
REVIEW SESSION: To help you study for the quiz, Leo Stein will hold a review -теәК

 100 points for the full quiz.

 available to help you study. They come mainly from quizzes in previous years. PURPOSE: These review problems are not to be handed in, but are being made questions in these Review Problems may also recur on the upcoming quiz.

 you understand the lecture material. There will be no quiz questions based these sections will also be covered in lecture, so the reading is intended to help signed, but will not be covered explicitly on the quiz. The topics covered in Chapters 1 and 2, and Section 3.1. (The balance of Chapter 3 has been as-

QUIZ COVERAGE: Lecture Notes 1 (sections on the Doppler shift only); LecQUIZ DATE: Tuesday, October 6, 2009, during the normal class time.

$:(0=y) 7^{2}[$ H
beginning. For the first quiz, this useful information will be the following: Each quiz in this course will have a section of "useful information"
DOPPLER SHIFT (For motion along a line):
$z=v / u \quad$ (nonrelativistic, source moving)

$\partial / a \equiv \delta \quad \checkmark \frac{z \delta-\mathrm{I} \Lambda}{\mathrm{I}} \equiv \curlywedge$

Time Dilation Factor:
: ХLIMILVTGY TVIOG

ло '\%I иечд әлош $К \mathrm{q}$ мол. (I) does the horizon distance

 (sмолле имелр-риеч ђо

$$
\begin{aligned}
& \text { ofq uaəs } \\
& \text { sa!!!!oiə }
\end{aligned}
$$:əsıəл!̣un әप7 Weinberg to explain how Hubble's law is consistent with the homogeneity of

 based on the study of $2,18,180$, or 1,800 galaxies?

 b) When the sky is very clear (as it almost never is in Boston), one can see a band $i^{3 x}$ stu!od

 (squıod ge) ¿ЮNIGV'H
8.286 QUIZ 1 REVIEW PROBLEMS, FALL 2009
 coordinate formulation can be used.

 matter by proposing that new matter is created as the universe expands, so that but the steady-state theory reconciles the expansion with a steady-state density of of the universe was an established fact when the steady-state theory was invented,
 were confirmed. As the name suggests, this theory is based on the hypothesis that the universe until the cosmic background radiation was discovered and its properties

The following problem was Problem 2, Quiz 1, 2000. (squiod

 (iv) the energy density of the radiation
 (ii) the typical wavelength of the radiation (i) the average distance between photons The word "size" will be interpreted to mean linear size, not volume.) universe," or "inversely proportional to the square of the size of the universe". answers should resemble statements such as "proportional to the size of the the following quantities varied as the size of the universe has changed? (Your background radiation expanded freely. Since recombination, how have each of of the background radiation. After this process, known as "recombination," the combined to form neutral atoms, which interact very weakly with the photons
g) At a temperature of 3000 K , the nuclei and electrons that filled the universe With what institution were they affiliated?

© In 1964-65, Arno A. Penzias and Robert W. Wilson observed a flux of mi-

 -әуиедs!р

 astronomers should avoid when looking for comets.
 apparently another galaxy like our own.
 (ii) resolved Cepheid variable stars in Andromeda and thereby obtained per-

(i) measured the size of the Milky Way galaxy, finding it to be about one following accomplishments:

(q)
additional points, but 1 point will be taken off for each incorrect answer.) can earn 1 point each for naming the other two authors, and hence up to 2
 mology, in which the universe has always looked about the same as it does
(a) In the 1940 's, three astrophysicists proposed a "steady state" theory of coswas worth 5 points: The following problem was Problem 1 on Quiz 1, 2007, where each of the 5 questions

PROBLEM 3: DID YOU DO THE READING? (25 points)

 mass per unit volume per unit time. [If you failed to answer part (a), you will

b) (15 points) Suppose that the mass density of the universe is ρ_{0}, which of course $g \cdot d$

Consider a flat (i.e., a $k=0$, or a Euclidean) universe with scale factor given The problem also appeared as Problem 2 on Quiz 1, 200%. The following problem was Problem 2, Quiz 2, 1994, and had also appeared on the
1994 Review Problems. As is the case this year, it was announced that one of the
problems on the quiz would come from either the homework or the Review Problems (squịod

