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Prof. Alan Guth

REVIEW PROBLEMS FOR QUIZ 3

QUIZ DATE: Thursday, December 3, 2009, during the normal class time.

COVERAGE: Lecture Notes 7, 8, and 10, Problem Sets 7, 8, and 9; Steven Wein-
berg, The First Three Minutes, Chapter 8 and Afterword; Barbara Ryden,
Introduction to Cosmology, Chapters 8 (Dark Matter) and 9 (The Cosmic Mi-
crowave Background); Alan Guth, Inflation and the New Era of High-Precision
Cosmology,

http://web.mit.edu/physics/alumniandfriends/physicsjournal_fall_02_cosmology.pdf.

One of the problems on the quiz will be taken verbatim (or at least
almost verbatim) from either the homework assignments, or from the
starred problems from this set of Review Problems. The starred prob-
lems are the ones that I recommend that you review most carefully: Problems
2, 4, 5, 6, 7, 9, 10, and 11.

PURPOSE: These review problems are not to be handed in, but are being made
available to help you study. They come mainly from quizzes in previous years.
In some cases the number of points assigned to the problem on the quiz is listed
— in all such cases it is based on 100 points for the full quiz.

In addition to this set of problems, you will find on the course web page the
actual quizzes that were given in 1994, 1996, 1998, 2000, 2002, 2004, and 2007.
The relevant problems from those quizzes have mostly been incorporated into
these review problems, but you still may be interested in looking at the quizzes,
just to see how much material has been included in each quiz. The coverage of
the upcoming quiz will not necessarily match the coverage of any of the quizzes
from previous years. The coverage for each quiz in recent years is usually
described at the start of the review problems, as I did here.

REVIEW SESSION AND OFFICE HOURS: A review session and special
office hours will be held to help you study for the quiz. Details will follow.

INFORMATION TO BE GIVEN ON QUIZ:

SPEED OF LIGHT IN COMOVING COORDINATES:

vcoord =
c

a(t)
.
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DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved
λemitted

=
a(tobserved)
a(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2 , β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β0/c .

Energy-Momentum Four-Vector:

pµ =
(
E

c
, �p

)
, �p = γm0�v , E = γm0c

2 =
√
(m0c2)

2 + |�p|2 c2 ,

p2 ≡ |�p|2 − (
p0
)2

= |�p|2 − E2

c2
= − (m0c)

2
.

COSMOLOGICAL EVOLUTION:

H2 =
(
ȧ

a

)2

=
8π
3
Gρ− kc2

a2
, ä = −4π

3
G

(
ρ+

3p
c2

)
a ,

ρm(t) =
a3(ti)
a3(t)

ρm(ti) (matter), ρr(t) =
a4(ti)
a4(t)

ρr(ti) (radiation).

ρ̇ = −3 ȧ
a

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.
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Flat (k = 0): a(t) ∝ t2/3 (matter-dominated) ,

a(t) ∝ t1/2 (radiation-dominated) ,

Ω = 1 .

EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Closed (k > 0): ct = α(θ − sin θ) ,
a√
k
= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π
3
Gρ

c2

(
a√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
a√
κ
= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π
3
Gρ

c2

(
a√
κ

)3

,

κ ≡ −k > 0 .

ROBERTSON-WALKER METRIC:

ds2 = −c2 dτ2 = −c2 dt2+a2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}

SCHWARZSCHILD METRIC:

ds2 = −c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1
2
(∂igk	)

dxk

ds

dx	

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
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BLACK-BODY RADIATION:

u = g
π2

30
(kT )4

(h̄c)3
(energy density)

p =
1
3
u ρ = u/c2 (pressure, mass density)

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
(number density)

s = g
2π2

45
k4T 3

(h̄c)3
, (entropy density)

where

g ≡
{
1 per spin state for bosons (integer spin)

7/8 per spin state for fermions (half-integer spin)

g∗ ≡
{
1 per spin state for bosons

3/4 per spin state for fermions ,

and
ζ(3) =

1
13

+
1
23

+
1
33

+ · · · ≈ 1.202 .

gγ = g∗γ = 2 ,

gν =
7
8︸ ︷︷ ︸

Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21
4

,

g∗ν =
3
4︸ ︷︷ ︸

Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
9
2
,
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ge+e− =
7
8︸ ︷︷ ︸

Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

=
7
2
,

g∗e+e− =
3
4︸ ︷︷ ︸

Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

= 3 .

CHEMICAL EQUILIBRIUM:

Ideal Gas of Classical Nonrelativistic Particles:

ni = gi
(2πmikT )3/2

(2πh̄)3
e(µi−mic

2)/kT .

where ni = number density of particle

gi = number of spin states of particle

mi = mass of particle

µi = chemical potential

For any reaction, the sum of the µi on the left-hand side of the
reaction equation must equal the sum of the µi on the right-
hand side. Formula assumes gas is nonrelativistic (kT 	
mic

2) and dilute (ni 	 (2πmikT )3/2/(2πh̄)3).

EVOLUTION OF A FLAT RADIATION-DOMINATED
UNIVERSE:

ρ =
3

32πGt2

kT =
(

45h̄3c5

16π3gG

)1/4
1√
t

For mµ = 106 MeV
 kT 
 me = 0.511 MeV, g = 10.75 and
then

kT =
0.860 MeV√
t (in sec)

(
10.75
g

)1/4

After the freeze-out of electron-positron pairs,

Tν

Tγ
=
(

4
11

)1/3

.
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HORIZON DISTANCE:

p,horizon(t) = a(t)
∫ t

0

c

a(t′)
dt′

=
{
3ct (flat, matter-dominated),
2ct (flat, radiation-dominated).

COSMOLOGICAL CONSTANT:

uvac = ρvacc
2 =

Λc4

8πG
,

pvac = −ρvacc2 = − Λc4

8πG
.

GENERALIZED COSMOLOGICAL EVOLUTION:

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 +Ωvac,0x4 + Ωk,0x2 ,

where

x ≡ a(t)
a(t0)

≡ 1
1 + z

,

Ωk,0 ≡ − kc2

a2(t0)H2
0

= 1−Ωm,0 − Ωrad,0 − Ωvac,0 .

Age of universe:

t0 =
1
H0

∫ 1

0

xdx√
Ωm,0x+Ωrad,0 +Ωvac,0x4 + Ωk,0x2

=
1
H0

∫ ∞

0

dz

(1 + z)
√

Ωm,0(1 + z)3 +Ωrad,0(1 + z)4 + Ωvac,0 +Ωk,0(1 + z)2
.

Look-back time:

tlook-back(z) =

1
H0

∫ z

0

dz′

(1 + z′)
√

Ωm,0(1 + z′)3 + Ωrad,0(1 + z′)4 +Ωvac,0 + Ωk,0(1 + z′)2
.
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PHYSICAL CONSTANTS:

G = 6.674× 10−11 m3 · kg−1 · s−2 = 6.674× 10−8 cm3 · g−1 · s−2

k = Boltzmann’s constant = 1.381× 10−23 joule/K

= 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K

h̄ =
h

2π
= 1.055× 10−34 joule · s

= 1.055× 10−27 erg · s
= 6.582× 10−16 eV · s

c = 2.998× 108 m/s
= 2.998× 1010 cm/s

h̄c = 197.3 MeV-fm, 1 fm = 10−15 m

1 yr = 3.156× 107 s

1 eV = 1.602× 10−19 joule = 1.602× 10−12 erg

1 GeV = 109 eV = 1.783× 10−27 kg (where c ≡ 1)
= 1.783× 10−24 g .

Planck Units: The Planck length P , the Planck time tP , the Planck
mass mP , and the Planck energy Ep are given by

P =

√
Gh̄

c3
= 1.616× 10−35 m ,

= 1.616× 10−33 cm ,

tP =

√
h̄G

c5
= 5.391× 10−44 s ,

mP =

√
h̄c

G
= 2.177× 10−8 kg ,

= 2.177× 10−5 g ,

EP =

√
h̄c5

G
= 1.221× 1019 GeV .
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PROBLEM 1: DID YOU DO THE READING? (25 points)

The following problem was Problem 1, Quiz 3, in 2007. Each part was worth 5
points.

