 in Problem 13(f) and the solution to Problem 8(c). Also, due to a file conversion * Revised $10 / 31 / 09,3: 15 \mathrm{pm}$, to update the notation so that the scale factor is
now called $a(t)$, and not $R(t)$. Cross references to homework problems were updated
*

 REVIEW SESSION AND OFFICE HOURS: To help you study for the quiz, is usually described at the start of the review problems, as I did here.

 In addition to this set of problems, you will find on the course web page the - in all such cases it is based on 100 points for the full quiz. In some cases the number of points assigned to the problem on the quiz is listed available to help you study. They come mainly from quizzes in previous years.
PURPOSE: These review problems are not to be handed in, but are being made Z рие I sütqo.a 'suo!̣asənb
 starred problems are the ones that I recommend that you review most care-

 it will be sufficient if you can place events within 10 years. For this quiz you

 р based specifically on this material. Chapters 4 and 5 of Weinberg's book are help you understand the lecture material, so there will be no quiz questions ters 4, 5, 6, and 10. However, Ryden's Chaptesr 4, 5, and 6 are intended to
COVERAGE: Lecture Notes 5 and 6; Problem Sets 4, 5, and 6; Weinberg, The
QUIZ DATE: Thursday, November 5, 2009, during the normal class time. Second Revised Version*

Physics 8.286: The Early Universe
Prof. Alan Guth
ХゆOTONHOGL HO GLOLILSNI SLLASOHOVSSVI

Each quiz in this course will have a section of "useful information" for your
reference. For the second quiz, this useful information will be the following:
:ZIOO NO N'HNID 田G OL NOILVINYOHNI

next week, holding it from 4:30-5:30 pm on Wednesday, November 4, with no
SPEED OF LIGHT IN COMOVING COORDINATES: office hour on Thursday.
8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2009

	:10

-nostyataoy
$(0>y)$ шәдО
:(0<y) posolo
 $:(0=y) \mathcal{F e}^{2}[\mathcal{A}$

$$
\frac{a}{\sqrt{\kappa}}=\alpha(\cosh \theta-1)
$$

(.74. 7! . .

 question, "Why was there no systematic search for this [cosmic background] (d) (6 points) In chapter 6 of The First Three Minutes, Steven Weinberg posed the (c) (5 points) Give three examples of hadrons. 's!̣sәчұu soəəənu
(v) The deuterium abundance is so small (a few parts per million) that it gas clouds.

 tend to destroy it by converting it into helium-3. (iii) The deuterium abundance in the Sun is biased because nuclear reactions surface.

(ii) The deuterium abundance in the Earth's oceans is biased because, being still present.
(i) The neutron in a deuterium nucleus decays on the time scale of 15 minutes, why this is hard to do?

(b) (5 points) Measurements of the primordial deuterium abundance would give your answer.
 universe change between temperatures of $k T=10 \mathrm{MeV}$ and $k T=0.1 \mathrm{MeV}$?

¿ЮNIGVGY 'HHL OG תOX GIG :I N'GTGO甘d
8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2009

- paunsse

 (i) Gamow, Alpher, and Herman assumed that the neutron could decay, but
 from our present theory in two ways. Circle the two correct statements in the temperature was very close to the actual value of 2.7 K , the theory differed рәұэ!̣әлд әчł чя̊ account for the observed present abundances of light elements, the ratio of pho-

(i) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predict-
ing a cosmic microwave background with a temperature of 5 K . The paper was

PROBLEM 2: DID YOU DO THE READING? (24 points)

 (vi) The early work on nucleosynthesis by Gamow, Alpher, Herman, and Follin, -әsıәл!̣й Күхеә әчұ јо

 microwave background until about 1965.
 mentalists.
(ii) There was a breakdown in communication between theorists and experi--ұәәғрр оұ
(i) The earliest calculations erroneously predicted a cosmic background temat most 3.)
 background was not generally appreciated in the 1950s and early 1960s. Choose

The following problem was Problem 3, Quiz 2, 1998.