* PROBLEM 4: AN EXPONENTIALLY EXPANDING UNIVERSE (20 (vi) 1000 Mpc . (v) 100 Mpc . (iv) 10 Mpc . (iii) $1 \mathrm{Mpc}\left(1 \mathrm{Mpc}=10^{6} \mathrm{pc}\right)$. (ii) $100 \mathrm{kpc}\left(1 \mathrm{kpc}=1000 \mathrm{pc}, 1 \mathrm{pc}=3.086 \times 10^{16} \mathrm{~m}=3.262\right.$ light-year $)$. (i) $1 \mathrm{AU}\left(1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}\right)$. homogeneity and isotropy set in?
(e) If one averages over sufficiently large scales, the universe appears to be ho-
mogeneous and isotropic. How large must the averaging scale be before this

(iv) approximately two and three centuries after Copernicus' death, respec(iii) about one hundred years after Copernicus' death.
(ii) approximately two and three decades after Copernicus' death, respectively.
(i) during Copernicus' lifetime. discoveries were made has the time-dependence expected for rotation about the Sun) and by the be-
havior of the Foucault pendulum (which showed that the Earth rotates). These ery of the aberration of starlight (which showed that the velocity of the Earth
(d) Important predictions of the Copernican theory were confirmed by the discov-
incorrect answer, but the minimum score is zero.)
 (vii) liquid helium

(f) When Hubble measured the value of his constant, he found $H^{-1} \approx 100$ million or $1948 ?$
 2 million light years, or 3 light years?
(d) Is the distance to the Andromeda Nebula (roughly) $10 \mathrm{kpc}, 5$ billion light years,

 (c) Which of the following supports the hypothesis that the universe is isotropic: ¿кер
(b) What is the temperature, in Kelvin, of the cosmic microwave background to-
 temperature of the microwave background, the value of $\Omega=\rho / \rho_{c}$, matter vs.

 'sұueqsuoo [еэ!̣SКчd queләәә. Кие рие ' χ ' z јо

 the pulse in terms of z, χ, and any relevant physical constants.

 $\cdot \mathrm{SMOHIO}$

(a) (5 points) Find the Hubble constant H at an arbitrary time t
-sұueqsuoə әле χ рие 0 р әләчм
$L \cdot d$

 appearing).
the time of observation, expressed in terms of c, t_{o}, and z (i.e., without t_{e}

-z भ!! observation.
(a) If a light pulse is emitted at time t_{e} and observed at time t_{o}, find the phys-
ical separation $\ell_{p}\left(t_{o}\right)$ between the emitter and the observer, at the time of

Here b denotes a constant

$a(t)=b t^{1 / 3}$

Robertson-Walker scale factor that behaves as
Consider a flat universe filled with a new and peculiar form of matter, with a
The following problem was Problem 3, Quiz 2, 1988:

NOIL

PROBLEM 6: A FLAT UNIVERSE WITH UNUSUAL TIME EVOLU-

 an experiment to look for it. At what institution were these people working?
 independent effort was taking place elsewhere. P.J.E. Peebles had estimated
(j) At the time of the discovery of the cosmic microwave background, an active but ¿рәұе!!Ше КәЧł әләм ио!̣пұ!
(i) Name the two men who in 1964 discovered the cosmic background radiation.

galaxy), t_{0}, H_{0}, and γ, and the constant c.

 is comparable to the speed of light c. Assume, however, that the distance the

 energy flow.]

 a function of H_{0}, z, and γ.
c) (10 points) Express the present value of the physical distance to the object as and observation of the light. time is defined as the length of the interval in cosmic time between the emission
b) (5 points) Find the "look-back" time as a function of z and t_{0}. The look-back the light is received.

 universe described in the lecture notes in that ρ is not proportional to $1 / a^{3}(t)$. Such

$$
\Leftrightarrow \neg q=(7) v
$$

that the Robertson-Walker scale factor behaves as Consider a flat universe which is filled with some peculiar form of matter, so

The following problem was Problem 3, Quiz 1, 2000. (stuiod 0^{\dagger}) NOILOTOAG GNIL