(a) (CMB basic facts) Which one of the following statements about CMB is not
correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean tem-
perature averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean

square temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of
the observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measure-
ment of an excess temperature of about 3.5 K that was isotropic, unpolar-
ized, and free from seasonal variations. In a companion paper written by
Dicke, Peebles, Roll and Wilkinson, the authors interpreted the radiation
to be a relic of an early, hot, dense, and opaque state of the universe.

(b) (CMB experiments) The current mean energy per CMB photon, about 6 ×
10−4 eV, is comparable to the energy of vibration or rotation for a small
molecule such as H2O. Thus microwaves with wavelengths shorter than
λ ∼ 3 cm are strongly absorbed by water molecules in the atmosphere. To
measure the CMB at λ < 3 cm, which one of the following methods is not a
feasible solution to this problem?

(i) Measure CMB from high-altitude balloons, e.g. MAXIMA.

(ii) Measure CMB from the South Pole, e.g. DASI.

(iii) Measure CMB from the North Pole, e.g. BOOMERANG.

(iv) Measure CMB from a satellite above the atmosphere of the Earth, e.g.
COBE, WMAP and PLANCK.

(c) (Temperature fluctuations) The creation of temperature fluctuations in CMB
by variations in the gravitational potential is known as the Sachs-Wolfe effect.
Which one of the following statements is not correct concerning this effect?

(i) A CMB photon is redshifted when climbing out of a gravitational potential
well, and is blueshifted when falling down a potential hill.

(ii) At the time of last scattering, the nonbaryonic dark matter dominated the
energy density, and hence the gravitational potential, of the universe.



8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2007 p. 9

(iii) The large-scale fluctuations in CMB temperatures arise from the grav-
itational effect of primordial density fluctuations in the distribution of
nonbaryonic dark matter.

(iv) The peaks in the plot of temperature fluctuation ∆T vs. multipole l are
due to variations in the density of nonbaryonic dark matter, while the
contributions from baryons alone would not show such peaks.

(d) (Dark matter candidates) Which one of the following is not a candidate of
nonbaryonic dark matter?

(i) massive neutrinos

(ii) axions

(iii) matter made of top quarks (a type of quarks with heavy mass of about
171 GeV).

(iv) WIMPs (Weakly Interacting Massive Particles)

(v) primordial black holes

(e) (Signatures of dark matter) By what methods can signatures of dark matter
be detected? List two methods. (Grading: 3 points for one correct answer,
5 points for two correct answers. If you give more than two answers, your
score will be based on the number of right answers minus the number of wrong
answers, with a lower bound of zero.)

∗PROBLEM 2: PRESSURE AND ENERGY DENSITY OF
MYSTERIOUS STUFF (25 points)

The following problem was Problem 3, Quiz 3, 2002. Although it is couched in
the language of Lecture Notes 13, the physics is really the same as the pressure
calculations in Lecture Notes 7, so a modified form of this problem would be fair for
the coming quiz.

In Lecture Notes 13, a thought experiment involving a piston was used to show
that p = −ρc2 for any substance for which the energy density remains constant
under expansion. In this problem you will apply the same technique to calculate
the pressure of mysterious stuff, which has the property that the energy density
falls off in proportion to 1/

√
V as the volume V is increased.

If the initial energy density of the mysterious stuff is u0 = ρ0c
2, then the initial

configuration of the piston can be drawn as
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The piston is then pulled outward, so that its initial volume V is increased to
V +∆V . You may consider ∆V to be infinitesimal, so ∆V 2 can be neglected.

(a) (15 points) Using the fact that the energy density of mysterious stuff falls off
as 1/

√
V , find the amount ∆U by which the energy inside the piston changes

when the volume is enlarged by ∆V . Define ∆U to be positive if the energy
increases.

(b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how
much work ∆W is done by the agent that pulls out the piston?

(c) (5 points) Use your results from (a) and (b) to express the pressure p of the
mysterious stuff in terms of its energy density u. (If you did not answer parts
(a) and/or (b), explain as best you can how you would determine the pressure
if you knew the answers to these two questions.)

PROBLEM 3: NUMBER DENSITIES IN THE COSMIC BACK-
GROUND RADIATION

Today the temperature of the cosmic microwave background radiation is 2.7◦K.
Calculate the number density of photons in this radiation. What is the number
density of thermal neutrinos left over from the big bang?
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∗PROBLEM 4: PROPERTIES OF BLACK-BODY RADIATION (25
points)

The following problem was Problem 4, Quiz 3, 1998.

In answering the following questions, remember that you can refer to the for-
mulas at the front of the exam. Since you were not asked to bring calculators, you
may leave your answers in the form of algebraic expressions, such as π32/

√
5ζ(3).

(a) (5 points) For the black-body radiation (also called thermal radiation) of pho-
tons at temperature T , what is the average energy per photon?

(b) (5 points) For the same radiation, what is the average entropy per photon?

(c) (5 points) Now consider the black-body radiation of a massless boson which has
spin zero, so there is only one spin state. Would the average energy per particle
and entropy per particle be different from the answers you gave in parts (a)
and (b)? If so, how would they change?

(d) (5 points) Now consider the black-body radiation of electron neutrinos. These
particles are fermions with spin 1/2, and we will assume that they are massless
and have only one possible spin state. What is the average energy per particle
for this case?

(e) (5 points)What is the average entropy per particle for the black-body radiation
of neutrinos, as described in part (d)?

∗PROBLEM 5: A NEW SPECIES OF LEPTON

The following problem was Problem 2, Quiz 3, 1992, worth 25 points.

Suppose the calculations describing the early universe were modified by includ-
ing an additional, hypothetical lepton, called an 8.286ion. The 8.286ion has roughly
the same properties as an electron, except that its mass is given by mc2 = 0.750
MeV.

Parts (a)-(c) of this question require numerical answers, but since you were
not told to bring calculators, you need not carry out the arithmetic. Your answer
should be expressed, however, in “calculator-ready” form— that is, it should be an
expression involving pure numbers only (no units), with any necessary conversion
factors included. (For example, if you were asked how many meters a light pulse in
vacuum travels in 5 minutes, you could express the answer as 2.998× 108× 5× 60.)

a) (5 points) What would be the number density of 8.286ions, in particles per
cubic meter, when the temperature T was given by kT = 3 MeV?

b) (5 points) Assuming (as in the standard picture) that the early universe is
accurately described by a flat, radiation-dominated model, what would be the
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value of the mass density at t = .01 sec? You may assume that 0.75 MeV 	
kT 	 100 MeV, so the particles contributing significantly to the black-body
radiation include the photons, neutrinos, e+-e− pairs, and 8.286ion-anti8286ion
pairs. Express your answer in the units of g/cm3.

c) (5 points) Under the same assumptions as in (b), what would be the value of
kT , in MeV, at t = .01 sec?

d) (5 points)When nucleosynthesis calculations are modified to include the effect
of the 8.286ion, is the production of helium increased or decreased? Explain
your answer in a few sentences.

e) (5 points) Suppose the neutrinos decouple while kT 
 0.75 MeV. If the
8.286ions are included, what does one predict for the value of Tν/Tγ today?
(Here Tν denotes the temperature of the neutrinos, and Tγ denotes the tem-
perature of the cosmic background radiation photons.)