 * PROBLEM 4: ANTICIPATING A BIG CRUNCH

 -00I fo

 (iv) (3 points) During the period labeled "era of nucleosynthesis," (choose one:)

 - $\mathrm{I}=$ у иәsоцр

These equations are identical to those on the front of the exam, except that I have $\frac{z^{\partial}}{v^{\prime} \eta} \frac{\varepsilon}{\mu \tau} \equiv 0$ parametric equations
 The form of $a(t)$ depends on the content of the universe. If the universe is mattert. You should leave your answer in the form of a definite integral. (b) (8 points) Write an expression for the physical horizon distance $\ell_{\text {phys }}$ at time
 a radial line, so $\theta=\phi=$ constant. Find an expression for $d \psi / d t$ in terms of for each segment of the trajectory. Consider a light pulse that moves along

so the metric simplifies to convenient to work with an alternative radial coordinate ψ, related to r by

 Consider a universe described by the Robertson-Walker metric on the first page

The following problem was Problem 4, Quiz 2, 1988:
PROBLEM 7: GEOMETRY IN A CLOSED UNIVERSE (25 points)

a) (10 points) Find the total length of this path.

the metric has the form is spherically symmetric about a particular point, coordinates can be found so that is used to describe it. It can be shown that for any three dimensional space which The metric for a given space depends of course on the coordinate system which

* PROBLEM 8: THE GENERAL SPHERICALLY SYMMETRIC

of the rod. You may find one of the following integrals useful:

moving at fixed r to $\theta=\pi / 2$, and then moving back to the origin at fixed θ. The
path is shown below:
 where a and b are positive constants. Consider the path in this space which is $d s^{2}=(1+a r)^{2} d r^{2}+r^{2}(1+b r)^{2} d \theta^{2}$, Кq иәл!̣.8 эฺ̣ıдш

Suppose a two dimensional space, described in polar coordinates (r, θ), has a

II $\cdot d$
8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2009
$\left[{ }_{z} \phi p \theta_{z^{\mathrm{UIS}}}+{ }_{z} \theta p\right](\mu)_{z^{d}}+{ }_{z^{\prime}} \mu={ }_{z} s p$

 Schwarzschild metric, given at the front of the exam. Two observers, designated A The space outside a spherically symmetric mass M is described by the

 however, to clearly indicate the limits of integration.

 ${\text {. }{ }^{\text {reu }}}_{l}>{ }_{l}$

Calculate the volume $V\left(r_{\max }\right)$ of the sphere described by

The metric for a Robertson-Walker universe is given by
 (słuıod 0z)

$\sigma=r^{2}$
(d) Suppose a new radial coordinate σ is introduced, where σ is related to r by
(c) Find an explicit expression for the volume of the sphere. Be sure to include
(b) Find the physical area of the surface of the sphere. sphere.)

 between 0 and π, and ϕ varies from 0 to 2π, where $\phi=0$ and $\phi=2 \pi$ are identified. for some function $\rho(r)$. The coordinates θ and ϕ have their usual ranges: θ varies $\varepsilon I \cdot d$
8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2009

θ UIS $l=h$
θ soว $l=x$ (b) Now introduce the usual Cartesian coordinates, defined by $\theta(\lambda)$ must obey. the front of the exam to obtain explicit differential equations which $r(\lambda)$ and eter λ is the arc length measured along the curve. Use the general formula on
(a) Suppose that $r(\lambda)$ and $\theta(\lambda)$ describe a geodesic in this space, where the param-

${ }_{z} \theta P{ }_{z} \stackrel{\iota}{ }+{ }_{z} \leadsto p={ }_{z} s p$

nates by the metric

PROBLEM 11: GEODESICS (20 points)
 so $r_{A} \equiv R_{\mathrm{S}}$. Is the proper distance between A and B finite for this case? Does

 is the time interval $\Delta \tau_{B}$ measured by B. receives these pulses, and measures the time separation on his own clock. What
d) (5 points) At each tick of A 's clock, a light pulse is transmitted. Observer B Δt_{A} between these ticks? with proper time separation $\Delta \tau_{A}$. What will be the coordinate time separation
c) (5 points) Observer A has a clock that emits an evenly spaced sequence of ticks,
but be sure to clearly indicate the limits of integration.
 b) (5 points) What is the proper distance between A and B ? It is okay to leave expressed in terms of M and fundamental constants.
a) (5 points) Write down the expression for the Schwarzschild horizon radius R_{S},
8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2009

 by this metric, we can still consider an object that moves in this system. In particugalaxies are approximately stationary in the comoving coordinate system described We will assume that this metric is given, and that $a(t)$ has been specified. While