TVASONO NV HLIM GSYGAINの LVTH YGHLONV : \llcorner NGTGOYd *
 e) In 1832 Heinrich Wilhelm Olbers presented what we now know as "Olbers'

 d) In about 280 B.C., a Greek philosopher proposed that the Earth and the other

 radiation that bathes the clouds.
(iv) By measuring the spectrum of visible starlight that passes through the
cyanogen clouds, astronomers can infer the intensity of the microwave -umiqวads Кpoq background radiation at wavelengths shorter than the peak of the black-
 (iii) One reason why the cyanogen observations were important was that they

 directly observed.
 (i) The first measurements of the temperature of the interstellar cyanogen
: (угэә (CN). State whether each of the following statements is true or false (1 point made indirectly, by observing interstellar clouds of a molecule called cyanogen
c) Some of the earliest measurements of the cosmic background radiation were
in 1923, or by Walter Baade and Allan Sandage in the 1950s? Immanuel Kant in 1755, by Henrietta Swan Leavitt in 1912, by Edwin Hubble ual stars of Andromeda. Was this feat accomplished by Galileo in 1609, by when astronomers acquired telescopes powerful enough to resolve the individ-
b) The Andromeda Nebula was shown conclusively to lie outside our own galaxy lines dark, or bright (2 points)? Why (3 points)?

 sun to pass through a slit and then through a glass prism. The light was spread

 $\left(\cdot{ }^{2} p /{ }^{d} \partial p\right.$

 time t_{A} ? At time t_{B} ?

$$
g / \varepsilon^{f q}=(\neq)^{p}
$$

that the Robertson-Walker scale factor behaves as

PROBLEM 9: A FLAT UNIVERSE WITH $a(t) \propto t^{3 / 5}$

${ }^{L I}$.
 speed of light c) from galaxy A to galaxy B. The message is sent at cosmic
b) (10 points) Suppose a message is transmitted by radio signal (traveling at the

$q / \varepsilon^{7 q}=(7)^{n}$

Consider a flat universe which is filled with some peculiar form of matter, so
that the Robertson-Walker scale factor behaves as
where b is a constant (stuiod

PROBLEM 11: ANOTHER FLAT UNIVERSE WITH $a(t) \propto t^{3 / 5}(40$ matter into galaxies and stars. What was the nature of this change? change in its form, a change that was necessary to allow the differentiation of
d) At about $3,000 \mathrm{~K}$ the matter in the universe underwent a certain chemical

Energy density $\propto T^{n_{2}}$

Number density $\propto T^{n_{1}}$
density are each proportional to powers of the absolute temperature T. Say

c) The early universe is believed to have been filled with thermal, or black-body, thought to be static or expanding?

 tions were analyzed according to a cosmological model invented by the Dutch b) When the redshift of distant galaxies was first discovered, the earliest observafor introducing this term?

 newly developed general relativity, but which contained an extra term in the

The following questions are worth 5 points each.

$600 z$ TTVA 'SNGTGOצd MAIAオZ I ZIกÔ 98z'8

${ }{ }^{\partial} d / d=v$

$\frac{(7)_{z} p}{(7)^{p}}(7) \underline{p}-\equiv b$ Кq рәиyәр s! ләұәшехед әчL 'uo!̣suedxә

-00I fo

The following problem was Problem 2, Quiz 2, 1992, where it counted 10 points out

* PROBLEM 12: THE DECELERATION PARAMETER
expand the answer in part (d), there is an easier way.]

 time difference $t_{4}-t_{3}$ can be expanded to first order in Δt. Calculate $t_{4}-t_{3}$
f) (5 points; No partial credit) If the time Δt introduced in part (d) is small, the terms of $\ell_{0}, t_{1}, t_{2}, t_{3}, t_{4}, \Delta t$, and c.)
 e) (5 points) When the response is received by galaxy A, the radio waves will be in terms of $\ell_{0}, t_{1}, t_{2}, t_{3}, \Delta t$, and c.)

 message, finally deciding that it is an advertisement for Kellogg's Corn Flakes d) (10 points) The creatures on galaxy B spend some time trying to decode the

 c) (5 points) Upon receipt of the message, the creatures on galaxy B immediately ℓ_{0}, t_{1}, and c.)