∗PROBLEM 6: PRESSURE AND ENERGY DENSITY OF MYSTE-
RIOUS STUFF (25 points)

In Lecture Notes 13, a thought experiment involving a piston was used to show
that p = −ρc2 for any substance for which the energy density remains constant
under expansion. In this problem you will apply the same technique to calculate
the pressure of mysterious stuff, which has the property that the energy density
falls off in proportion to 1/

√
V as the volume V is increased.

If the initial energy density of the mysterious stuff is u0 = ρ0c
2, then the initial

configuration of the piston can be drawn as

The piston is then pulled outward, so that its initial volume V is increased to
V +∆V . You may consider ∆V to be infinitesimal, so ∆V 2 can be neglected.
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(a) (15 points) Using the fact that the energy density of mysterious stuff falls off
as 1/

√
V , find the amount ∆U by which the energy inside the piston changes

when the volume is enlarged by ∆V . Define ∆U to be positive if the energy
increases.

(b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how
much work ∆W is done by the agent that pulls out the piston?

(c) (5 points) Use your results from (a) and (b) to express the pressure p of the
mysterious stuff in terms of its energy density u. (If you did not answer parts
(a) and/or (b), explain as best you can how you would determine the pressure
if you knew the answers to these two questions.)

∗PROBLEM 7: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF
(15 points)

Consider a universe that contains nonrelativistic matter, radiation, vacuum en-
ergy, and the same mysterious stuff that was introduced in the previous problem.
Since the mass density of mysterious stuff falls off as 1/

√
V , where V is the volume,

it follows that in an expanding universe the mass density of mysterious stuff falls
off as 1/a3/2(t).

Suppose that you are given the present value of the Hubble parameter H0,
and also the present values of the contributions to Ω ≡ ρ/ρc from each of the
constituents: Ωm,0 (nonrelativistic matter), Ωr,0 (radiation), Ωv,0 (vacuum energy
density), and Ωms,0 (mysterious stuff). Our goal is to express the age of the universe
t0 in terms of these quantities.

(a) (8 points) Let x(t) denote the ratio

x(t) ≡ a(t)
a(t0)

for an arbitrary time t. Write an expression for the total mass density of the
universe ρ(t) in terms of x(t) and the given quantities described above.

(b) (7 points) Write an integral expression for the age of the universe t0. The
expression should depend only on H0 and the various contributions to Ω0 listed
above (Ωm,0 , Ωr,0 , etc.), but it might include x as a variable of integration.

Extra Credit for Super-Sharpies (no partial credit): For 5 points extra credit, you
can calculate the angular diameter ∆θ of the image of a spherical object at
redshift z which had a physical diameter w at the time of emission. You should
assume that Ωtot < 1, and also that ∆θ 	 1. The calculation is to be carried
out for the same model universe described above.
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PROBLEM 8: TIME SCALES IN COSMOLOGY

In this problem you are asked to give the approximate times at which various
important events in the history of the universe are believed to have taken place.
The times are measured from the instant of the big bang. To avoid ambiguities,
you are asked to choose the best answer from the following list:

10−43 sec.
10−37 sec.
10−12 sec.
10−5 sec.
1 sec.
4 mins.
10,000 – 1,000,000 years.
2 billion years.
5 billion years.
10 billion years.
13 billion years.
20 billion years.

For this problem it will be sufficient to state an answer from memory, without
explanation. The events which must be placed are the following:

(a) the beginning of the processes involved in big bang nucleosynthesis;

(b) the end of the processes involved in big bang nucleosynthesis;

(c) the time of the phase transition predicted by grand unified theories, which
takes place when kT ≈ 1016 GeV;

(d) “recombination”, the time at which the matter in the universe converted
from a plasma to a gas of neutral atoms;

(e) the phase transition at which the quarks became confined, believed to
occur when kT ≈ 300 MeV.

Since cosmology is fraught with uncertainty, in some cases more than one an-
swer will be acceptable. You are asked, however, to give ONLY ONE of the
acceptable answers.

∗PROBLEM 9: EVOLUTION OF FLATNESS (15 points)

The following problem was Problem 3, Quiz 3, 2004.

The “flatness problem” is related to the fact that during the evolution of the
standard cosmological model, Ω is always driven away from 1.
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(a) (9 points) During a period in which the universe is matter-dominated (meaning
that the only relevant component is nonrelativistic matter), the quantity

Ω− 1
Ω

grows as a power of t. Show that this is true, and derive the power. (Stating
the right power without a derivation will be worth 3 points.)

(b) (6 points) During a period in which the universe is radiation-dominated, the
same quantity will grow like a different power of t. Show that this is true, and
derive the power. (Stating the right power without a derivation will again be
worth 3 points.)

In each part, you may assume that the universe was always dominated by the
specified form of matter.

∗PROBLEM 10: THE SLOAN DIGITAL SKY SURVEY z = 5.82
QUASAR (40 points)

The following problem was Problem 4, Quiz 3, 2004.

On April 13, 2000, the Sloan Digital Sky Survey announced the discovery of
what was then the most distant object known in the universe: a quasar at z = 5.82.
To explain to the public how this object fits into the universe, the SDSS posted on
their website an article by Michael Turner and Craig Wiegert titled “How Can An
Object We See Today be 27 Billion Light Years Away If the Universe is only 14
Billion Years Old?” Using a model with H0 = 65 km-s−1-Mpc−1, Ωm = 0.35, and
ΩΛ = 0.65, they claimed

(a) that the age of the universe is 13.9 billion years.

(b) that the light that we now see was emitted when the universe was 0.95 billion
years old.

(c) that the distance to the quasar, as it would be measured by a ruler today, is
27 billion light-years.

(d) that the distance to the quasar, at the time the light was emitted, was 4.0
billion light-years.

(e) that the present speed of the quasar, defined as the rate at which the distance
between us and the quasar is increasing, is 1.8 times the velocity of light.

The goal of this problem is to check all of these conclusions, although you are
of course not expected to actually work out the numbers. Your answers can be
expressed in terms of H0, Ωm, ΩΛ, and z. Definite integrals need not be evaluated.
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Note that Ωm represents the present density of nonrelativistic matter, expressed
as a fraction of the critical density; and ΩΛ represents the present density of vacuum
energy, expressed as a fraction of the critical density. In answering each of the
following questions, you may consider the answer to any previous part — whether
you answered it or not — as a given piece of information, which can be used in your
answer.

(a) (15 points) Write an expression for the age t0 of this model universe?

(b) (5 points) Write an expression for the time te at which the light which we now
receive from the distant quasar was emitted.

(c) (10 points) Write an expression for the present physical distance phys,0 to the
quasar.

(d) (5 points) Write an expression for the physical distance phys,e between us and
the quasar at the time that the light was emitted.

(e) (5 points) Write an expression for the present speed of the quasar, defined as
the rate at which the distance between us and the quasar is increasing.

∗PROBLEM 11: NEUTRINO NUMBER AND THE NEUTRON/
PROTON EQUILIBRIUM (35 points)

The following problem was 1998 Quiz 4, Problem 4.

In the standard treatment of big bang nucleosynthesis it is assumed that at
early times the ratio of neutrons to protons is given by the Boltzmann formula,

nn

np
= e−∆E/kT , (1)

where k is Boltzmann’s constant, T is the temperature, and ∆E = 1.29 MeV is
the proton-neutron mass-energy difference. This formula is believed to be very
accurate, but it assumes that the chemical potential for neutrons µn is the same as
the chemical potential for protons µp.

(a) (10 points) Give the correct version of Eq. (1), allowing for the possibility that
µn �= µp.

