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PROBLEM 1: DID YOU DO THE READING? (25 points)

The following parts are each worth 5 points.

(a) (CMB basic facts) Which one of the following statements about CMB is not
correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean tem-
perature averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean

square temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of
the observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measure-
ment of an excess temperature of about 3.5 K that was isotropic, unpolar-
ized, and free from seasonal variations. In a companion paper written by
Dicke, Peebles, Roll and Wilkinson, the authors interpreted the radiation
to be a relic of an early, hot, dense, and opaque state of the universe.

(b) (CMB experiments) The current mean energy per CMB photon, about 6 ×
10−4 eV, is comparable to the energy of vibration or rotation for a small
molecule such as H2O. Thus microwaves with wavelengths shorter than
λ ∼ 3 cm are strongly absorbed by water molecules in the atmosphere. To
measure the CMB at λ < 3 cm, which one of the following methods is not a
feasible solution to this problem?

(i) Measure CMB from high-altitude balloons, e.g. MAXIMA.

(ii) Measure CMB from the South Pole, e.g. DASI.

(iii) Measure CMB from the North Pole, e.g. BOOMERANG.

(iv) Measure CMB from a satellite above the atmosphere of the Earth, e.g.
COBE, WMAP and PLANCK.

(c) (Temperature fluctuations) The creation of temperature fluctuations in CMB
by variations in the gravitational potential is known as the Sachs-Wolfe effect.
Which one of the following statements is not correct concerning this effect?

(i) A CMB photon is redshifted when climbing out of a gravitational potential
well, and is blueshifted when falling down a potential hill.

(ii) At the time of last scattering, the nonbaryonic dark matter dominated the
energy density, and hence the gravitational potential, of the universe.

(iii) The large-scale fluctuations in CMB temperatures arise from the grav-
itational effect of primordial density fluctuations in the distribution of
nonbaryonic dark matter.
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(iv) The peaks in the plot of temperature fluctuation ∆T vs. multipole l are
due to variations in the density of nonbaryonic dark matter, while the
contributions from baryons alone would not show such peaks.

(d) (Dark matter candidates) Which one of the following is not a candidate of
nonbaryonic dark matter?

(i) massive neutrinos

(ii) axions

(iii) matter made of top quarks (a type of quarks with heavy mass of about
171 GeV).

(iv) WIMPs (Weakly Interacting Massive Particles)

(v) primordial black holes

(e) (Signatures of dark matter) By what methods can signatures of dark matter
be detected? List two methods. (Grading: 3 points for one correct answer,
5 points for two correct answers. If you give more than two answers, your
score will be based on the number of right answers minus the number of wrong
answers, with a lower bound of zero.)
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PROBLEM 2: NEUTRINO NUMBER AND THE NEUTRON/PRO-
TON EQUILIBRIUM (35 points)

The following problem was Problem 7 of Review Problems for Quiz 3.

In the standard treatment of big bang nucleosynthesis it is assumed that at
early times the ratio of neutrons to protons is given by the Boltzmann formula,

nn

np
= e−∆E/kT , (1)

where k is Boltzmann’s constant, T is the temperature, and ∆E = 1.29 MeV is
the proton-neutron mass-energy difference. This formula is believed to be very
accurate, but it assumes that the chemical potential for neutrons µn is the same as
the chemical potential for protons µp.

(a) (10 points) Give the correct version of Eq. (1), allowing for the possibility that
µn �= µp.

The equilibrium between protons and neutrons in the early universe is sustained
mainly by the following reactions:

e+ + n←→ p+ ν̄e

νe + n←→ p+ e− .

Let µe and µν denote the chemical potentials for the electrons (e−) and the electron
neutrinos (νe) respectively. The chemical potentials for the positrons (e+) and the
anti-electron neutrinos (ν̄e) are then –µe and –µν , respectively, since the chemi-
cal potential of a particle is always the negative of the chemical potential for the
antiparticle.*

(b) (10 points) Express the neutron/proton chemical potential difference µn − µp

in terms of µe and µν .

The black-body radiation formulas on the formula sheet do not allow for the possi-
bility of a chemical potential, but they can easily be generalized. For example, the
formula for the number density ni (of particles of type i) becomes

ni = g∗i
ζ(3)
π2

(kT )3

(h̄c)3
eµi/kT .

* This fact is a consequence of the principle that the chemical potential of a
particle is the sum of the chemical potentials associated with its conserved quanti-
ties, while particle and antiparticle always have the opposite values of all conserved
quantities.