$\frac{\left(7^{6} \cdot l\right)_{Z^{l}}}{(? \cdot l) W D}-Б$

,

 We denoted the radius at time t of a particle which started at radius r_{i} by the

 ering a uniform sphere of mass, centered at the origin, with initial mass density ρ_{i}

 (squıod ge) XLINVHD HO MVT S،NOLMAN HO NOILVDIHIGOL GTGISSOd V :币I NATGOYd*

 This equation in fact applies to any form of so we can apply it $\frac{z^{p}}{z}-d \eta \frac{\varepsilon}{\psi 8}=\left(\frac{p}{p}\right)$
previous paragraph. $p>1$. Show that this equation can be integrated once, as described in the where A and B are arbitrary constants, and p and q are positive integers, with ${ }^{`} 0={ }_{b} b G+\frac{d^{p}}{V}+?$ the generic equation

 include terms depending on a and \dot{a}, but not \ddot{a} or any higher derivatives.

 $\cdot\left(7^{6 ?} \cdot l\right) n \equiv(7) d$ d) (15 points) If all is going well, then you have learned that for a certain value differential equation found in (a), uniquely determine the function u.

 ${ }^{?} \cdot l /\left(f^{6} \cdot l\right) \cdot l \equiv\left(f^{6} \cdot l\right) n$
a) (6 points) As done in the lecture notes, we define

where γ is a constant. The function $r\left(r_{i}, t\right)$ then obeys the differential equation

${ }^{?} d_{\dot{\varepsilon}}^{\imath}, \frac{\varepsilon}{\nu \tau}=\left({ }^{?} \iota\right) W$

v_{s} relative to the space station Alpha-7, while the observer is on another spaceship,
 Consider the Doppler shift of radio waves, for a case in which both the source 20 points.

* PROBLEM 16: SPECIAL RELATIVITY DOPPLER SHIFT than 1% of the mass density of the universe.
(e) What did the universe primarily consist of at about $1 / 100$ th of a second after ¿я рие b s.әәәәұи әчд әле ұечМ

Cosmic Microwave Background (CMB) at a temperature of about $3 \times 10^{6} \mathrm{~K}$

 (c) What is the Cosmological Principle? Is the Hubble expansion of the universe

 of Weinberg, The First Three Minutes

(e) (5 points) At what time $t_{\max }$ is the physical distance of the photon from the ¿иоұоч ә әчұ эо is traveling, what is the physical distance $\ell_{p}(t)$ from the origin to the location

which the photon was emitted?
(c) (2 points) What is the coordinate distance from the origin to the point from the time t_{e} at which the photon was emitted? piece of matter that is precisely at the horizon distance at time t_{f}. What is
(b) (3 points) Suppose that a photon arrives at the origin, at time t_{f}, from a distant
relative to the comoving matter in its vicinity.) or centimeters, as measured by a sequence of rulers, each of which is at rest (By "physical," I mean as usual the distance in physical units, such as meters
(a) (5 points) At an arbitrary time $t=t_{f}$, what is the physical horizon distance?
for a radiation-dominated universe.
where b is a constant. We will learn later that this is the behavior of the scale factor

 St！̣ə 7！quezsu！feчt fe pue＇s！̣xe

 thu can be taken as That is，the trajectory of the Xan－

 F艮

 small enough so that the expansion

 －
$\stackrel{x}{4}$

 speed u along a line through the hub，as shown in the diagram Suppose that （10 points）Suppose that a spaceship is receding to the right at a relativistic z does she observe for each of the four signals？

 We learned in Problem Set 1 that there is no redshift when light from one car at
 problem we will consider only light waves，not sound waves，and we will assume
that v is not negligible compared to c ，but that $2 v<c$ ． radial arms，each moving at a speed $2 v$ at a distance $2 R$ from the center．In this
problem we will consider only light waves，not sound waves，and we will assume central hub，and also another four cars that are attached to extensions of the four spaced cars which travel around a central hub at speed v at a distance R from a
central hub，and also another four cars that are attached to extensions of the four Problem 3 of Problem Set 1，but which has two levels．That is，there are four evenly

