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PROBLEM 1: DID YOU DO THE READING? (24 points)

(a) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predict-
ing a cosmic microwave background with a temperature of 5 K. The paper was
based on a cosmological model that they had developed with George Gamow,
in which the early universe was assumed to have been filled with hot neutrons.
As the universe expanded and cooled the neutrons underwent beta decay into
protons, electrons, and antineutrinos, until at some point the universe cooled
enough for light elements to be synthesized. Alpher and Herman found that to
account for the observed present abundances of light elements, the ratio of pho-
tons to nuclear particles must have been about 109. Although the predicted
temperature was very close to the actual value of 2.7 K, the theory differed
from our present theory in two ways. Circle the two correct statements in the
following list. (3 points for each right answer; circle at most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but
now the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of
protons and neutrons, not all neutrons as Gamow, Alpher, and Herman
assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not
all neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha
particle is the nucleus of a helium atom, composed of two protons and two
neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice
versa) took place mainly through collisions with electrons, positrons, neu-
trinos, and antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now be-
lieved to have been about 103, not 109 as Alpher and Herman concluded.

(b) (6 points) In Weinberg’s “Recipe for a Hot Universe,” he described the primor-
dial composition of the universe in terms of three conserved quantities: electric
charge, baryon number, and lepton number. If electric charge is measured in
units of the electron charge, then all three quantities are integers for which
the number density can be compared with the number density of photons. For
each quantity, which choice most accurately describes the initial ratio of the
number density of this quantity to the number density of photons:
Electric Charge: (i) ∼ 109 (ii) ∼ 1000(iii) ∼ 1

(iv) ∼ 10−6 (v) either zero or negligible

Baryon Number: (i) ∼ 10−20 (ii) ∼ 10−9(iii) ∼ 10−6

(iv) ∼ 1 (v) anywhere from 10−5 to 1

Lepton Number: (i) ∼ 109 (ii) ∼ 1000(iii) ∼ 1
(iv) ∼ 10−6 (v) could be as high as ∼ 1, but

is assumed to be very small
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(c) (12 points) The figure below comes from Weinberg’s Chapter 5, and is labeled
The Shifting Neutron-Proton Balance.

(i) (3 points) During the period labeled “thermal equilibrium,” the neutron
fraction is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into through reac-
tions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such
as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.
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(ii) (3 points) During the period labeled “neutron decay,” the neutron fraction
is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such
as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.

(iii) (3 points) The masses of the neutron and proton are not exactly equal,
but instead

(A) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 GeV (1 GeV = 109 eV).

(B) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 MeV (1 MeV = 106 eV).

(C) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 KeV (1 KeV = 103 eV).

(D) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 GeV.

(E) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 MeV.

(F) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 KeV.
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(iv) (3 points) During the period labeled “era of nucleosynthesis,” (choose one:)

(A) Essentially all the neutrons present combine with protons to form
helium nuclei, which mostly survive until the present time.

(B) Essentially all the neutrons present combine with protons to form
deuterium nuclei, which mostly survive until the present time.

(C) About half the neutrons present combine with protons to form helium
nuclei, which mostly survive until the present time, and the other half
of the neutrons remain free.

(D) About half the neutrons present combine with protons to form deu-
terium nuclei, which mostly survive until the present time, and the
other half of the neutrons remain free.

(E) Essentially all the protons present combine with neutrons to form
helium nuclei, which mostly survive until the present time.

(F) Essentially all the protons present combine with neutrons to form
deuterium nuclei, which mostly survive until the present time.
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PROBLEM 2: THE EFFECT OF PRESSURE ON COSMOLOGICAL
EVOLUTION (20 points)

This problem was Problem 2 of Problem Set 6.

A radiation-dominated universe behaves differently from a matter-dominated
universe because the pressure of the radiation is significant. In this problem we
explore the role of pressure for several fictitious forms of matter.

(a) (10 points) For the first fictitious form of matter, the mass density ρ decreases
as the scale factor R(t) grows, with the relation

ρ(t) ∝ 1
R6(t)

.

What is the pressure of this form of matter? [Hint: the answer is proportional
to the mass density.]

(b) (5 points) Find the behavior of the scale factor R(t) for a flat universe dom-
inated by the form of matter described in part (a). You should be able to
determine the function R(t) up to a constant factor.

(c) (5 points) Now consider a universe dominated by a different form of fictitious
matter, with a pressure given by

p =
1
2
ρc2 .

As the universe expands, the mass density of this form of matter behaves as

ρ(t) ∝ 1
Rn(t)

.