8.286 QUIZ 3, FALL 2007 p. 5

(c) (10 points) Suppose that the density of anti-electron neutrinos n̄ν in the early
universe was higher than the density of electron neutrinos nν . Express the ther-
mal equilibrium value of the ratio nn/np in terms of ∆E, T , and the antineu-
trino to neutrino ratio n̄ν/nν . Assume that the number density of positrons
is equal to that of electrons. (Your answer may also contain fundamental con-
stants, such as k, h̄, and c. In the Review Problems for Quiz 3 you were asked
to express the answer in terms of the antineutrino excess ∆n = n̄ν − nν . It is
easier to express the answer in terms of the ratio n̄ν/nν , but if you prefer to
express your answer in terms of ∆n, that would also be acceptable.)

(d) (5 points) Would an excess of anti-electron neutrinos, as considered in part (c),
increase or decrease the amount of helium that would be produced in the early
universe? Explain your answer.
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PROBLEM 3: SECOND HUBBLE CROSSING (40 points)

In Problem Set 9 we calculated the time tH1(λ) of the first Hubble crossing for
a mode specified by its (physical) wavelength λ at the present time. In this problem
we will calculate the time tH2(λ) of the second Hubble crossing, the time at which
the growing Hubble length cH−1(t) catches up to the physical wavelength, which
is also growing. At the time of the second Hubble crossing for the wavelengths of
interest, the universe can be described very simply: it is a radiation-dominated flat
universe. However, since λ is defined as the present value of the wavelength, the
evolution of the universe between tH2(λ) and the present will also be relevant to the
problem. We will need to use methods, therefore, that allow for both the matter-
dominated era and the onset of the dark-energy-dominated era. As in Problem Set
9, the model universe that we consider will be described by the WMAP 3-year best
fit parameters:

Hubble expansion rate H0 = 73.5 km · s−1 ·Mpc−1

Nonrelativistic mass density Ωm = 0.237
Vacuum mass density Ωvac = 0.763
CMB temperature Tγ,0 = 2.725 K

The mass densities are defined as contributions to Ω, and hence describe the mass
density of each constituent relative to the critical density. Note that the model
is exactly flat, so you need not worry about spatial curvature. Here you are not
expected to give a numerical answer, so the above list will serve only to define the
symbols that can appear in your answers, along with λ and the physical constants
G, h̄, c, and k.
(a) (5 points) For a radiation-dominated flat universe, what is the Hubble length

�H(t) ≡ cH−1(t) as a function of time t?
(b) (10 points) The second Hubble crossing will occur during the interval

1 sec� t� 50, 000 years,
when the mass density of the universe is dominated by photons and neutrinos.
During this era the neutrinos are a little colder than the photons, with Tν =
(4/11)1/3Tγ . The total energy density of the photons and neutrinos together
can be written as

utot = g1
π2

30
(kTγ)4

(h̄c)3
.

What is the value of g1? (For the following parts you can treat g1 as a given
variable that can be left in your answers, whether or not you found it.)

(c) (10 points) For times in the range described in part (b), what is the photon
temperature Tγ(t) as a function of t?

(d) (15 points) Finally, we are ready to find the time tH2(λ) of the second Hubble
crossing, for a given value of the physical wavelength λ today. Making use of
the previous results, you should be able to determine tH2(λ). If you were not
able to answer some of the previous parts, you may leave the symbols �H(t),
g1, and/or Tγ(t) in your answer.
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USEFUL INFORMATION:

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved
λemitted

=
R(tobserved)
R(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β�0/c .

Energy-Momentum Four-Vector:

pµ =
(
E

c
,  p

)
,  p = γm0 v , E = γm0c

2 =
√
(m0c2)

2 + | p|2 c2 ,

p2 ≡ | p|2 − (p0)2 = | p|2 − E2

c2
= − (m0c)

2
.

COSMOLOGICAL EVOLUTION:

H2 =

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2
, R̈ = −4π

3
G

(
ρ+

3p
c2

)
R ,

ρm(t) =
R3(ti)
R3(t)

ρm(ti) (matter), ρr(t) =
R4(ti)
R4(t)

ρr(ti) (radiation).
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ρ̇ = −3 Ṙ
R

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.

Flat (k = 0): R(t) ∝ t2/3 (matter-dominated) ,

R(t) ∝ t1/2 (radiation-dominated) ,

Ω = 1 .

EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Closed (k > 0): ct = α(θ − sin θ) ,
R√
k
= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π
3

Gρ

c2

(
R√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
R√
κ
= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π
3

Gρ

c2

(
R√
κ

)3

,

κ ≡ −k > 0 .