 -?paıs pızxว sұưod \mathfrak{g} snld
The following problem was Problem 3, Quiz 3, 2000, where it was worth 40 points

* PROBLEM 13: GEODESICS IN A CLOSED UNIVERSE

x soo $=\frac{1}{\phi p}$	p u!̣s $九$ sos $-=\frac{1}{\theta p}$

geodesic. Hint: The algebra on this can be messy, but I found things were
reasonably simple if I wrote the derivatives in the following way:
(c) Show that the expressions in (a) satisfy the differential equation for the

(b) Using the generic form of the geodesic equation on the front of the exam, derive

x u!̣s $\not \subset$ u!s $=\theta$ So
equations become:

the same is true in a closed universe. falls off as $1 / a(t)$. Use the geodesic equation derived in part (e) to show that

 that in a flat Robertson-Walker metric, the relativistically defined momentum -оıәz әq
where A, B, C, D, and E are functions of the coordinates, some of which might

derive an equation of the form equation of motion for the coordinate r of the object. Specifically, you should
(e) (10 points) Using the formulas at the front of the exam, derive the geodesic comoving observer. Write an expression for $v_{\text {phys }}$ as a function of $d r / d t$ and r. speed $v_{\text {phys }}$ of the object, since it is the speed that would be measured by a
 observer (an observer stationary with respect to the coordinate system) who is "physical distance," I mean the distance that would be measured by a comoving

Let $d \ell$ denote the physical distance that the object moves during this time. By

$d r=\frac{d r}{d t} d t$

(d) (10 points) During a time interval $d t$, the object will move a coordinate distance journey.
total amount of time that a clock attached to the object would record for this between some time t_{1} and some later time t_{2}, write an integral which gives the
(c) (10 points) If the object travels on a trajectory given by the function $r_{p}(t)$
 8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2009

(a)
$\left({ }_{\tau} \phi p \theta_{\tau^{\mathrm{UIS}}}+{ }_{\tau} \theta p\right)_{\tau^{p}}={ }_{\tau^{s}} p$

region, to first order in $\mathrm{d} u$. $u_{0} \leq u \leq u_{0}+\mathrm{d} u$. Find the physical area $\mathrm{d} A$ of this (c) (7 points) Consider an annular region as shown, con-
 (b) (6 points) Find the circumference S of the space, de-

reflect the distances defined by the metric. of course keep in mind that the diagram does not accurately A diagram of the space is shown at the right, but you should $\frac{(n-p) n_{\varnothing}}{z^{n \mathrm{p} p}}$ given by and $\theta=2 \pi$ is as usual identified with $\theta=0$. The metric is Consider a two-dimensional curved space described by
polar coordinates u and θ, where $0 \leq u \leq a$ and $0 \leq \theta \leq 2 \pi$,

(stu!od

8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2009

$\frac{\hbar^{l}}{z^{l}}(l)^{\mathrm{T}} f+(l)^{0} f=\frac{z^{\iota p}}{l_{z} p}$

(d) (5 points) Finally, we come to the question of stability. Substituting Eq. (4)
into Eq. (3), the equation of motion for r can be written as
 (c) (7 points) To understand the orbit we will also need the equation of motion for - sәчs!̣ues

[^0]
\[

$$
\begin{aligned}
& \text { where } \\
& \qquad h(r) \equiv 1-\frac{R_{S}}{r} \\
& \text { work out the explicit form of the geodesic equation } \\
& \qquad \frac{d}{d \tau}\left[g_{\mu \nu} \frac{d x^{\nu}}{d \tau}\right]=\frac{1}{2} \frac{\partial g_{\lambda \sigma}}{\partial x^{\mu}} \frac{d x^{\lambda}}{d \tau} \frac{d x^{\sigma}}{d \tau}, \\
& \text { for the case } \mu=r \text {. You should use this result to find an explicit expression for }
\end{aligned}
$$
\]

 ne quan Ч7 ј0 о!̣ех units of the electron charge, then all three quantities are integers for which
 о!ূұәәјә :sə!ұ!!

 (•suo.aұnəu

 assumed.