The equilibrium between protons and neutrons in the early universe is sustained
mainly by the following reactions:

e+ + n←→ p+ ν̄e

νe + n←→ p+ e− .
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Let µe and µν denote the chemical potentials for the electrons (e−) and the electron
neutrinos (νe) respectively. The chemical potentials for the positrons (e+) and the
anti-electron neutrinos (ν̄e) are then –µe and –µν , respectively, since the chemi-
cal potential of a particle is always the negative of the chemical potential for the
antiparticle.*

(b) (10 points) Express the neutron/proton chemical potential difference µn − µp

in terms of µe and µν .

The black-body radiation formulas at the beginning of the quiz did not allow for the
possibility of a chemical potential, but they can easily be generalized. For example,
the formula for the number density ni (of particles of type i) becomes

ni = g∗i
ζ(3)
π2

(kT )3

(h̄c)3
eµi/kT .

(c) (10 points) Suppose that the density of anti-electron neutrinos n̄ν in the early
universe was higher than the density of electron neutrinos nν . Express the
thermal equilibrium value of the ratio nn/np in terms of ∆E, T , and either the
ratio n̄ν/nν or the antineutrino excess ∆n = n̄ν − nν . (Your answer may also
contain fundamental constants, such as k, h̄, and c.)

(d) (5 points)Would an excess of anti-electron neutrinos, as considered in part (c),
increase or decrease the amount of helium that would be produced in the early
universe? Explain your answer.

PROBLEM 12: SECOND HUBBLE CROSSING (40 points)

This problem was Problem 3, Quiz 3, 2007. In 2009 we have not yet talked about
Hubble crossings and the evolution of density perturbations, so this problem would
not be fair as worded. Actually, however, you have learned how to do these calcu-
lations, so the problem would be fair if it described in more detail what needs to be
calculated.

In Problem Set 9 we calculated the time tH1(λ) of the first Hubble crossing for
a mode specified by its (physical) wavelength λ at the present time. In this problem
we will calculate the time tH2(λ) of the second Hubble crossing, the time at which
the growing Hubble length cH−1(t) catches up to the physical wavelength, which
is also growing. At the time of the second Hubble crossing for the wavelengths of

* This fact is a consequence of the principle that the chemical potential of a
particle is the sum of the chemical potentials associated with its conserved quanti-
ties, while particle and antiparticle always have the opposite values of all conserved
quantities.
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interest, the universe can be described very simply: it is a radiation-dominated flat
universe. However, since λ is defined as the present value of the wavelength, the
evolution of the universe between tH2(λ) and the present will also be relevant to the
problem. We will need to use methods, therefore, that allow for both the matter-
dominated era and the onset of the dark-energy-dominated era. As in Problem Set
9, the model universe that we consider will be described by the WMAP 3-year best
fit parameters:

Hubble expansion rate H0 = 73.5 km · s−1 ·Mpc−1

Nonrelativistic mass density Ωm = 0.237
Vacuum mass density Ωvac = 0.763
CMB temperature Tγ,0 = 2.725 K

The mass densities are defined as contributions to Ω, and hence describe the mass
density of each constituent relative to the critical density. Note that the model
is exactly flat, so you need not worry about spatial curvature. Here you are not
expected to give a numerical answer, so the above list will serve only to define the
symbols that can appear in your answers, along with λ and the physical constants
G, h̄, c, and k.

(a) (5 points) For a radiation-dominated flat universe, what is the Hubble length
H(t) ≡ cH−1(t) as a function of time t?

(b) (10 points) The second Hubble crossing will occur during the interval

30 sec	 t	 50, 000 years,

when the mass density of the universe is dominated by photons and neutrinos.
During this era the neutrinos are a little colder than the photons, with Tν =
(4/11)1/3Tγ . The total energy density of the photons and neutrinos together
can be written as

utot = g1
π2

30
(kTγ)4

(h̄c)3
.

What is the value of g1? (For the following parts you can treat g1 as a given
variable that can be left in your answers, whether or not you found it.)

(c) (10 points) For times in the range described in part (b), what is the photon
temperature Tγ(t) as a function of t?

(d) (15 points) Finally, we are ready to find the time tH2(λ) of the second Hubble
crossing, for a given value of the physical wavelength λ today. Making use of
the previous results, you should be able to determine tH2(λ). If you were not
able to answer some of the previous parts, you may leave the symbols H(t),
g1, and/or Tγ(t) in your answer.



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009 p. 19

SOLUTIONS

PROBLEM 1: DID YOU DO THE READING? (25 points)

The following parts are each worth 5 points.

(a) (CMB basic facts) Which one of the following statements about CMB is not
correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean tem-
perature averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean

square temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of
the observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measure-
ment of an excess temperature of about 3.5 K that was isotropic, unpolar-
ized, and free from seasonal variations. In a companion paper written by
Dicke, Peebles, Roll and Wilkinson, the authors interpreted the radiation
to be a relic of an early, hot, dense, and opaque state of the universe.

Explanation: After subtracting the dipole contribution, the temperature
fluctuation is about 1.1× 10−5.

(b) (CMB experiments) The current mean energy per CMB photon, about 6 ×
10−4 eV, is comparable to the energy of vibration or rotation for a small
molecule such as H2O. Thus microwaves with wavelengths shorter than
λ ∼ 3 cm are strongly absorbed by water molecules in the atmosphere. To
measure the CMB at λ < 3 cm, which one of the following methods is not a
feasible solution to this problem?

(i) Measure CMB from high-altitude balloons, e.g. MAXIMA.

(ii) Measure CMB from the South Pole, e.g. DASI.

(iii) Measure CMB from the North Pole, e.g. BOOMERANG.

(iv) Measure CMB from a satellite above the atmosphere of the Earth, e.g.
COBE, WMAP and PLANCK.

Explanation: The North Pole is at sea level. In contrast, the South Pole
is nearly 3 kilometers above sea level. BOOMERANG is a balloon-borne
experiment launched from Antarctica.
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(c) (Temperature fluctuations) The creation of temperature fluctuations in CMB
by variations in the gravitational potential is known as the Sachs-Wolfe effect.
Which one of the following statements is not correct concerning this effect?

(i) A CMB photon is redshifted when climbing out of a gravitational potential
well, and is blueshifted when falling down a potential hill.

(ii) At the time of last scattering, the nonbaryonic dark matter dominated the
energy density, and hence the gravitational potential, of the universe.

(iii) The large-scale fluctuations in CMB temperatures arise from the grav-
itational effect of primordial density fluctuations in the distribution of
nonbaryonic dark matter.

(iv) The peaks in the plot of temperature fluctuation ∆T vs. multipole l are
due to variations in the density of nonbaryonic dark matter, while the
contributions from baryons alone would not show such peaks.

Explanation: These peaks are due to the acoustic oscillations in the photon-
baryon fluid.

(d) (Dark matter candidates) Which one of the following is not a candidate of
nonbaryonic dark matter?

(i) massive neutrinos

(ii) axions

(iii) matter made of top quarks (a type of quarks with heavy mass of about
171 GeV).

(iv) WIMPs (Weakly Interacting Massive Particles)

(v) primordial black holes

Explanation: Matter made of top quarks is so unstable that it is seen only
fleetingly as a product in high energy particle collisions.

(e) (Signatures of dark matter) By what methods can signatures of dark matter
be detected? List two methods. (Grading: 3 points for one correct answer,
5 points for two correct answers. If you give more than two answers, your
score will be based on the number of right answers minus the number of wrong
answers, with a lower bound of zero.)

Answers:

(i) Galaxy rotation curves. (I.e., measurements of the orbital speed of stars
in spiral galaxies as a function of radius R show that these curves remain
flat at radii far beyond the visible stellar disk. If most of the matter were
contained in the disk, then these velocities should fall off as 1/

√
R.)
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(ii) Use the virial theorem to estimate the mass of a galaxy cluster. (For
example, the virial analysis shows that only 2% of the mass of the Coma
cluster consists of stars, and only 10% consists of hot intracluster gas.

