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PROBLEM 1: DID YOU DO THE READING? (25 points)

The following 5 questions are each worth 5 points:

(a) In the 1940’s, three astrophysicists proposed a “steady state” theory of cos-
mology, in which the universe has always looked about the same as it does
now. State the last name of at least one of these authors. (Bonus points: you
can earn 1 point each for naming the other two authors, and hence up to 2
additional points, but 1 point will be taken off for each incorrect answer.)

(b) In 1917, a Dutch astronomer named Willem de Sitter did which one of the
following accomplishments:

(i) measured the size of the Milky Way galaxy, finding it to be about one
billion light-years in diameter.

(ii) resolved Cepheid variable stars in Andromeda and thereby obtained per-
suasive evidence that Andromeda is not within our own galaxy, but is
apparently another galaxy like our own.

(iii) published a catalog, Nebulae and Star Clusters, listing 103 objects that
astronomers should avoid when looking for comets.

(iv) published a model for the universe, based on general relativity, which
appeared to be static but which produced a redshift proportional to the
distance.

(v) discovered that the orbital periods of the planets are proportional to the
3/2 power of the semi-major axis of their elliptical orbits.

(c) In 1964–65, Arno A. Penzias and Robert W. Wilson observed a flux of mi-
crowave radiation coming from all directions in the sky, which was interpreted
by a group of physicists at a neighboring institution as the cosmic background
radiation left over from the big bang. Circle the two items on the following list
that were not part of the story behind this spectacular discovery:

(i) Bell Telephone Laboratory (ii) MIT (iii) Princeton University
(iv) pigeons (v) ground hogs (vi) Hubble’s constant
(vii) liquid helium (viii) 7.35 cm

(Grading: 3 pts for 1 correct answer, 5 for 2 correct answers, and -2 for each
incorrect answer, but the minimum score is zero.)

(d) Important predictions of the Copernican theory were confirmed by the discov-
ery of the aberration of starlight (which showed that the velocity of the Earth
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has the time-dependence expected for rotation about the Sun) and by the be-
havior of the Foucault pendulum (which showed that the Earth rotates). These
discoveries were made

(i) during Copernicus’ lifetime.

(ii) approximately two and three decades after Copernicus’ death, respectively.

(iii) about one hundred years after Copernicus’ death.

(iv) approximately two and three centuries after Copernicus’ death, respec-
tively.

(e) If one averages over sufficiently large scales, the universe appears to be ho-
mogeneous and isotropic. How large must the averaging scale be before this
homogeneity and isotropy set in?

(i) 1 AU (1 AU = 1.496× 1011 m).

(ii) 100 kpc (1 kpc = 1000 pc, 1 pc = 3.086× 1016 m = 3.262 light-year).

(iii) 1 Mpc (1 Mpc = 106 pc).

(iv) 10 Mpc.

(v) 100 Mpc.

(vi) 1000 Mpc.

PROBLEM 2: AN EXPONENTIALLY EXPANDING UNIVERSE (20
points)

The following problem was Problem 4 on the Review Problems for Quiz 1.

Consider a flat (i.e., a k = 0, or a Euclidean) universe with scale factor given
by

R(t) = R0e
χt ,

where R0 and χ are constants.

(a) (5 points) Find the Hubble constant H at an arbitrary time t.

(b) (5 points) Let (x, y, z, t) be the coordinates of a comoving coordinate system.
Suppose that at t = 0 a galaxy located at the origin of this system emits a light
pulse along the positive x-axis. Find the trajectory x(t) which the light pulse
follows.

(c) (5 points) Suppose that we are living on a galaxy along the positive x-axis, and
that we receive this light pulse at some later time. We analyze the spectrum of
the pulse and determine the redshift z. Express the time tr at which we receive
the pulse in terms of z, χ, and any relevant physical constants.

(d) (5 points) At the time of reception, what is the physical distance between our
galaxy and the galaxy which emitted the pulse? Express your answer in terms
of z, χ, and any relevant physical constants.
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PROBLEM 3: A TWO-LEVEL HIGH-SPEED MERRY-GO-ROUND
(15 points)

Consider a high-speed merry-go-round which is similar to the one discussed in
Problem 3 of Problem Set 1, but which has two levels. That is, there are four evenly
spaced cars which travel around a central hub at speed v at a distance R from a
central hub, and also another four cars that are attached to extensions of the four
radial arms, each moving at a speed 2v at a distance 2R from the center. In this
problem we will consider only light waves, not sound waves, and we will assume
that v is not negligible compared to c, but that 2v < c.

We learned in Problem Set 1 that there is no redshift when light from one car at
radius R is received by an observer on another car at radius R.