> (ii) In the current theory, the universe started with nearly equal densities of
now the neutron is thought to be absolutely stable.
(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but following list. (3 points for each right answer; circle at most 2.) from our present theory in two ways. Circle the two correct statements in the temperature was very close to the actual value of 2.7 K , the theory differed tons to nuclear particles must have been about 10^{9}. Although the predicted account for the observed present abundances of light elements, the ratio of phoenough for light elements to be synthesized. Alpher and Herman found that to protons, electrons, and antineutrinos, until at some point the universe cooled As the universe expanded and cooled the neutrons underwent beta decay into in which the early universe was assumed to have been filled with hot neutrons. based on a cosmological model that they had developed with George Gamow, ing a cosmic microwave background with a temperature of 5 K . The paper was
(a) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predict-
se qons suọt
(i) (3 points) During the period labeled "thermal equilibrium," the neutron
fraction is changing because (choose one):
(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.
(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.
(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.
(D) Neutrons and protons can be converted from one into through reac-

$\begin{array}{ll}\frac{(7)^{n}}{(\theta \operatorname{soc}-\mathrm{I})^{x}}=\frac{\theta p}{\not p p} \frac{\not p}{\not p p}=\frac{\theta p}{\not p p} & \text { иәчг } \\ \cdot(\theta \cos -\mathrm{I}) \frac{\partial}{p}=\frac{\theta p}{\not p} & \end{array}$

the universe. Within this range, $\cos \theta=0$ implies that $\theta=\pi / 2$. Thus, the age of
the universe at the time these measurements are made is given by matter-dominated universe varies between 0 and π during the expansion phase of $\cos \theta=0$ has multiple solutions, but we know that the θ-parameter for a closed which when combined with Eqs. (2) and (3) implies that $\cos \theta=0$. The equation

$$
\cdot(\theta \operatorname{soc}-\mathrm{L}) x=\frac{y^{\mu}}{n}
$$

To determine the value of the parameter θ, use
Now use

$$
\alpha=\frac{4 \pi}{3} \frac{G \rho a^{3}}{k^{3 / 2} c^{2}} .
$$

Substituting the values we have from Eqs. (1) and (2) for ρ and a / \sqrt{k}, we have

$$
\alpha=\frac{c}{H_{0}} .
$$

LUTIONS, FALL 2009
$\frac{a}{\sqrt{k}}=\frac{c}{H_{0}}$.

 -әәх [еләиә.8 ұечұ suо!̣!

$$
(x, y, z, w):
$$ the north pole to the south pole and back, for a total range of 2π. called the south pole. In making the round trip the photon must travel from

$$
{ }_{z} n={ }_{z} m+{ }_{z^{z}}+{ }_{z^{n}}+{ }_{z^{2}} x
$$

 used in Lecture Notes 6. The closed universe is described as the 3-dimensional

$\frac{\text { Time for photon to return }}{\text { Lifetime of universe }}=1$

$\int_{\zeta / \downarrow}^{0}={ }^{z_{S}} S$
 $S_{1}=\int_{0}^{r_{0}}(1+a r) d r=r_{0}+\frac{1}{2} a r_{0}^{2}$
 $(0 \iota q+\mathrm{I})^{0} \iota \frac{Z}{\psi}=\theta p(0 \iota q+\mathrm{I})^{0} \iota$

length of the second segment is
 is then is then

a) Along the first segment $d \theta=0$, so $d s^{2}=(1+a r)^{2} d r^{2}$, or $d s=(1+a r) d r$.
Integrating, the length of the first segment is found to be OIYL'GN TVNOIS

Note that the strip has a coordinate width of $d r$, but the distance across the
width of the strip is determined by the metric to be

[^1]| | |
| :---: | :---: |
| | |
|
 | |
| | | The reading on the observer's clock corresponds to the proper time interval $d \tau$,

c) A tick of the clock and the following tick are two events that differ only in their
time coordinates. Thus, the metric reduces to 8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2009

$$
\begin{aligned} d r & =2 R_{S} \cosh u \sinh u d u,\end{aligned}
$$

and the indefinite integral becomes

$$
\begin{aligned} \int \frac{\sqrt{r} d r}{\sqrt{r-R_{S}}} & =2 R_{S} \int \cosh ^{2} u d u \\ & =R_{S} \int(1+\cosh 2 u) d u \\ & =R_{S}\left(u+\frac{1}{2} \sinh 2 u\right) \\ & =R_{S}(u+\sinh u \cosh u)\end{aligned}
$$