ROBERTSON-WALKER METRIC:

ds2 = −c2 dτ2 = −c2 dt2+R2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}

SCHWARZSCHILD METRIC:

ds2 = −c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,
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GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1
2
(∂igk�)

dxk

ds

dx�

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ

BLACK-BODY RADIATION:

u = g
π2

30
(kT )4

(h̄c)3
(energy density)

p =
1
3
u ρ = u/c2 (pressure, mass density)

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
(number density)

s = g
2π2

45
k4T 3

(h̄c)3
, (entropy density)

where

g ≡
{
1 per spin state for bosons (integer spin)

7/8 per spin state for fermions (half-integer spin)

g∗ ≡
{
1 per spin state for bosons

3/4 per spin state for fermions ,

and

ζ(3) =
1
13

+
1
23

+
1
33

+ · · · ≈ 1.202 .
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gγ = g∗γ = 2 ,

gν =
7
8︸ ︷︷ ︸

Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21
4

,

g∗ν =
3
4︸ ︷︷ ︸

Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
9
2
,

ge+e− =
7
8︸ ︷︷ ︸

Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

=
7
2
,

g∗e+e− =
3
4︸ ︷︷ ︸

Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

= 3 .

CHEMICAL EQUILIBRIUM:

Ideal Gas of Classical Nonrelativistic Particles:

ni = gi
(2πmikT )3/2

(2πh̄)3
e(µi−mic

2)/kT .

where ni = number density of particle

gi = number of spin states of particle

mi = mass of particle

µi = chemical potential

For any reaction, the sum of the µi on the left-hand side of the
reaction equation must equal the sum of the µi on the right-
hand side. Formula assumes gas is nonrelativistic (kT �
mic

2) and dilute (ni � (2πmikT )3/2/(2πh̄)3).

EVOLUTION OF A FLAT RADIATION-DOMINATED
UNIVERSE:

ρ =
3

32πGt2

kT =
(

45h̄3c5

16π3gG

)1/4
1√
t
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For mµ = 106 MeV� kT � me = 0.511 MeV, g = 10.75 and
then

kT =
0.860 MeV√
t (in sec)

(
10.75
g

)1/4

After the freeze-out of electron-positron pairs,

Tν

Tγ
=
(

4
11

)1/3

.

HORIZON DISTANCE:

�p,horizon(t) = R(t)
∫ t

0

c

R(t′)
dt′

=
{
3ct (flat, matter-dominated),
2ct (flat, radiation-dominated).

COSMOLOGICAL CONSTANT:

uvac = ρvacc
2 =

Λc4

8πG
,

pvac = −ρvacc2 = − Λc4

8πG
.

GENERALIZED COSMOLOGICAL EVOLUTION:

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 +Ωvac,0x4 + Ωk,0x2 ,

where

x ≡ R(t)
R(t0)

≡ 1
1 + z

,

Ωk,0 ≡ − kc2

R2(t0)H2
0

= 1−Ωm,0 − Ωrad,0 − Ωvac,0 .

Age of universe:

t0 =
1
H0

∫ 1

0

xdx√
Ωm,0x+Ωrad,0 +Ωvac,0x4 + Ωk,0x2

=
1
H0

∫ ∞

0

dz

(1 + z)
√

Ωm,0(1 + z)3 +Ωrad,0(1 + z)4 + Ωvac,0 +Ωk,0(1 + z)2
.
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Look-back time:

tlook-back(z) =

1
H0

∫ z

0

dz′

(1 + z′)
√

Ωm,0(1 + z′)3 + Ωrad,0(1 + z′)4 +Ωvac,0 + Ωk,0(1 + z′)2
.

PHYSICAL CONSTANTS:

G = 6.673× 10−8 cm3 · g−1 · s−2

k = Boltzmann’s constant = 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K

h̄ =
h

2π
= 1.055× 10−27 erg-s

= 6.582× 10−16 eV-s

c = 2.998× 1010 cm/s

h̄c = 197.3 MeV-fm, 1 fm = 10−15 m

1 yr = 3.156× 107 s

1 eV = 1.602× 10−12 erg

1 GeV = 109 eV = 1.783× 10−24 gram (where c ≡ 1) .

Planck Units: The Planck length �P , the Planck time tP , the Planck
mass mP , and the Planck energy Ep are given by

�P =

√
Gh̄

c3
= 1.616× 10−33 cm ,

tP =

√
h̄G

c5
= 5.391× 10−44 s ,

mP =

√
h̄c

G
= 2.177× 10−5 g ,

EP =

√
h̄c5

G
= 1.221× 1019GeV .


