tieus Kiəa əq of pəumsse s!

ұnq 'I ~ se yo̊! se әq p[noo (Λ)
 (ii) $\sim 10^{-9}$ (iii) $\sim 10^{-6}$

 (suoąnəu

(iii) In the current theory, the universe started with mainly alpha particles, not assumed.
(ii) protons and neutrons, not all neutrons as Gamow, Alpher, and Herman (ii) In the current theory, the universe started with nearly equal densities of now the neutron is thought to be absolutely stable. (i) Gamow, Alpher, and Herman assumed that the neutron could decay, but
 temperature was very close to the actual value of 2.7 K , the theory differed

(1)
'INVXG GHL HO GNG GHL LV GYZ NOILVINYOANI
sə.ภед чиеІя әлошәу от рәұтешлоуәу \boldsymbol{Z} ZI@O

Physics 8.286: The Early Universe

ХЮОТОNHOAL HO GLOLILSNI SLLASOHOVSSVI

 ence of $1.293 \mathrm{KeV}\left(1 \mathrm{KeV}=10^{3} \mathrm{eV}\right)$ The neutron is more massive than a proton with a rest energy differ ence of $1.293 \mathrm{MeV}\left(1 \mathrm{MeV}=10^{6} \mathrm{eV}\right)$.
(B) The neutron is more massive than a proton with a rest energy differ-

(A) The neutron is more massive than a proton with a rest energy differbut instead
(iii) (3 points) The masses of the neutron and proton are not exactly equal,
(F) Neutrons and protons can be created and destroyed by reactions such

(E) Neutrons and protons can be converted from one into the other
through reactions such as

 through reactions such as
(D) Neutrons and protons can be converted from one into the other tineutrino with a lifetime of about 15 minutes
(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.
(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

is changing because (choose one):
(ii) (3 points) During the period labeled "neutron decay," the neutron fraction

 'иоұолд + иолұәәә \longleftrightarrow uо.ıұnәu + ou!̣ıұnәu
 through reactions such as

 иолұпәи + иолұәәәә \longleftrightarrow иоұо.л + ои!̣ұnәu!̣ие se पวns suoḷ (D) Neutrons and protons can be converted from one into through reac-

 (3 points) During the period labeled "thermal equilibrium," the neutron
fraction is changing because (choose one): $\underbrace{\text { Tos 10 }}_{-\infty}$
$\varepsilon \cdot d$
(c) (12 points) The figure below comes from Weinberg's Chapter 5, and is labeled
Find the power n.
$\frac{(7)_{u \mathcal{U}}}{\mathrm{I}} \propto(7) d$
As the universe expands, the mass density of this form of matter behaves as

$z^{\supset d} \frac{\bar{z}}{\mathrm{I}}=d$

 matter, with a pressure given by

 (iv)
$g \cdot d$

This problem was Problem 2 of Problem Set 6. (s7uıod 0z) NOILのTO
PROBLEM 2: THE EFFECT OF PRESSURE ON COSMOLOGICAL
8.286 QUIZ 2, FALL 2007
as the scale factor $R(t)$ grows, with the relation
(a) (10 points) For the first fictitious form of matter, the mass density ρ decreases

잉웅

for the case $\mu=r$. You should use this result to find an explicit expression for
 T_{γ} / T_{ν}, where T_{ν} is the temperature of the neutrinos?

 purpose of this problem we will discuss an imaginary world which has X 's, and

 © (5 points) What would be the value of $k T$, in MeV , at $t=10^{-3}$ sec? You may
assume that $5 \mathrm{MeV} \ll k T \ll 100 \mathrm{MeV}$, so the particles contributing signif-
icantly to the black-body radiation include the photons, neutrinos, electron-
positron pairs, and the three charge states of the X. © _uo-ه

 X^{\prime} 's: the X^{+}, the X^{-}, and the X^{0}.
 much lighter than the muon, which has a rest energy of 106 MeV .

 the particle is a boson, it has no spin, and it has three charge states: the X^{+}has

8.286 QUIZ 2, FALL 2007 p. 13