Thus, $\begin{aligned} \sinh ^{-1}\left(\sqrt{\frac{r}{R_{S}}-1}\right)+\sqrt{r\left(r-R_{S}\right)} .\end{aligned}$
$s_{A B}=R_{S}\left[\sinh ^{-1}\left(\sqrt{\frac{r_{B}}{R_{S}}-1}\right)-\sinh ^{-1}\left(\sqrt{\frac{r_{A}}{R_{S}}-1}\right)\right]$

 (a) The metric is given by
$d s^{2}=g_{i j} d x^{i} d x^{j}=d r^{2}+r^{2} d \theta^{2}$,

so \quad| $g_{r r}=1, \quad g_{\theta \theta}=r^{2}, \quad g_{r \theta}=g_{\theta r}=0$. |
| :--- |
| First taking $i=r$, the nonvanishing terms in the geodesic equation become | Here the indices j, k, and ℓ are summed from 1 to the dimension of the space, so

there is one equation for each value of i.
The geodesic equation for a curve $x^{i}(\lambda)$, where the parameter λ is the arc
length along the curve, can be written as
PROBLEM 11: GEODESICS
8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2009
 by a rotation in the $y-z$ plane by an angle α ： Now introduce a primed coordinate system that is related to the original system

$$
\begin{aligned}
0 & =z={ }_{\varepsilon} x \\
\text { 九 u!̣s } \iota & =k={ }_{z^{x}} x \\
\text { 九 soo } \iota & =x={ }_{\mathrm{T}} x
\end{aligned}
$$

$\begin{aligned} \cdot \theta \text { soo } \iota & =z \\ \phi \text { u！s } \theta \text { u！̣ } \iota & =\hbar \\ \phi \operatorname{sog} \theta \text { U！̣s } \iota & =x\end{aligned}$
$x=x^{\prime}$
$y=y^{\prime} \cos \alpha-z^{\prime} \sin \alpha$
$z=z^{\prime} \cos \alpha+y^{\prime} \sin \alpha$
> （e） Rotations are easy to understand in Cartesian coordinates．The relationship
between the polar and Cartesian coordinates is given by PROBLEM 12：GEODESICS ON THE SURFACE OF A SPHERE

8．286 QUIZ 2 REVIEW PROBLEM SOLUTIONS，FALL 2009

8．286 QUIZ 2 REVIEW PROBLEM SOLUTIONS，FALL 2009
Using again the relations between polar and Cartesian coordinates， $y=r \sin \psi \cos \alpha$
$z=r \sin \psi \sin \alpha$.
$x=r \cos \psi$
Using the relation between the two coordinate systems given above， （b）A segment of the equator corresponding to an interval $d \psi$ has length $a d \psi$ ，so
For this problem the metric has only two nonzero components：
that Eq．（6．38）follows from（6．36）provided only that $A=$ constant．）Thus，
 that the variable used to parametrize the path is called ψ ，rather than λ or s Eq．（6．38）．（Note that we are following the notation of Lecture Notes 6，except

Thus the quantity

$d s^{2}=g_{i j} \frac{d x^{i}}{d \psi} \frac{d x^{j}}{d \psi} d \psi^{2}=a^{2} d \psi^{2}$

 the parameter ψ is proportional to the arc length．Expressed in terms of themetric，this relationship becomes
$x^{\prime}=r \cos \psi, \quad y^{\prime}=r \sin \psi, \quad z^{\prime}=0$
in the primed coordinates：
The rotated equator，which we seek to describe，is just the standard equator

$\frac{d x^{i}}{d \psi} \frac{d x^{j}}{d \psi}$
 ${ }_{c^{x p}}{ }_{x}{ }^{x p}{ }^{n} \equiv \equiv V$

形 d
(c) This part is mainly algebra. Taking the derivative of

$$
=\sec ^{2} \psi\left[\sin ^{2} \psi\left(1-\sin ^{2} \alpha\right)+\cos ^{2} \psi\right]
$$

$$
\cdot 0=\left\{\frac{\hbar p}{\phi p} \theta_{z}{ }^{\mathrm{U}!\mathrm{S}}\right\} \frac{\hbar p}{p}
$$