Find the power n.
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PROBLEM 3: A NEW SPECIES OF MESON (26 points)

Suppose the calculations describing the early universe were modified by includ-
ing an additional, hypothetical meson, called an X . The X has roughly the same
properties as the pion, except that its mass is given by mc2 = 5 MeV. That is,
the particle is a boson, it has no spin, and it has three charge states: the X+ has
charge Q = +e, the X− has charge Q = −e, and the X0 has charge Q = 0, where e
is the magnitude of the charge of an electron. There are no additional antiparticles:
the X+ is the antiparticle of the X−, and the X0 is its own antiparticle. The X
is much heavier than the electron, which has a rest energy of 0.511 MeV, and it is
much lighter than the muon, which has a rest energy of 106 MeV.

(a) (6 points) What would be the number density of X ’s, in particles per cubic
meter, when the temperature T was given by kT = 30 MeV? Include all the
X ’s: the X+, the X−, and the X0.

(b) (5 points) Assuming (as in the standard picture) that the early universe is
accurately described by a flat, radiation-dominated model, what would be the
value of the mass density at t = 10−3 sec? Express your answer in the units of
g-cm−3.

(c) (5 points) What would be the value of kT , in MeV, at t = 10−3 sec? You may
assume that 5 MeV � kT � 100 MeV, so the particles contributing signif-
icantly to the black-body radiation include the photons, neutrinos, electron-
positron pairs, and the three charge states of the X .

(d) (10 points) When kT falls below 5 MeV, the X ’s will disappear from the ther-
mal equilibrium mix. For realistic parameters the neutrinos would still be in-
teracting significantly with the other particles at this temperature, but for the
purpose of this problem we will discuss an imaginary world which has X ’s, and
in which the neutrinos interact somewhat more weakly than in the real world.
In the imaginary world the neutrinos have decoupled from the rest of matter
by the time kT falls near 5 MeV, so the disappearance of the X ’s transfers no
energy to the neutrinos. After the disappearance of the X ’s, the photons and
the electron positron pairs will be in thermal equilibrium with each other, at
a temperature that that we will call Tγ . After the disappearance of the X ’s,
but before the disappearance of the electron-positron pairs, what is the ratio
Tγ/Tν , where Tν is the temperature of the neutrinos?
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PROBLEM 4: THE STABILITY OF SCHWARZSCHILD ORBITS (30
points)

This problem is an elaboration of Problem 1 of Problem Set 5, for which both
the statement and the solution are reproduced at the end of this quiz. This material
is reproduced for your reference, but you should be aware that the solution to the
present problem has important differences. You can copy from this material, but to
allow the grader to assess your understanding, you are expected to present a logical,
self-contained answer to this question.

In the solution to that homework problem, it was stated that further analysis
of the orbits in a Schwarzschild geometry shows that the smallest stable circular
orbit occurs for r = 3RS. Circular orbits are possible for 3

2RS < r < 3RS , but
they are not stable. In this problem we will explore the calculations behind this
statement.

We will consider a body which undergoes small oscillations about a circular
orbit at r(t) = r0, θ = π/2, where r0 is a constant. The coordinate θ will therefore
be fixed, but all the other coordinates will vary as the body follows its orbit.

(a) (12 points) The first step, since r(τ) will not be a constant in this solution, will
be to derive the equation of motion for r(τ). That is, for the Schwarzschild
metric

ds2 = −c2dτ2 = −h(r)c2dt2 + h(r)−1dr2 + r2dθ2 + r2 sin2 θ dφ2 , (1)

where
h(r) ≡ 1− RS

r
,

work out the explicit form of the geodesic equation

d

dτ

[
gµν

dxν

dτ

]
=

1
2
∂gλσ

∂xµ

dxλ

dτ

dxσ

dτ
, (2)

for the case µ = r. You should use this result to find an explicit expression for

d2r

dτ2
.

You may allow your answer to contain h(r), its derivative h′(r) with respect to
r, and the derivative with respect to τ of any coordinate, including dt/dτ .

— Problem 4 Continues —
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(b) (6 points) It is useful to consider r and φ to be the independent variables, while
treating t as a dependent variable. Find an expression for

(
dt

dτ

)2

in terms of r, dr/dτ , dφ/dτ , h(r), and c. Use this equation to simplify the
expression for d2r/dτ2 obtained in part (a). The goal is to obtain an expression
of the form

d2r

dτ2
= f0(r) + f1(r)

(
dφ

dτ

)2

. (3)

where the functions f0(r) and f1(r) might depend on RS or c, and might be
positive, negative, or zero. Note that the intermediate steps in the calculation
involve a term proportional to (dr/dτ)2, but the net coefficient for this term
vanishes.