(iii) Gravitational lensing. (For example, the mass of a cluster can be estimated
from the distortion of the shapes of the galaxies behind the cluster.)

(iv) CMB temperature fluctuations. (I.e., the analysis of the intensity of the
fluctuations as a function of multipole number shows that Ωtot ≈ 1, and
that dark energy contributes ΩΛ ≈ 0.7, baryonic matter contributes Ωbary ≈
0.04, and dark matter contributes Ωdark matter ≈ 0.26.)

There are other possible answers as well, but these are the ones discussed by
Ryden in Chapters 8 and 9.

PROBLEM 2: PRESSURE AND ENERGY DENSITY OF
MYSTERIOUS STUFF

(a) If u ∝ 1/
√
V , then one can write

u(V +∆V ) = u0

√
V

V +∆V
.

(The above expression is proportional to 1/
√
V +∆V , and reduces to u = u0

when ∆V = 0.) Expanding to first order in ∆V ,

u =
u0√

1 + ∆V
V

=
u0

1 + 1
2
∆V
V

= u0

(
1− 1

2
∆V
V

)
.

The total energy is the energy density times the volume, so

U = u(V +∆V ) = u0

(
1− 1

2
∆V
V

)
V

(
1 +

∆V
V

)
= U0

(
1 +

1
2
∆V
V

)
,

where U0 = u0V . Then

∆U =
1
2
∆V
V

U0 .

(b) The work done by the agent must be the negative of the work done by the gas,
which is p∆V . So

∆W = −p∆V .
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(c) The agent must supply the full change in energy, so

∆W = ∆U =
1
2
∆V
V

U0 .

Combining this with the expression for ∆W from part (b), one sees immediately
that

p = −1
2
U0

V
= − 1

2
u0 .

PROBLEM 3: NUMBER DENSITIES IN THE COSMIC BACK-
GROUND RADIATION

In general, the number density of a particle in the black-body radiation is given
by

n = g∗
ξ(3)
π2

(
kT

h̄c

)3

For photons, one has g∗ = 2. Then

k = 1.381× 10−16erg/◦K

T = 2.7 ◦K

h̄ = 1.055× 10−27erg-sec

c = 2.998× 1010cm/sec




=⇒
(
kT

h̄c

)3

= 1.638× 103cm−3 .

Then using ξ(3) � 1.202, one finds

nγ = 399/cm3 .

For the neutrinos,

g∗ν = 2× 3
4
=

3
2

per species.

The factor of 2 is to account for ν and ν̄, and the factor of 3/4 arises from the
Pauli exclusion principle. So for three species of neutrinos one has

g∗ν =
9
2
.

Using the result

T 3
ν =

4
11
T 3

γ
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from Problem 8 of Problem Set 3 (2000), one finds

nν =
(
g∗ν
g∗γ

)(
Tν

Tγ

)3

nγ

=
(
9
4

)(
4
11

)
399cm−3

=⇒ nν = 326/cm3 (for all three species combined).

PROBLEM 4: PROPERTIES OF BLACK-BODY RADIATION

(a) The average energy per photon is found by dividing the energy density by the
number density. The photon is a boson with two spin states, so g = g∗ = 2.
Using the formulas on the front of the exam,

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
π4

30ζ(3)
kT .

You were not expected to evaluate this numerically, but it is interesting to
know that

E = 2.701 kT .

Note that the average energy per photon is significantly more than kT , which
is often used as a rough estimate.

(b) The method is the same as above, except this time we use the formula for the
entropy density:

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
2π4

45ζ(3)
k .
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Numerically, this gives 3.602 k, where k is the Boltzmann constant.

(c) In this case we would have g = g∗ = 1. The average energy per particle and
the average entropy particle depends only on the ratio g/g∗, so there would be
no difference from the answers given in parts (a) and (b).

(d) For a fermion, g is 7/8 times the number of spin states, and g∗ is 3/4 times the
number of spin states. So the average energy per particle is

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
π2

30
(kT )4

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

180ζ(3)
kT .

Numerically, E = 3.1514 kT .

Warning: the Mathematician General has determined
that the memorization of this number may adversely
affect your ability to remember the value of π.

If one takes into account both neutrinos and antineutrinos, the average energy
per particle is unaffected — the energy density and the total number density
are both doubled, but their ratio is unchanged.

Note that the energy per particle is higher for fermions than it is for bosons.
This result can be understood as a natural consequence of the fact that fermions
must obey the exclusion principle, while bosons do not. Large numbers of
bosons can therefore collect in the lowest energy levels. In fermion systems,
on the other hand, the low-lying levels can accommodate at most one particle,
and then additional particles are forced to higher energy levels.
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(e) The values of g and g∗ are again 7/8 and 3/4 respectively, so

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
2π2

45
k4T 3

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

135ζ(3)
k .

Numerically, this gives S = 4.202 k.

PROBLEM 5: A NEW SPECIES OF LEPTON

a) The number density is given by the formula at the start of the exam,

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
.

Since the 8.286ion is like the electron, it has g∗ = 3; there are 2 spin states
for the particles and 2 for the antiparticles, giving 4, and then a factor of 3/4
because the particles are fermions. So

Then

Answer = 3
ζ(3)
π2
×
(

3× 106 × 102

6.582× 10−16 × 2.998× 1010

)3

.
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You were not asked to evaluate this expression, but the answer is 1.29× 1039.

b) For a flat cosmology κ = 0 and one of the Einstein equations becomes

(
ȧ

a

)2

=
8π
3
Gρ .

During the radiation-dominated era a(t) ∝ t1/2, as claimed on the front cover
of the exam. So,

ȧ

a
=

1
2t

.

Using this in the above equation gives

1
4t2

=
8π
3
Gρ .

Solve this for ρ,

ρ =
3

32πGt2
.

The question asks the value of ρ at t = 0.01 sec. With G = 6.6732 ×
10−8 cm3 sec−2 g−1, then

ρ =
3

32π × 6.6732× 10−8 × (0.01)2

in units of g/cm3. You weren’t asked to put the numbers in, but, for reference,
doing so gives ρ = 4.47× 109 g/cm3.

c) The mass density ρ = u/c2, where u is the energy density. The energy density
for black-body radiation is given in the exam,

u = ρc2 = g
π2

30
(kT )4

(h̄c)3
.

We can use this information to solve for kT in terms of ρ(t) which we found
above in part (b). At a time of 0.01 sec, g has the following contributions:

Photons: g = 2

e+e−: g = 4× 7
8 = 3 12

νe, νµ, ντ : g = 6× 7
8 = 5 14

8.286ion− anti8.286ion g = 4× 7
8 = 3 12
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gtot = 14
1
4

.

Solving for kT in terms of ρ gives

kT =
[
30
π2

1
gtot

h̄3c5ρ

]1/4

.