$\Longleftarrow \quad 0=\left\{\frac{\not p}{\phi p} \theta_{z}{ }^{\mathrm{U}!\mathrm{s}}{ }_{z} p\right\} \frac{\not p}{p}$

$\frac{z^{\iota-}-\mathrm{I}}{(1)^{2}}={ }^{{ }^{\mu}} \delta$
(7) z^{D}

Since $g_{t t}=-c^{2}$, the derivative with respect to r will vanish. Thus, the only

$\frac{{ }^{\circ} \varrho}{{ }^{\circ} \sigma \varrho}$

 either r or t (i.e., there is no motion in the θ or ϕ directions). However, the
 the diagonal nature of the metric implies that nonzero contributions arise only only contribution on the left-hand side will be $\nu=r$. On the right-hand side, derive the equation for r, so we set $\mu=r$. Since the metric is diagonal, the convention implies that the indices ν, λ, and σ are summed. We are trying to
 $\frac{\iota p}{{ }_{o} x p} \frac{\iota p}{Y_{Y} x p}\left({ }^{\circ} \Sigma^{n} \varrho\right) \frac{\sigma}{\mathrm{I}}=\left\{\frac{\iota p}{{ }_{\imath} x p} n n^{r} \sigma\right\} \frac{\llcorner p}{p}$
the front of the exam:

 Discussion: A common mistake was to include $-c^{2} d t^{2}$ in the expression for

$\mathrm{d} A=$ circumference \times width
$=\left[2 \pi \sqrt{u_{0}}\right] \times\left[\frac{1}{2} \sqrt{\frac{a}{u_{0}\left(a-u_{0}\right)}} \mathrm{d} u\right]$
$=\sqrt{\frac{a}{\left(a-u_{0}\right)}} \mathrm{d} u$.
(d) We can find the total area by imagining that it is broken
where a single annulus starts at radial coordinate u and
As in part (a), this expression must be integrated from t
center, which is 0 , to the value of u at the outer edge, whicher

[^2]

8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2009 p. 53
PROBLEM 15: ROTATING FRAMES OF REFERENCE (35 points)

(9)	
(ஏ)	$z^{\iota}=\phi \phi 反 \quad \frac{(\iota) \psi}{\mathrm{I}}={ }^{\iota \iota} \zeta \quad{ }_{z^{\prime}} \supset(\iota) \psi-=\neq \hbar$
(¢)	
ұ廿е	:әле sұuәuoduoo э!̣дәш рие э!̣дәә

©
$\varnothing_{\infty}^{\infty}$

(30 points) PROBLEM 16: THE STABILITY OF SCHWARZSCHILD ORBITS*

one has
p. 55
8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2009
on the left-hand side:
Using the values in (4) to evaluate the right-hand side and taking the derivatives

Expanding out $\frac{d}{d \tau}\left[g_{r r} \frac{d r}{d \tau}\right]=\frac{1}{2} \frac{\partial g_{\lambda \sigma}}{\partial r} \frac{d x^{\lambda}}{d \tau} \frac{d x^{\sigma}}{d \tau}$
for the index value $\mu=r$ takes the form
8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2009

and, consequently, the right-hand side must also vanish: must solve this equation. Being the constant function, the left-hand side vanishes Since we are told that a circular orbit with radius r_{0} exists, the function $r(\tau)=r_{0}$
 $\frac{\Lambda_{Z} p}{}$

 $0=\left[\frac{\iota p}{\phi p} z^{\iota}\right] \frac{\iota p}{p}$

(c) The geodesic equation (6) for $\mu=\phi$ gives

$$
\begin{aligned}
& \text { Expanding out, the terms with }\left(\frac{d r}{d \tau}\right)^{2} \text { cancel and we find } \\
& \qquad \frac{d^{2} r}{d \tau^{2}}=-\frac{1}{2} h^{\prime} c^{2}+\left(r h-\frac{1}{2} h^{\prime} r^{2}\right)\left(\frac{d \phi}{d \tau}\right)^{2} . \\
& \text { This is an acceptable answer. One can simplify (10) further by noting that } h^{\prime}= \\
& R_{S} / r^{2} \text { and } r h=r-R_{S} \text { : } \\
& \qquad \frac{d^{2} r}{d \tau^{2}}=-\frac{1}{2} \frac{R_{S} c^{2}}{r^{2}}+\left(r-\frac{3}{2} R_{S}\right)\left(\frac{d \phi}{d \tau}\right)^{2} . \\
& \text { In the notation of the problem statement. we have }
\end{aligned}
$$