(a) (5 points) Suppose that cars 5–8 are all emitting light waves in all directions. If
an observer in car 1 receives light waves from each of these cars, what redshift
z does she observe for each of the four signals?

(b) (10 points) Suppose that a spaceship is receding to the right at a relativistic
speed u along a line through the hub, as shown in the diagram. Suppose that
an observer in car 6 receives a radio signal from the spaceship, at the time when
the car is in the position shown in the diagram. What redshift z is observed?
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PROBLEM 4: A TOY UNIVERSE WITH MATTER AND PURPLE
ENERGY (40 points)

In this problem we examine the behavior of a toy-model closed universe that
includes both ordinary nonrelativistic matter, plus a new form of matter which we
will call purple energy. Nothing like purple energy is known or even suspected to
exist, but one never knows what might someday be discovered. Dark energy, after
all, was not thought to exist until 1998.

The universe will obey the usual Friedmann equation,(
Ṙ

R

)2

=
8π
3

Gρ − kc2

R2
,

but the mass density ρ will include two terms:

ρ(t) = ρm(t) + ρp(t) ,

where ρm(t) is the mass density of normal matter,

ρm(t) =
ρ̄m

R3(t)
,

and ρp(t) is the mass density of purple energy, given by

ρp(t) = − ρ̄p

R4(t)
.

Here ρ̄m and ρ̄p are positive constants, so the purple matter contributes negatively
to the total mass density.

We consider a closed universe, so k > 0, and we define

R̃(t) ≡ R(t)√
k

, and t̃ ≡ ct ,

as in Lecture Notes 5. After some algebra which you are not asked to repeat, the
Friedmann equation can be rewritten as(

dR̃

dt̃

)2

= F (R̃) , where F (R̃) ≡ 2α
R̃

− 2β
R̃2

− 1 , (1)

and

α ≡ 4π
3

Gρm(t)R̃3(t)
c2

=
4π
3

Gρ̄m

k3/2c2
> 0 ,

β ≡ −4π
3

Gρp(t)R̃4(t)
c2

=
4π
3

Gρ̄p

k2c2
> 0 .
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Note that α and β are both positive and independent of time. Moreover, α and β
are chosen so that F (R̃) > 0 for some values of R̃.

(a) (10 points) Sketch a graph of the function F (R̃) for R̃ > 0. How does F (R̃)
behave for very large R̃? How does it behave for very small (positive) R̃?

(b) (10 points) What are the minimum and maximum values R̃min and R̃max that
are attained by R̃(t) during the evolution of the universe? Show these values
on the graph that you drew in part (a), and write analytic expressions in terms
of α and/or β.

As in Lecture Notes 5, one can write a solution to the differential equation in the
form

t̃f =
∫ R̃f

R̃min

. . . dR̃ . (2)

The integral can be carried out by a method very similar to that used in Lecture
Notes 5, introducing the variable θ defined in this case by

R̃ = α −
√

α2 − 2β cos θ . (3)

After some algebra (which you are not asked to reproduce), Eq. (3) leads to

2αR̃ − 2β − R̃2 = (α2 − 2β) sin2 θ ,

which is useful in simplifying Eq. (2). By carrying out the integration in Eq. (2),
one derives a parametric form of the solution to the Friedmann equation, which can
be written as

ct = α(θ − λ sin θ) ,

R√
k
= α(1− λ′ cos θ) ,

(4)

where λ and λ′ are constants in the range 0 < λ, λ′ < 1.

(c) (10 points) Express λ and λ′ in terms of α and/or β.

(d) (5 points) This model universe has neither a big bang nor a big crunch, but
instead oscillates forever. What is the period P of these oscillations? Your
answer may depend upon λ and/or λ′, as well as α and/or β.

(e) (5 points) Find the value of the Hubble parameter H(θ) as a function of θ.
Your answer may depend upon any of the variables listed in part (d).
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USEFUL INFORMATION:

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=

R(tobserved)
R(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β�0/c .

— Continued on next page —
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EVOLUTION OF A MATTER-DOMINATED
UNIVERSE:

H2 =

(
Ṙ

R

)2

=
8π
3

Gρ − kc2

R2
, R̈ = −4π

3
GρR ,

ρ(t) =
R3(ti)
R3(t)

ρ(ti) ,

Ω ≡ ρ/ρc , where ρc =
3H2

8πG
.

Flat (k = 0): R(t) ∝ t2/3 ,

Ω = 1 .

Closed (k > 0): ct = α(θ − sin θ) ,
R√
k
= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π
3

Gρ

c2

(
R√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
R√
κ
= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π
3

Gρ

c2

(
R√
κ

)3

,

κ ≡ −k > 0 .


