8.286 QUIZ 3, FALL 2007
Prof. Alan Guth

sә.ภед чиеІЯ әлошәу от рәұғешлојәу Physics 8.286: The Early Universe
ХЮОТОNHOGL HO GLOLILSNI SLLASOHOVSSVIN

$$
\begin{aligned}
& \text { squịd g yłuom чวDว วıD squpd bulmollof } \partial Y L
\end{aligned}
$$

•ләұ7еш улер э!̣иоКлеquои

* This fact is a consequence of the principle that the chemical potential of a
particle is the sum of the chemical potentials associated with its conserved quanti-
ties, while particle and antiparticle always have the opposite values of all conserved
quantities. * This fact is a consequence of the principle that the chemical potential of a
particle is the sum of the chemical potentials associated with its conserved quanti-
ties, while particle and antiparticle always have the opposite values of all conserved
quantities. * This fact is a consequence of the principle that the chemical potential of a
particle is the sum of the chemical potentials associated with its conserved quanti-
ties, while particle and antiparticle always have the opposite values of all conserved
quantities. * This fact is a consequence of the principle that the chemical potential of a
particle is the sum of the chemical potentials associated with its conserved quanti-
ties, while particle and antiparticle always have the opposite values of all conserved
quantities.

formula for the number density n_{i} (of particles of type i) becomes bility of a chemical potential, but they can easily be generalized. For example, the The black-body radiation formulas on the formula sheet do not allow for the possi-

 anti-electron neutrinos $\left(\bar{\nu}_{e}\right)$ are then $-\mu_{e}$ and $-\mu_{\nu}$, respectively, since the chemi-

$-\partial+d \longleftrightarrow u+{ }^{2} n$

$\underline{\imath}+d \longleftrightarrow u++^{\partial}$

mainly by the following reactions:
The equilibrium between protons and neutrons in the early universe is sustained $\mu_{n} \neq \mu_{p}$.
(a) (10 points) Give the correct version of Eq. (1), allowing for the possibility that
 the proton-neutron mass-energy difference. This formula is believed to be very where k is Boltzmann's constant, T is the temperature, and $\Delta E=1.29 \mathrm{MeV}$ is c ${ }_{\text {y/ }}$ 日 $\nabla-\partial=\frac{{ }^{d_{u}}}{u_{u}}$
early times the ratio of neutrons to protons is given by the Boltzmann formula,

answers, with a lower bound of zero.)

((v) primordial black holes

 (ii) axions
(i) massive neutrinos nonbaryonic dark matter?
 contributions from baryons alone would not show such peaks.

$L^{y} /{ }^{\imath} \cdot r^{\partial} \frac{\left.\varepsilon^{(\partial q}\right)}{\varepsilon\left(L^{y}\right)} \frac{z^{\Downarrow}}{(\varepsilon) S}{ }^{\imath} k={ }^{\imath} u$

 $\frac{\varepsilon(\partial \psi)}{\left.{ }^{(}{ }^{\wedge} L^{Y}\right)} \frac{0 \varepsilon}{z^{\mu}} \tau 5={ }^{\circ 09} n$
se uәz?!̣мм әq ues

 ‘ธлеәК $000{ }^{6} 0 \mathrm{~g} \gg \forall \gg$ วәs I

or a radiation-dominated fat universe, what is the Hubble length
 expected to give a numerical answer, so the above list will serve only to define the

 Vacuum mass density
 : $\mathrm{qn}^{\mathrm{S}} \mathrm{H}$

9 , the model universe that we consider will be described by the WMAP 3 -year best dominated era and the onset of the dark-energy-dominated era. As in Problem Set

 нен рәұеиبиоор-ио!̣е!

COSMOLOGICAL REDSHIFT:

$$
1+z \equiv \frac{\lambda_{\text {observed }}}{\lambda_{\text {emitted }}}=\frac{R\left(t_{\text {observed }}\right)}{R\left(t_{\text {emitted }}\right)}
$$

SPECIAL RELATIVITY:
Time Dilation Factor:

$$
\equiv \frac{1}{\sqrt{1-\beta^{2}}}, \quad \beta \equiv v / c
$$

Lorentz-Fitzgerald Contraction Factor: $\quad \gamma$
Relativity of Simultaneity:
\quad Trailing clock reads later by an amount $\beta \ell_{0} / c$.
Energy-Momentum Four-Vector:
$\quad p^{\mu}=\left(\frac{E}{c}, \vec{p}\right), \vec{p}=\gamma m_{0} \vec{v}, \quad E=\gamma m_{0} c^{2}=\sqrt{\left(m_{0} c^{2}\right)^{2}+|\vec{p}|^{2} c^{2}}$
$\quad p^{2} \equiv|\vec{p}|^{2}-\left(p^{0}\right)^{2}=|\vec{p}|^{2}-\frac{E^{2}}{c^{2}}=-\left(m_{0} c\right)^{2}$.

ROBERTSON-WALKER METRIC:
EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

[^0]\[

$$
\begin{aligned}
& :(0>y) \text { uәd }_{\mathrm{O}} \\
& :(0<y) \text { pasoLO }
\end{aligned}
$$
\]

$$
\zeta(3)=\frac{1}{1^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots \approx 1.202
$$

$\frac{\varepsilon^{(o y)}}{\varepsilon_{\square} L_{\mp} Y} \frac{\varrho \mp}{z^{\perp Z}} K=s$

u	$=g \frac{\pi^{2}}{30} \frac{(k T)^{4}}{(\hbar c)^{3}}$
p	$=\frac{1}{3} u \quad \rho=u / c^{2}$
n	$=g^{*} \frac{\zeta(3)}{\pi^{2}} \frac{(k T)^{3}}{(\hbar c)^{3}}$

 BLACK-BODY RADIATION:

CHEMICAL EQUILIBRIUM:
Ideal Gas of Classical Nonrelativistic Particles:

$$
n_{i}=g_{i} \frac{\left(2 \pi m_{i} k T\right)^{3 / 2}}{(2 \pi \hbar)^{3}} e^{\left(\mu_{i}-m_{i} c^{2}\right) / k T} .
$$

where $n_{i}=$ number density of particle
$g_{i}=$ number of spin states of particle
$m_{i}=$ mass of particle
$\mu_{i}=$ chemical potential
For any reaction, the sum of the μ_{i} on the left-hand side of the
reaction equation must equal the sum of the μ_{i} on the right-
hand side. Formula assumes gas is nonrelativistic $(k T \ll$
$\left.m_{i} c^{2}\right)$ and dilute $\left(n_{i} \ll\left(2 \pi m_{i} k T\right)^{3 / 2} /(2 \pi \hbar)^{3}\right)$. EVOLUTION OF A FLAT RADIATION-DOMINATED

[^0]: $\begin{aligned} & \text { DOPPLER SHIFT (For motion along a line): } \\ & z=v / u \quad(\text { nonrelativistic, source moving) } \\ & z=\frac{v / u}{1-v / u} \quad \text { (nonrelativistic, observer moving) } \\ & z=\sqrt{\frac{1+\beta}{1-\beta}}-1 \quad(\text { special relativity, with } \beta=v / c)\end{aligned}$