In the notation of the problem statement, we have (d) Using (13) the second-order differential equation (11) for $r(\tau)$ takes the form

Expanding out, the terms with $\left(\frac{d r}{d \tau}\right)^{2}$ cancel and we find
8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2009

$0>(S y z-0 . \iota) \frac{\frac{0}{c} \iota}{2 T \varepsilon}-{ }_{z^{J}}{ }^{S} y$
For students interested in getting the famous result that orbits are stable for $r>$
$3 R_{S}$ we complete this part of the analysis below. First we evaluate $H^{\prime}\left(r_{0}\right)$ in (18)
using the values of f_{0} and f_{1} in (12):

$$
H^{\prime}\left(r_{0}\right)=\frac{d}{d r}\left[-\frac{1}{2} \frac{R_{S} c^{2}}{r^{2}}+\left(\frac{1}{r^{3}}-\frac{3 R_{S}}{2 r^{4}}\right) L^{2}\right]_{r=r_{0}}=\frac{R_{S} c^{2}}{r_{0}^{3}}-\frac{3 L^{2}}{r_{0}^{5}}\left(r_{0}-2 R_{S}\right) .
$$

The inequality in (18) then gives us and the solution describes bounded oscillations. So stability requires:

$$
\text { Stability Condition: } H^{\prime}\left(r_{0}\right)=\frac{d}{d r}\left[f_{0}(r)+\frac{f_{1}(r)}{r^{4}} L^{2}\right]_{r=r_{0}}<0 . \quad \text { (18) }
$$

 uo!̣enbə number is negative: $H^{\prime}\left(r_{0}\right)<0$. Indeed, in this case (17) is the harmonic oscillator is familiar because $H^{\prime}\left(r_{0}\right)$ is just a number. The condition of stability is that this

$\quad(\downarrow)^{\iota g}(0, \iota)_{, H}=\frac{z^{\iota p}}{(\downarrow) \cdot \iota \rho_{z} p}$

where $H^{\prime}(r)=\frac{d H(r)}{d r}$ and we used $H\left(r_{0}\right)=0$ from (16). The resulting equation
Substituting this into (15) we get, to first nontrivial approximation
To investigate stability we consider a small perturbation $\delta r(\tau)$ of the orbit:
8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2009

$$
3\left(r_{0}-2 R_{S}\right)>2\left(r_{0}-\frac{3}{2} R_{S}\right) \quad \rightarrow \quad r_{0}>3 R_{S} .
$$

This is the desired condition for stable orbits in the Schwarzschild geometry.

$$
\mathrm{I}<\frac{\left(S \bigcup \frac{z}{\varepsilon}-0 . \ell\right)}{(S y z-0,} \frac{z}{\varepsilon}
$$

$\stackrel{N}{0}$

$$
R_{S} c^{2}-\frac{3}{2} \frac{R_{S} c^{2}}{\left(r_{0}-\frac{3}{2} R_{S}\right)}\left(r_{0}-2 R_{S}\right)<0 .
$$

Cancelling the common factors of $R_{S} c^{2}$ we find
Note, incidentally, that the equality to the right demands that for a circular orbit
$r_{0}>\frac{3}{2} R_{S}$. Substituting the above value of L^{2} / r_{0}^{2} in (19) we get:
L^{2} for the orbit with radius r_{0}. This value is determined by the vanishing of $H\left(r_{0}\right)$: where we multiplied by $r_{0}^{3}>0$. To complete the calculation we need the value of
8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2009
$69 \cdot d$

[^0]: in terms of $r, d r / d \tau, d \phi / d \tau, h(r)$, and c. Use this equation to simplify the
 expression for $d^{2} r / d \tau^{2}$ obtained in part (a). The goal is to obtain an expression
 of the form (b) (6 points) It is useful to consider r and ϕ to be the independent variables, while

[^1]: [Pedagogical Note: If you don't see through the solutions above, then note that the

[^2]: ©