Ф田田

$$
2 x
$$

號
*

 the number density of photons in the radiation: inversely propor-

 the same factor.) expansion. Since the universe expands uniformly, all distances grow by effect is that the average distance between them is stretched with the

 reach us. distance also grows, since light from the distant galaxies has had more time to scale factor grows by 1% during this time interval, but the comoving horizon distance is equal to the scale factor times the comoving horizon distance. The

e) During a time interval in which the linear size of the universe grows by 1%, the

(p
In the absence of matter creation the total mass within a comoving volume
would not change, so the increase in mass described by the above equation
$0 d_{\varepsilon}^{D} \gamma(7)_{\varepsilon} p=(7) W$

${ }_{\varepsilon}^{0} \gamma(7){ }_{\varepsilon} x=(7) \Lambda$	
S!	

where c is a constant of integration. Exponentiating,
${ }_{7 p}{ }^{0} H=\frac{p}{p p}$
${ }^{0} H=\frac{q p}{p p} \frac{(7) p}{\mathrm{I}}$
$\cdot \frac{7 p}{p p} \frac{(7) p}{\mathrm{I}}=(7) H$
$\ln a=H_{0} t+c$,
Integrating,
which can be rewritten as
PROBLEM 2: THE STEADY-STATE UNIVERSE THEORY (25 points)
a) (10 points) According to Eq. (3.7), to the size of the universe.) [euoṭı,

 8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2009
production.
 Needless to say, such a rate of matter production is totally undetectable, so be expressed as roughly one hydrogen atom per cubic meter per billion years! of matter production required for the steady-state universe theory can then drog atom is $1.67 \times 10^{-27} \mathrm{~kg}$, and that 1 year $=3.156 \times 10^{7} \mathrm{~s}$. The rate To put this number into more meaningful terms, note that the mass of a hy-

od $\frac{7 p}{p p} \frac{p}{\varepsilon}=$
time per unit volume is then given by must be attributed to matter creation. The rate of matter creation per unit

(c) In 1964-65, Arno A. Penzias and Robert W. Wilson observed a flux of mi-
 1923 (Weinberg, pp. 19-20). (iii) describes the work of Charles Messier in 1781
 about 100,000 light-years, although now it is believed to be about twice that

 Discussion: (i) is false in part because de Sitter was not involved in the mea$3 / 2$ power of the semi-major axis of their elliptical orbits.
 -әоиеұs!̣

 astronomers should avoid when looking for comets.
(iii) published a catalog, Nebulae and Star Clusters, listing 103 objects that apparently another galaxy like our own. suasive evidence that Andromeda is not within our own galaxy, but is (ii) resolved Cepheid variable stars in Andromeda and thereby obtained per-

(i) measured the size of the Milky Way galaxy, finding it to be about one following accomplishments:

In 1917, a Dutch astronomer named Willem de Sitter did which one of the and Fred Hoyle.

Ans: (Weinberg, page 8, or Ryden, page 16): Hermann Bondi, Thomas Gold,
additional points, but 1 point will be taken off for each incorrect answer.)

 ә ψ_{L}

ground Spectrum from the Full COBE FIRAS Data Sets, D.J. Fixsen, E.S. Cheng,
J.M. Gales, J.C. Mather, R.A. Shafer, and E.L. Wright.
and
(a) According to Eq. (3.7), the Hubble constant is related to the scale factor by

8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2009
-
(i) Arno A. Penzias and Robert W. Wilson, Bell Telephone Laboratories.
(j) Princeton University. the $1 / r^{2}$ law for the intensity of a point source to determine the distance r.
(h) 10^{7} light-years.

star appears to be highly correlated with the period of its pulsations. This
(g) The absolute luminosity (i.e., the total light output) of a Cepheid variable
(f) 2 billion years. Hubble's value for Hubble's constant was high by modern
standards, by a factor of 5 to 10 .
(e) 1929 .

 the temperature as 2.728 ± 0.004 Kelvin. The error here is quoted with a best determination to date* was made by the COBE satellite, which measured (b) The temperature of the microwave background today is about 3 Kelvin. (The $\Omega=1$, or closed if $\Omega>1$.

PROBLEM 5: "DID YOU DO THE READING?"
scale factor at the time of reception, so

* Astroplysical Jour 576 (1996): The Cosmic Microwave Back
\longrightarrow .