Using the result for ρ from part (b) as well as the list of fundamental constants
from the cover sheet of the exam gives

kT =
[
90× (1.055× 10−27)3 × (2.998× 1010)5

14.24× 32π3 × 6.6732× 10−8 × (0.01)2

]1/4

× 1
1.602× 10−6

where the answer is given in units of MeV. Putting in the numbers yields
kT = 8.02 MeV.

d) The production of helium is increased. At any given temperature, the addi-
tional particle increases the energy density. Since H ∝ ρ1/2, the increased
energy density speeds the expansion of the universe— the Hubble constant at
any given temperature is higher if the additional particle exists, and the tem-
perature falls faster. The weak interactions that interconvert protons and neu-
trons “freeze out” when they can no longer keep up with the rate of evolution
of the universe. The reaction rates at a given temperature will be unaffected
by the additional particle, but the higher value of H will mean that the tem-
perature at which these rates can no longer keep pace with the universe will
occur sooner. The freeze-out will therefore occur at a higher temperature. The
equilibrium value of the ratio of neutron to proton densities is larger at higher
temperatures: nn/np ∝ exp(−∆mc2/kT ), where nn and np are the number
densities of neutrons and protons, and ∆m is the neutron-proton mass differ-
ence. Consequently, there are more neutrons present to combine with protons
to build helium nuclei. In addition, the faster evolution rate implies that the
temperature at which the deuterium bottleneck breaks is reached sooner. This
implies that fewer neutrons will have a chance to decay, further increasing the
helium production.

e) After the neutrinos decouple, the entropy in the neutrino bath is conserved
separately from the entropy in the rest of the radiation bath. Just after neu-
trino decoupling, all of the particles in equilibrium are described by the same
temperature which cools as T ∝ 1/a. The entropy in the bath of particles still
in equilibrium just after the neutrinos decouple is

S ∝ grestT
3(t)a3(t)
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where grest = gtot − gν = 9. By today, the e+ − e− pairs and the 8.286ion-
anti8.286ion pairs have annihilated, thus transferring their entropy to the pho-
ton bath. As a result the temperature of the photon bath is increased relative
to that of the neutrino bath. From conservation of entropy we have that the
entropy after annihilations is equal to the entropy before annihilations

gγT
3
γ a

3(t) = grestT
3(t)a3(t) .

So,
Tγ

T (t)
=
(
grest
gγ

)1/3

.

Since the neutrino temperature was equal to the temperature before annihila-
tions, we have that

Tν

Tγ
=
(
2
9

)1/3

.

PROBLEM 6: PRESSURE AND ENERGY DENSITY OF MYSTERI-
OUS STUFF

(a) If u ∝ 1/
√
V , then one can write

u(V +∆V ) = u0

√
V

V +∆V
.

(The above expression is proportional to 1/
√
V +∆V , and reduces to u = u0

when ∆V = 0.) Expanding to first order in ∆V ,

u =
u0√

1 + ∆V
V

=
u0

1 + 1
2
∆V
V

= u0

(
1− 1

2
∆V
V

)
.

The total energy is the energy density times the volume, so

U = u(V +∆V ) = u0

(
1− 1

2
∆V
V

)
V

(
1 +

∆V
V

)
= U0

(
1 +

1
2
∆V
V

)
,

where U0 = u0V . Then

∆U =
1
2
∆V
V

U0 .
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(b) The work done by the agent must be the negative of the work done by the gas,
which is p∆V . So

∆W = −p∆V .

(c) The agent must supply the full change in energy, so

∆W = ∆U =
1
2
∆V
V

U0 .

Combining this with the expression for ∆W from part (b), one sees immediately
that

p = −1
2
U0

V
= − 1

2
u0 .

PROBLEM 7: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF

(a) The critical density ρc is defined as that density for which k = 0, where the
Friedmann equation from the front of the exam implies that

H2 =
8π
3
Gρ− kc2

a2
.

Thus the critical density today is given by

ρc =
3H2

0

8πG
.

The mass density today of any species X is then related to ΩX,0 by

ρX,0 = ρcΩX,0 =
3H2

0ΩX,0

8πG
.

The total mass density today is then expressed in terms of its four components
as

ρ0 =
3H2

0

8πG
[Ωm,0 + Ωr,0 + Ωv,0 +Ωms,0] .

But we also know how each of these contributions to the mass density scales
with x(t): ρm ∝ 1/x3, ρr ∝ 1/x4, ρv ∝ 1, and ρms ∝ 1/

√
V ∝ 1/x3/2. Inserting

these factors,

ρ(t) =
3H2

0

8πG

[
Ωm,0

x3
+

Ωr,0

x4
+Ωv,0 +

Ωms,0

x3/2

]
.
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(b) The Friedmann equation then becomes

(
ẋ

x

)2

=
8πG
3

3H2
0

8πG

[
Ωm,0

x3
+

Ωr,0

x4
+ Ωv,0 +

Ωms,0

x3/2

]
− kc2

a2
.

Defining

H2
0Ωk,0 = − kc2

a2(t0)
,

so

− kc2

a2(t)
= − kc2

a2(t0)
1
x2

=
H2

0Ωk,0

x2
,

and then the Friedmann equation becomes

(
ẋ

x

)2

= H2
0

[
Ωm,0

x3
+

Ωr,0

x4
+Ωv,0 +

Ωms,0

x3/2
+

Ωk,0

x2

]
.

Applying this equation today, when ẋ/x = H0, one finds that

Ωk,0 = 1− Ωm,0 − Ωr,0 − Ωv,0 − Ωms,0 .

Rearranging the equation for (ẋ/x)2 above,

H0 dt =
dx

x
√

Ωm,0
x3 + Ωr,0

x4 +Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

.

The age of the universe is found by integrating over the full range of x, which
starts from 0 when the universe is born, and is equal to 1 today. So

t0 =
1
H0

∫ 1

0

dx

x
√

Ωm,0
x3 + Ωr,0

x4 + Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

.

Extra Credit for Super-Sharpies (no partial credit):

Since Ωtot < 1, we use the Robertson-Walker open universe form

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{

dr2

1 + r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,
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where I have started with the general form from the front of the exam, and
replaced k by −1. To discuss the radial transmission of light rays it is useful
to define a new radial coordinate

r = sinhψ ,

so
dr = coshψ dψ =

√
1 + r2 dψ ,

where I used the identity that cosh2 ψ = 1 + sinh2 ψ. The metric can then be
rewritten as

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{
dψ2 + sinh2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

Light rays then travel with dτ2 = 0, so

dψ
dt

=
c

a(t)
.

If a light ray leaves the object at time te and arrives at Earth today, then it
will travel an interval of ψ given by

ψ =
∫ t0

te

c

a(t′)
dt′ .

We will need to know ψ, but we don’t know either te or a(t). So we need to
manipulate the right-hand side of the above equation to express it in terms of
things that we do know. Changing integration variables from t′ to x, where
x = a(t′)/a(t0), one finds dx = ẋdt′, and then

ψ =
∫ 1

xe

c

a(t0)
1
x

dx
ẋ

.

Using H = ẋ/x,

ψ =
c

a(t0)

∫ 1

xe

dx
x2H

.

Now use the formula for H = ẋ/x from part (b), so

ψ =
c

a(t0)H0

∫ 1

xe

dx

x2
√

Ωm,0
x3 + Ωr,0

x4 +Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

.



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009 p. 32

Here

xe =
a(te)
a(t0)

=
1

1 + z
,

and the coefficient in front of the integral can be evaluated using the Friedman
equation for k = −1:

H2
0 =

8π
3
Gρ0 +

c2

a2(t0)
= H2

0Ω0 +
c2

a2(t0)
,

so
c2

a2(t0)H2
0

= 1−Ω0 = Ωk,0 .

Finally, then, the expression for ψ can be written

ψ =
√
Ωk,0

∫ 1

xe

dx

x2
√

Ωm,0
x3 + Ωr,0

x4 +Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

,

where xe is given by the boxed equation above.

Once we know ψ, the rest is straightforward. We draw a picture in comoving
coordinates of the light rays leaving the object and arriving at Earth:

In this picture ∆θ is the angular size that would be measured. Using the dθ2

part of the metric,
ds2 = a2(t) sinh2 ψ dθ2 ,

we can relate w, the physical size of the object at the time of emission, to ∆θ:

w = a(te) sinhψ∆θ .
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To evaluate a(te) we can use

a(te) = xea(t0) =
xec

H0

√
Ωk,0

.

Finally, then,

∆θ =
wH0

√
Ωk,0

xec sinhψ
,

where ψ is given by the boxed equation above.

