p}}=\frac{\sqrt{\Delta n^{2}+4 A^{2}}+\Delta n}{2 A} e^{-\Delta E / k T}$, |
| :---: |
| $A \equiv \frac{3}{4} \frac{\zeta(3)}{\pi^{2}} \frac{(k T)^{3}}{(\hbar c)^{3}}$. |

Alternatively, one can write the answer as

$=x e^{-\Delta E / k T}$
$=e^{-\left(\Delta E+\mu_{\nu}\right) / k T}$
$x e^{-\Delta E / k T}$
$\frac{n_{n}}{n_{p}}=e^{-\left(\Delta E+\mu_{p}-\mu_{n}\right) / k T}$
$\mu_{e}=0$, so the answer to (b) reduces to $\mu_{n}-\mu_{p}=-\mu_{\nu}$. From (a),
 Since the definition of x implies $x>0$, only the positive root is relevant. Since $\cdot \frac{V Z}{\underline{z_{V} V+{ }_{z} u \nabla \curlywedge \mp u \nabla}=x}$

[^1]

Since | $H=\frac{\dot{a}}{a}$, |
| :--- |
| (which is also on the formula sheets), |
| $H=\frac{1}{2 t}$. | Then

8.286 QUIZ 3 SOLUTIONS, FALL 2007
$a(t) \propto t^{1 / 2}$
ne

[^2]galaxy,
$$
t_{H 2}\left(2.5 \times 10^{6} \mathrm{lt}-\mathrm{yr}\right)=6.50 \times 10^{7} \mathrm{sec}=2.06 \text { year }
$$
 For $\lambda=1 \mathrm{Mpc}$,
 (
$$
t_{H 2}\left(10^{6} \mathrm{lt}-\mathrm{yr}\right)=1.04 \times 10^{7} \mathrm{~s}=0.330 \text { year }
$$
to know where the above formula leads. If we take $\lambda=10^{6} \mathrm{lt}-\mathrm{yr}$, it gives
Extension: You were not asked to insert numbers, but it is of course interesting
Solving for t, the time of second Hubble crossing is found to be
8.286 QUIZ 3 SOLUTIONS, FALL 2007

[^0]: by variations in the gravitational potential is known as the Sachs-Wolfe effect.

[^1]: one finds

[^2]: (c) The Friedmann equation tells us that, for a flat universe,

 LO0Z TTVG 'SNOILATOS \& ZInÔ 987.8