\cdots

$\ell_{p}\left(t_{o}\right)=a\left(t_{o}\right) \int_{t_{e}}^{t_{o}} \frac{c d t^{\prime}}{a\left(t^{\prime}\right)}=b t_{o}^{1 / 3} \int_{t_{e}}^{t_{o}} \frac{c d t^{\prime}}{b t^{\prime 1 / 3}}=\frac{3}{2} c t_{o}^{1 / 3}\left[t_{o}^{2 / 3}-t_{e}^{2 / 3}\right]$
$=\frac{3}{2} c t_{o}\left[1-\left(t_{e} / t_{o}\right)^{2 / 3}\right]$.

 the particle and origin varies with time. The answer to this latter question is then
 very much about it's trajectory. One has said that it is moving with the matter hence standing still in the comoving coordinates). Note, by the way, that when one
says that a particle is standing still in comoving coordinates, one has not really said
 or a light-beam. In comoving coordinates it is easy to write the trajectory of either In any other system it is difficult to write down the trajectory of either a particle which any coordinate system on likes, but the comoving coordinates are the simplest. Some students have asked me why one cannot use "physical" coordinates, for
which the coordinates really measure the physical distances. In principle one can
The key to this problem is to work in comoving coordinates.
PROBLEM 6: A FLAT UNIVERSE WITH UNUSUAL TIME EVOLU-
8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2009
p. 29

 a) (5 points) The cosmological redshift is given by the usual form,

 $\cdot \frac{\left({ }^{2} 7\right) p}{\left({ }^{0} 7\right) p}=z+\mathrm{I}$ b) (5 points) The coordinates t_{0} and t_{e} are cosmic time coordinates. The "look-
 $\iota\left(\frac{{ }^{2} \neq}{{ }^{0} z}\right)=\frac{\left({ }^{2} \not\right) p}{\left({ }^{0} \nexists\right) p}=z+\mathrm{I}$ given by the usual form, $\frac{a\left(t_{0}\right)}{a\left(t_{e}\right)}$.

 $=\frac{3}{2} c t\left[\left(\frac{t_{o}}{t}\right)^{2 / 3}-1\right]$.

$$
-\longrightarrow-1+2
$$

$$
1,79 \quad{ }^{7}
$$

$=b t^{1 / 3} \int_{t}^{t_{o}} \frac{c d t^{\prime}}{b t^{\prime 1 / 3}}=\frac{3}{2} c t^{1 / 3}\left[t_{o}^{2 / 3}-t^{2 / 3}\right]$

$$
\frac{z(z+1)}{d} \frac{z \chi^{2} \downarrow 7}{\left({ }_{z}\left({ }^{0} 7\right) p / V\right)}
$$

the power hitting the area A is a fraction $\left(A / a\left(t_{0}\right)^{2}\right) /\left(4 \pi \ell_{c}^{2}\right)$ of the photons passing through the sphere. Thus area A. In comoving coordinates the present area of the patch is $A / a\left(t_{0}\right)^{2}$.
Since the object radiates uniformly in all directions, the patch will intercept Now consider the photons passing through a patch of the sphere with physical tered on the radiating object, with radius equal to the comoving distance ℓ_{c}. Imagine a hypothetical sphere in comoving coordinates as drawn above, cen-

 Note added: In looking over the solutions to this problem, I found that a sub-
$z_{J}=(1+z) \sqrt{\frac{1-\frac{v}{c}}{1+\frac{v}{c}}}-1$. Thus,

just a source at rest in the comoving coordinate system, so station, so the light is blue-shifted. To observers on Earth, the relay station is

 For this part of the problem we can use special relativity, which says that the cosmological scales, so the effect of the expansion of the universe is negligible.