PROBLEM 8: TIME SCALES IN COSMOLOGY

(a) 1 sec. [This is the time at which the weak interactions begin to “freeze out”,
so that free neutron decay becomes the only mechanism that can interchange
protons and neutrons. From this time onward, the relative number of protons
and neutrons is no longer controlled by thermal equilibrium considerations.]

(b) 4 mins. [By this time the universe has become so cool that nuclear reactions
are no longer initiated.]

(c) 10−37 sec. [We learned in Lecture Notes 7 that kT was about 1 MeV at t = 1
sec. Since 1 GeV = 1000 MeV, the value of kT that we want is 1019 times
higher. In the radiation-dominated era T ∝ a−1 ∝ t−1/2, so we get 10−38 sec.]

(d) 10,000 – 1,000,000 years. [This number was estimated in Lecture Notes 7 as
200,000 years.]

(e) 10−5 sec. [As in (c), we can use t ∝ T−2, with kT ≈ 1 MeV at t = 1 sec.]

PROBLEM 9: EVOLUTION OF FLATNESS (15 points)

(a) We start with the Friedmann equation from the formula sheet on the quiz:

H2 =
(
ȧ

a

)2

=
8π
3
Gρ− kc2

a2
.

The critical density is the value of ρ corresponding to k = 0, so

H2 =
8π
3
Gρc .

Using this expression to replace H2 on the left-hand side of the Friedmann
equation, and then dividing by 8πG/3, one finds

ρc = ρ− 3kc2

8πGa2
.
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Rearranging,
ρ− ρc

ρ
=

3kc2

8πGa2ρ
.

On the left-hand side we can divide the numerator and denominator by ρc, and
then use the definition Ω ≡ ρ/ρc to obtain

Ω− 1
Ω

=
3kc2

8πGa2ρ
. (1)

For a matter-dominated universe we know that ρ ∝ 1/a3(t), and so

Ω− 1
Ω
∝ a(t) .

If the universe is nearly flat we know that a(t) ∝ t2/3, so

Ω− 1
Ω
∝ t2/3 .

(b) Eq. (1) above is still true, so our only task is to re-evaluate the right-hand side.
For a radiation-dominated universe we know that ρ ∝ 1/a4(t), so

Ω− 1
Ω
∝ a2(t) .

If the universe is nearly flat then a(t) ∝ t1/2, so

Ω− 1
Ω
∝ t .

PROBLEM 10: THE SLOAN DIGITAL SKY SURVEY z = 5.82
QUASAR (40 points)

(a) Since Ωm + ΩΛ = 0.35 + 0.65 = 1, the universe is flat. It therefore obeys a
simple form of the Friedmann equation,

H2 =
(
ȧ

a

)2

=
8π
3
G(ρm + ρΛ) ,
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where the overdot indicates a derivative with respect to t, and the term pro-
portional to k has been dropped. Using the fact that ρm ∝ 1/a3(t) and ρΛ =
const, the energy densities on the right-hand side can be expressed in terms of
their present values ρm,0 and ρΛ ≡ ρΛ,0. Defining

x(t) ≡ a(t)
a(t0)

,

one has (
ẋ

x

)2

=
8π
3
G
(ρm,0

x3
+ ρΛ

)

=
8π
3
Gρc,0

(
Ωm,0

x3
+ΩΛ,0

)

= H2
0

(
Ωm,0

x3
+ ΩΛ,0

)
.

Here we used the facts that

Ωm,0 ≡ ρm,0

ρc,0
; ΩΛ,0 ≡ ρΛ

ρc,0
,

and
H2

0 =
8π
3
Gρc,0 .

The equation above for (ẋ/x)2 implies that

ẋ = H0 x

√
Ωm,0

x3
+ ΩΛ,0 ,

which in turn implies that

dt =
1
H0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.

Using the fact that x changes from 0 to 1 over the life of the universe, this
relation can be integrated to give

t0 =
∫ t0

0

dt =
1
H0

∫ 1

0

dx

x
√

Ωm,0
x3 +ΩΛ,0

.
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The answer can also be written as

t0 =
1
H0

∫ 1

0

x dx√
Ωm,0x+ΩΛ,0x4

or

t0 =
1
H0

∫ ∞

0

dz
(1 + z)

√
Ωm,0(1 + z)3 +ΩΛ,0

,

where in the last answer I changed the variable of integration using

x =
1

1 + z
; dx = − dz

(1 + z)2
.

Note that the minus sign in the expression for dx is canceled by the interchange
of the limits of integration: x = 0 corresponds to z =∞, and x = 1 corresponds
to z = 0.

Your answer should look like one of the above boxed answers. You were not
expected to complete the numerical calculation, but for pedagogical purposes
I will continue. The integral can actually be carried out analytically, giving

∫ 1

0

x dx√
Ωm,0x+ΩΛ,0x4

=
2

3
√
ΩΛ,0

ln

(√
Ωm + ΩΛ,0 +

√
ΩΛ,0√

Ωm

)
.

Using
1
H0

=
9.778× 109

h0
yr ,

where H0 = 100h0 km-sec−1-Mpc−1, one finds for h0 = 0.65 that

1
H0

= 15.043× 109 yr .

Then using Ωm = 0.35 and ΩΛ,0 = 0.65, one finds

t0 = 13.88× 109 yr .

So the SDSS people were right on target.
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(b) Having done part (a), this part is very easy. The dynamics of the universe is
of course the same, and the question is only slightly different. In part (a) we
found the amount of time that it took for x to change from 0 to 1. The light
from the quasar that we now receive was emitted when

x =
1

1 + z
,

since the cosmological redshift is given by

1 + z =
a(tobserved)
a(temitted)

.

Using the expression for dt from part (a), the amount of time that it took the
universe to expand from x = 0 to x = 1/(1 + z) is given by

te =
∫ te

0

dt =
1
H0

∫ 1/(1+z)

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.

Again one could write the answer other ways, including

t0 =
1
H0

∫ ∞

z

dz′

(1 + z′)
√
Ωm,0(1 + z′)3 + ΩΛ,0

.

Again you were expected to stop with an expression like the one above. Con-
tinuing, however, the integral can again be done analytically:

∫ xmax

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

=
2

3
√

ΩΛ,0

ln

(√
Ωm +ΩΛ,0x3max +

√
ΩΛ,0 x

3/2
max√

Ωm

)
.

Using xmax = 1/(1 + 5.82) = .1466 and the other values as before, one finds

te =
0.06321
H0

= 0.9509× 109 yr .

So again the SDSS people were right.
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(c) To find the physical distance to the quasar, we need to figure out how far light
can travel from z = 5.82 to the present. Since we want the present distance,
we multiply the coordinate distance by a(t0). For the flat metric

ds2 = −c2 dτ2 = −c2dt2 + a2(t)
{
dr2 + r2(dθ2 + sin2 θ dφ2)

}
,

the coordinate velocity of light (in the radial direction) is found by setting
ds2 = 0, giving

dr
dt

=
c

a(t)
.

So the total coordinate distance that light can travel from te to t0 is

c =
∫ t0

te

c

a(t)
dt .

This is not the final answer, however, because we don’t explicitly know a(t).
We can, however, change variables of integration from t to x, using

dt =
dt
dx

dx =
dx
ẋ

.

So

c =
c

a(t0)

∫ 1

xe

dx
x ẋ

,

where xe is the value of x at the time of emission, so xe = 1/(1+ z). Using the
equation for ẋ from part (a), this integral can be rewritten as

c =
c

H0a(t0)

∫ 1

1/(1+z)

dx

x2
√

Ωm,0
x3 + ΩΛ,0

.