(c) (7 points) To understand the orbit we will also need the equation of motion for
φ. Evaluate the geodesic equation (2) for µ = φ, and write the result in terms
of the quantity L, defined by

L ≡ r2 dφ

dτ
. (4)

(d) (5 points) Finally, we come to the question of stability. Substituting Eq. (4)
into Eq. (3), the equation of motion for r can be written as

d2r

dτ2
= f0(r) + f1(r)

L2

r4
.

Now consider a small perturbation about the circular orbit at r = r0, and
write an equation that determines the stability of the orbit. (That is, if some
external force gives the orbiting body a small kick in the radial direction, how
can you determine whether the perturbation will lead to stable oscillations, or
whether it will start to grow?) You should express the stability requirement
in terms of the unspecified functions f0(r) and f1(r). You are NOT asked to
carry out the algebra of inserting the explicit forms that you have found for
these functions.
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USEFUL INFORMATION:

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=

R(tobserved)
R(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β%0/c .

Energy-Momentum Four-Vector:

pµ =
(
E

c
, 'p

)
, 'p = γm0'v , E = γm0c

2 =
√
(m0c2)

2 + |'p|2 c2 ,

p2 ≡ |'p|2 − (p0
)2

= |'p|2 − E2

c2
= − (m0c)

2
.

COSMOLOGICAL EVOLUTION:

H2 =

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2
, R̈ = −4π

3
G

(
ρ+

3p
c2

)
R ,

ρm(t) =
R3(ti)
R3(t)

ρm(ti) (matter), ρr(t) =
R4(ti)
R4(t)

ρr(ti) (radiation).
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ρ̇ = −3 Ṙ
R

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.

Flat (k = 0): R(t) ∝ t2/3 (matter-dominated) ,

R(t) ∝ t1/2 (radiation-dominated) ,

Ω = 1 .

EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Closed (k > 0): ct = α(θ − sin θ) ,
R√
k
= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π
3

Gρ

c2

(
R√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
R√
κ
= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π
3

Gρ

c2

(
R√
κ

)3

,

κ ≡ −k > 0 .

ROBERTSON-WALKER METRIC:

ds2 = −c2 dτ2 = −c2 dt2+R2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}

SCHWARZSCHILD METRIC:

ds2 = −c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1
2
(∂igk�)

dxk

ds

dx�

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
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BLACK-BODY RADIATION:

u = g
π2

30
(kT )4

(h̄c)3
(energy density)

p =
1
3
u ρ = u/c2 (pressure, mass density)

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
(number density)

s = g
2π2

45
k4T 3

(h̄c)3
, (entropy density)

where

g ≡
{
1 per spin state for bosons (integer spin)

7/8 per spin state for fermions (half-integer spin)

g∗ ≡
{
1 per spin state for bosons

3/4 per spin state for fermions ,

and
ζ(3) =

1
13

+
1
23

+
1
33

+ · · · ≈ 1.202 .

gγ = g∗γ = 2 ,

gν =
7
8︸ ︷︷ ︸

Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21
4

,

g∗ν =
3
4︸ ︷︷ ︸

Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
9
2
,

ge+e− =
7
8︸ ︷︷ ︸

Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

=
7
2
,

g∗e+e− =
3
4︸ ︷︷ ︸

Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

= 3 .
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EVOLUTION OF A FLAT RADIATION-DOMINATED
UNIVERSE:

ρ =
3

32πGt2

kT =
(

45h̄3c5

16π3gG

)1/4
1√
t

For mµ = 106 MeV
 kT 
 me = 0.511 MeV, g = 10.75 and
then

kT =
0.860 MeV√
t (in sec)

After the freeze-out of electron-positron pairs,

Tν

Tγ
=
(

4
11

)1/3

.

HORIZON DISTANCE:

%p,horizon(t) = R(t)
∫ t

0

c

R(t′)
dt′

=
{
3ct (flat, matter-dominated),
2ct (flat, radiation-dominated).

PHYSICAL CONSTANTS:

G = 6.673× 10−8 cm3 · g−1 · s−2

k = Boltzmann’s constant = 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K

h̄ =
h

2π
= 1.055× 10−27 erg-s

= 6.582× 10−16 eV-s

c = 2.998× 1010 cm/s

1 yr = 3.156× 107 s

1 eV = 1.602× 10−12 erg

1 GeV = 109 eV = 1.783× 10−24 gram (where c ≡ 1) .