 (ii) False. [Any radiation reflected by the clouds is far too weak to be detected.

 value of the Hubble constant by about a factor of 10 .] Sandage recalibrated the extra-galactic distance scale, reducing the accepted luminosity of Cepheid variable stars. In the 1950s Walter Baade and Allan
 which he suggested that at least some of the nebulae are galaxies like our own. Kant published his Universal Natural History and Theory of the Heavens, in

 Milky Way, and also discovered that the surface of the moon is irregular, that built his first telescope; during 1609-10 he resolved the individual stars of the [The other names and dates are not without significance. In 1609 Galileo
b) Individual stars in the Andromeda Nebula were resolved by Hubble in 1923. layers of the sun.
a) The lines were dark, caused by absorption of the radiation in the cooler, outer
¿ЮNIGVGY 'HHL OC ЛOX GIC :8 INGTROYd - $\kappa_{\text {[}}$ dde

$\frac{\left({ }^{2} 7\right) p}{\left.{ }^{\circ} 7\right) p}=\frac{{ }^{2} 7 \nabla}{{ }^{0} \eta} \equiv z+\mathrm{I}$

 shift is given by

The red shift z of the light pulse received at galaxy B is given by

 by $1+z$. Since the energy of each photon is proportional to its frequency, the
 sphere will be slower than the rate of emission by the factor $1+z$, reducing the apply to the rate of arrival of photons, so the rate of photon arrival at the emission by a redshift factor $1+z=a\left(t_{B}\right) / a\left(t_{A}\right)$. The same argument will t_{B}, then the rate of arrival of the wave crests will be slower than the rate of figured out that if a periodic wave is emitted at time t_{A} and observed at time Next consider the rate of arrival of the photons at the sphere. In lecture we so this fraction of the emitted photons will strike the detector.
 sphere given by

8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2009
$8 \varepsilon \cdot d$

 ¿DNIGV'GY sHL OG תOX GIG :0I N'TGOYd

i) Let t_{A}^{\prime} be the time at which the light pulse arrives back at galaxy A. The pulse
must therefore travel a coordinate distance ℓ_{c} (the answer to part (c)) between
time t_{B} and t_{A}^{\prime}, so

$$
\int_{t_{B}}^{t_{A}^{\prime}} \frac{c}{a\left(t^{\prime}\right)} d t^{\prime}=\ell_{c} .
$$

Using the answer from (c) and integrating the left-hand side,

$$
\frac{5 c}{2 b}\left(t_{A}^{2 / 5}-t_{B}^{2 / 5}\right)=\frac{5 c}{2 b}\left(t_{B}^{2 / 5}-t_{A}^{2 / 5}\right) .
$$

Solving for t_{A}^{\prime},
i) Let t_{A}^{\prime} be the time at which the light pulse arrives back at galaxy A. The pulse

P

t_{A} in favor of z, finding
 more useful to express the answer in terms of the redshift z of the received

8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2009
$6 \varepsilon^{\cdot}$

 matter into galaxies and stars, because the pressure of the photons in the early
 $[$ [К.оојоиsоо оұи! ләло рә!̣лел

 sumoze

d) Above $3,000 \mathrm{~K}$ the universe was so hot that the atoms were ionized, dissociated $' \varpi=z u$ рие ${ }^{\prime} \varepsilon={ }^{\mathrm{t}} u$
 Weyl (independently) calculated the trajectories of test particles, discovering look static, so everyone believed it was. Later Arthur Eddington and Hermann

 coordinates to it. The mathematics of general relativity is designed to be valid
 ematical formalism of general relativity can be rather confusing. The basic the theory described a universe that was static or expanding, but the math-
 model is thought to be expanding.
 it was known that the model predicted a redshift which, at least for nearby
b) At the time of its discovery, de Sitter's model was thought to be static [although time will be after Lecture Notes 7.]

8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2009

 round trip of the radio signal, which travels a coordinate distance $2 \ell_{c}$ during

The above answer is perfectly acceptable, but one could also replace t_{2} by using
the answer to part (b), which gives

 which can be solved for t_{2} to give

$$
\text { where a dot denotes a derivative with respect to time } t \text {. The critical mass density }
$$

$$
\begin{aligned}
& \rho_{c} \text { is defined to be the mass density that corresponds to a flat }(k=0) \text { universe, so } \\
& \text { from the equation above it follows that }
\end{aligned}
$$

PROBLEM 13: A RADIATION-DOMINATED FLAT UNIVERSE

$$
\text { The flatness of the model universe means that } k=0 \text {, so }
$$

it follows that
Rewriting this as

Substituting $u=r / r_{i}$, this becomes
$\frac{r}{r_{i}}=-\frac{\pi}{3} \frac{r_{i} \rho_{i}}{r^{2}}+\gamma \overline{r_{i}}$
for a photon-dominated flat universe.