Finally, then

phys,0 = a(t0) c =
c

H0

∫ 1

1/(1+z)

dx

x2
√

Ωm,0
x3 +ΩΛ,0

.

Alternatively, this result can be written as

phys,0 =
c

H0

∫ 1

1/(1+z)

dx√
Ωm,0 x+ΩΛ,0 x4

,



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009 p. 39

or by changing variables of integration to obtain

phys,0 =
c

H0

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Continuing for pedagogical purposes, this time the integral has no analytic
form, so far as I know. Integrating numerically,∫ 5.82

0

dz′√
0.35 (1 + z′)3 + 0.65

= 1.8099 ,

and then using the value of 1/H0 from part (a),

phys,0 = 27.23 light-yr .

Right again.

(d) phys,e = a(te)c, so

phys,e =
a(te)
a(t0)

phys,0 =
phys,0
1 + z

.

Numerically this gives

phys,e = 3.992× 109 light-yr .

The SDSS announcement is still okay.

(e) The speed defined in this way obeys the Hubble law exactly, so

v = H0 phys,0 = c

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Then

v

c
=
∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Numerically, we have already found that this integral has the value

v

c
= 1.8099 .

The SDSS people get an A.
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PROBLEM 11: NEUTRINO NUMBER AND THE NEUTRON/PRO-
TON EQUILIBRIUM

(a) From the chemical equilibrium equation on the front of the exam, the number
densities of neutrons and protons can be written as

nn = gn
(2πmnkT )3/2

(2πh̄)3
e(µn−mnc2)/kT

np = gp
(2πmpkT )3/2

(2πh̄)3
e(µp−mpc2)/kT ,

where gn = gp = 2. Dividing,

nn

np
=
(
mn

mp

)3/2

e−(∆E+µp−µn)/kT ,

where ∆E = (mn −mp)c2 is the proton-neutron mass-energy difference. Ap-
proximating mn/mp ≈ 1, one has

nn

np
= e−(∆E+µp−µn)/kT .

The approximation mn/mp ≈ 1 is very accurate (0.14%), but is clearly not
necessary. Full credit was given whether or not this approximation was used.

(b) For any allowed chemical reaction, the sum of the chemical potentials on the
two sides must be equal. So, from

e+ + n←→ p+ ν̄e ,

we can infer that
−µe + µn = µp − µν ,

which implies that

µn − µp = µe − µν .

(c) Applying the formula given in the problem to the number densities of electron
neutrinos and the corresponding antineutrinos,

nν = g∗ν
ζ(3)
π2

(kT )3

(h̄c)3
eµν/kT

n̄ν = g∗ν
ζ(3)
π2

(kT )3

(h̄c)3
e−µν/kT ,
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since the chemical potential for the antineutrinos (ν̄) is the negative of the
chemical potential for neutrinos. A neutrino has only one spin state, so gν =
3/4, where the factor of 3/4 arises because neutrinos are fermions. Setting

x ≡ e−µν/kT

and

A ≡ 3
4
ζ(3)
π2

(kT )3

(h̄c)3
,

the number density equations can be written compactly as

nν =
A

x
, n̄ν = xA .

To express x in terms of the ratio n̄ν/nν , divide the second equation by the
first to obtain

n̄ν

nν
= x2 =⇒ x =

√
n̄ν

nν
.

Alternatively, x can be expressed in terms of the difference in number densities
n̄ν − nν by starting with

∆n = n̄ν − nν = xA− A

x
.

Rewriting the above formula as an explicit quadratic,

Ax2 −∆nx− A = 0 ,

one finds

x =
∆n±√∆n2 + 4A2

2A
.

Since the definition of x implies x > 0, only the positive root is relevant. Since
the number of electrons is still assumed to be equal to the number of positrons,
µe = 0, so the answer to (b) reduces to µn − µp = −µν . From (a),

nn

np
= e−(∆E+µp−µn)/kT

= e−(∆E+µν )/kT

= xe−∆E/kT

=
√
n̄ν

nν
e−∆E/kT .
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Alternatively, one can write the answer as

nn

np
=
√
∆n2 + 4A2 +∆n

2A
e−∆E/kT ,

where

A ≡ 3
4
ζ(3)
π2

(kT )3

(h̄c)3
.

(d) For ∆n > 0, the answer to (c) implies that the ratio nn/np would be larger
than in the usual case (∆n = 0). This is consistent with the expectation that
an excess of antineutrinos will tend to cause p’s to turn into n’s according to
the reaction

p+ ν̄e −→ e+ + n .

Since the amount of helium produced is proportional to the number of neu-
trons that survive until the breaking of the deuterium bottleneck, starting
with a higher equilibrium abundance of neutrons will increase the production
of helium.

PROBLEM 12: SECOND HUBBLE CROSSING (40 points)

(a) From the formula sheets, we know that for a flat radiation-dominated universe,

a(t) ∝ t1/2 .

Since
H =

ȧ

a
,

(which is also on the formula sheets),

H =
1
2t

.

Then

H(t) ≡ cH−1(t) = 2ct .

(b) We are told that the energy density is dominated by photons and neutrinos,
so we need to add together these two contributions to the energy density. For
photons, the formula sheet reminds us that gγ = 2, so

uγ = 2
π2

30
(kTγ)4

(h̄c)3
.
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For neutrinos the formula sheet reminds us that

gν =
7
8︸ ︷︷ ︸

Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21
4

,

so

uν =
21
4
π2

30
(kTν)4

(h̄c)3
.

Combining these two expressions and using Tν = (4/11)1/3 Tγ , one has

u = uγ + uν =

[
2 +

21
4

(
4
11

)4/3
]
π2

30
(kTγ)4

(h̄c)3
,

so finally

g1 = 2 +
21
4

(
4
11

)4/3

.

(c) The Friedmann equation tells us that, for a flat universe,

H2 =
8π
3
Gρ ,

where in this case H = 1/(2t) and

ρ =
u

c2
= g1

π2

30
(kTγ)4

h̄3c5
.

Thus (
1
2t

)2

=
8πG
3

g1
π2

30
(kTγ)4

h̄3c5
.

Solving for Tγ ,

Tγ =
1
k

(
45h̄3c5

16π3g1G

)1/4
1√
t
.

(d) The condition for Hubble crossing is

λ(t) = cH−1(t) ,
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and the first Hubble crossing always occurs during the inflationary era. Thus
any Hubble crossing during the radiation-dominated era must be the second
Hubble crossing.

If λ is the present physical wavelength of the density perturbations under dis-
cussion, the wavelength at time t is scaled by the scale factor a(t):

λ(t) =
a(t)
a(t0)

λ .

Between the second Hubble crossing and now, there have been no freeze-outs
of particle species. Today the entropy of the universe is still dominated by
photons and neutrinos, so the conservation of entropy implies that aTγ has
remained essentially constant between then and now. Thus,

λ(t) =
Tγ,0

Tγ(t)
λ .

Using the previous results for cH−1(t) and for Tγ(t), the condition λ(t) =
cH−1(t) can be rewritten as

kTγ,0

(
16π3g1G
45h̄3c5

)1/4 √
t λ = 2ct .

Solving for t, the time of second Hubble crossing is found to be

tH2(λ) = (kTγ,0λ)2
(
π3g1G

45h̄3c9

)1/2

.

Extension: You were not asked to insert numbers, but it is of course interesting
to know where the above formula leads. If we take λ = 106 lt-yr, it gives

tH2(106 lt-yr) = 1.04× 107 s = 0.330 year .

For λ = 1 Mpc,

tH2(1 Mpc) = 1.11× 108 s = 3.51 year .

Taking λ = 2.5 × 106 lt-yr, the distance to Andromeda, the nearest spiral
galaxy,

tH2(2.5× 106 lt-yr) = 6.50× 107 sec = 2.06 year .