that $a^{2} \propto t$, and therefore

$\mathfrak{y}+7(7$ suoo $)={ }_{z} p \frac{Z}{I}$
the indefinite integral becomes
8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2009

$$
\begin{aligned}
& \text { • }{ }^{\text {д }} \text { дsuos }=p p p
\end{aligned}
$$

 The Planck length is of the order of $10^{-35} \mathrm{~m}$. (Note that this answer could be

The Planck length is of the order of $10^{-35} \mathrm{~m}, 10^{-15} \mathrm{~m}, 10^{15} \mathrm{~m}$, or $10^{35} \mathrm{~m}$? (b) What is the value of the Newtonian gravitational constant G in Planck units?

 (Ryden, Chapter 2, Pages 6-8)
the night sky. What is Olber's paradox? What is the primary resolution of it?

$\frac{z^{v}}{z^{\partial y}}-\left(\frac{\partial \eta^{\nu}}{\partial \gamma}+\delta\right) ? \frac{\varepsilon}{\mu_{8}}=\left(\frac{p}{p}\right)$

 can be rewritten asSince the time-dependent mass density $\rho(t)=\rho_{i} / a^{3}$, the differential equation

$$
z^{\circ} \mathrm{V} \frac{\varepsilon}{\mathrm{~L}}=\lambda
$$

$\frac{\eta^{\nu} 8}{\partial \mathrm{~V}}={ }^{\text {ren }} \mathrm{d}$
て,density, modern physicists interpret it as the mass density of the vacuum. The
mass density of the vacuum is then related to Einstein's cosmological constant

Note that it guarantees that $\left|v_{\text {tot }}\right| \leq c$ as long as $\left|v_{o}\right| \leq c$ and $\left|v_{s}\right| \leq c$.

($2 \cdot 8 \mathrm{~L}$)

$$
\begin{aligned}
& \text { Then } \\
& \text { algebra. To simplify the notation, let } \beta_{\mathrm{tot}} \equiv v_{\mathrm{tot}} / c, \beta_{o} \equiv v_{o} / c \text {, and } \beta_{s} \equiv v_{s} / c
\end{aligned}
$$

Combining Eqs. (18.2) and (18.3),
8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2009

 әдлячч э!иұәәәә (л!) ләqunu uок..еq (!) many as apply
 described by specifying its temperature and the density of the conserved quan-

 -sdumpo ә...xe| with the photons and consequently began to undergo gravitational collapse into

 neutral atoms out of charged nuclei and electrons. Galaxies began to form Ans: (Weinberg, pages 64 and 73) Recombination refers to the formation of recombination? Why?
,
 the Andromeda Nebula was an order of magnitude more distant than the most

 was the distance estimated?
 ®

 $\left(0=z^{`} n=h^{\prime} 7^{0} \Omega-=x\right)$ К.одәә!eiz

2
11
2
1
\vdots

os

 ${ }^{s} 7 \nabla ル=7 \nabla={ }^{\prime} 7 \nabla$
and hence the time interval between crests, as measured by the receiver, is Emmerac is at rest, its clocks run at the same speed as the coordinate time t, wavecrest travels the same distance (again assuming that $c \Delta t \ll a$). Since the
 Since the radio signal is emitted when the Xanthu is at its minimum separa${ }^{s} 7 \nabla \iota=7 \nabla$
a factor of γ than Δt_{s}, the time as measured by the clock on the source:

$\cdot z+\mathrm{I}=\frac{\mathrm{l}}{\mathrm{I}}$
$\stackrel{4}{6}$

frame, so they will appear to be running slowly by the factor

$$
\gamma_{1}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

for the inner cars, and by the factor

 laboratory frame. This is the frame in which the problem is described, in which

 भ!! rotates, each successive pulse from any given car to any other car takes the

.

os

$$
\Delta t_{O}=\frac{\gamma_{2}}{\gamma_{1}} \Delta t_{S}
$$

$\cdot s_{7 \nabla} \frac{\tau /}{Z \lambda}=o_{7 \nabla}$ the moving clocks than on the lab clocks, since these clocks appear to run
slowly. Putting together the equations above, one has immediately that

measured by a clock moving with the observer, then these quantities are related
to the laboratory frame times by

