$$\gamma^{\mu} = \left(\frac{E}{c}, \vec{p}\right), \quad \vec{p} = \gamma m_0 \vec{v}, \quad E = \gamma m_0 c^2 = \sqrt{(m_0 c^2)^2 + |\vec{p}|^2 c^2},$$
$$\gamma^2 \equiv |\vec{p}|^2 - (p^0)^2 = |\vec{p}|^2 - \frac{E^2}{c} = -(m_0 c)^2.$$

$$v_{\rm coord} = rac{c}{a(t)}$$
 .

8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2007

$$\begin{split} g_{e^+e^-} &= \frac{7}{8} \times \frac{1}{8} \times \frac{1}{8} \times \frac{2}{8} \times \frac{2}{8} = \frac{7}{2} \;, \\ & \text{Fermion Species Particle/ Spin states} \\ g_{e^+e^-}^* &= \frac{3}{4} \times \frac{1}{8} \times \frac{1}{8} \times \frac{2}{8} \times \frac{2}{8} \times \frac{2}{8} = \frac{7}{2} \;, \\ & \text{Fermion Species Particle/ Spin states} \\ & \text{Fermion Species Particle/ Spin states} \\ \end{split}$$

CHEMICAL EQUILIBRIUM:

Ideal Gas of Classical Nonrelativistic Particles:

$$n_i = g_i \frac{(2\pi m_i kT)^{3/2}}{(2\pi\hbar)^3} e^{(\mu_i - m_i c^2)/kT}$$

where n_i = number density of particle

- $g_i =$ number of spin states of particle
- $m_i = \text{mass of particle}$

 $\mu_i = \text{chemical potential}$

For any reaction, the sum of the μ_i on the left-hand side of the hand side. Formula assumes gas is nonrelativistic $(kT \ll m_i c^2)$ and dilute $(n_i \ll (2\pi m_i kT)^{3/2}/(2\pi\hbar)^3)$. reaction equation must equal the sum of the μ_i on the right-

UNIVERSE: EVOLUTION OF A FLAT RADIATION-DOMINATED

$$\rho = \frac{3}{32\pi G t^2}$$
$$kT = \left(\frac{45\hbar^3 c^5}{16\pi^3 g G}\right)^{1/4} \frac{1}{\sqrt{t}}$$

then For $m_{\mu} = 106 \text{ MeV} \gg kT \gg m_e = 0.511 \text{ MeV}, g = 10.75 \text{ and}$ $\frac{1}{4}$

$$T = \frac{0.860 \text{ MeV}}{\sqrt{t \text{ (in sec)}}} \left(\frac{10.75}{g}\right)^1$$

7

After the freeze-out of electron-positron pairs,

$$\frac{T_{\nu}}{T_{\gamma}} = \left(\frac{4}{11}\right)^{1/3} .$$

HORIZON DISTANCE:

$$\ell_{p, ext{horizon}}(t) = a(t) \int_0^t rac{c}{a(t')} dt'$$

||(2ct (flat, radiation-dominated). 3Cl(flat, matter-dominated),

COSMOLOGICAL CONSTANT:

$$u_{
m vac} =
ho_{
m vac} c^2 = rac{\Lambda c^4}{8\pi G} \; ,$$
 $p_{
m vac} = -
ho_{
m vac} c^2 = -rac{\Lambda c^4}{8\pi G} \; .$

GENERALIZED COSMOLOGICAL EVOLUTION:

$$x\frac{dx}{dt} = H_0 \sqrt{\Omega_{m,0} x + \Omega_{\rm rad,0} + \Omega_{\rm vac,0} x^4 + \Omega_{k,0} x^2} ,$$

where

$$x\equiv rac{a(t)}{a(t_0)}\equiv rac{1}{1+z} \; ,$$

Age of universe:

$$t_0 = \frac{1}{H_0} \int_0^1 \frac{x dx}{\sqrt{\Omega_{m,0} x + \Omega_{\rm rad,0} + \Omega_{\rm vac,0} x^4 + \Omega_{k,0} x^2}}$$

Age

of universe:

$$= \frac{1}{H_0} \int_0^1 \frac{x dx}{\sqrt{\Omega_{m,0}x + \Omega_{rad,0} + \Omega_{vac,0}x^4 + \Omega_{k,0}x^2}}$$

$$= \frac{1}{1} \int_0^\infty \frac{dx}{\sqrt{\Omega_{m,0}x + \Omega_{rad,0} + \Omega_{vac,0}x^4 + \Omega_{k,0}x^2}} dz$$

Look-back time:

||

 $\overline{H_0} \int_0^{-} \frac{1}{(1+z)\sqrt{\Omega_{m,0}(1+z)^3 + \Omega_{\rm rad,0}(1+z)^4 + \Omega_{\rm vac,0} + \Omega_{k,0}(1+z)^2}}$

$$\begin{split} t_{\rm took-back}(z) = & \frac{1}{H_0} \int_0^z \frac{dz'}{(1+z')\sqrt{\Omega_{m,0}(1+z')^3 + \Omega_{\rm rad,0}(1+z')^4 + \Omega_{\rm vac,0} + \Omega_{k,0}(1+z')^2}} \,. \end{split}$$

PHYSICAL CONSTANTS:

$$G = 6.674 \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2} = 6.674 \times 10^{-8} \text{ cm}^3 \cdot \text{g}^{-1} \cdot \text{s}^{-2}$$

$$k = \text{Boltzmann's constant} = 1.381 \times 10^{-23} \text{ joule/K}$$

$$= 1.381 \times 10^{-16} \text{ erg/K}$$

$$= 1.381 \times 10^{-16} \text{ erg/K}$$

$$= 8.617 \times 10^{-5} \text{ eV/K}$$

$$h = \frac{h}{2\pi} = 1.055 \times 10^{-34} \text{ joule} \cdot \text{s}$$

$$= 1.055 \times 10^{-27} \text{ erg} \cdot \text{s}$$

$$= 6.582 \times 10^{-16} \text{ eV} \cdot \text{s}$$

$$c = 2.998 \times 10^{8} \text{ m/s}$$

$$= 2.998 \times 10^{10} \text{ cm/s}$$

$$hc = 197.3 \text{ MeV-fm}, 1 \text{ fm} = 10^{-15} \text{ m}$$

$$1 \text{ yr} = 3.156 \times 10^{7} \text{ s}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ joule} = 1.602 \times 10^{-12} \text{ erg}$$

$$1 \text{ GeV} = 10^{9} \text{ eV} = 1.783 \times 10^{-27} \text{ kg} \text{ (where } c \equiv 1)$$

$$= 1.783 \times 10^{-24} \text{ g}.$$
Planck Units: The Planck length ℓ_P , the Planck time t_P , the Planck mass m_P , and the Planck energy E_p are given by

яP

$$\ell_P = \sqrt{\frac{G\hbar}{c^3}} = 1.616 \times 10^{-35} \text{ m} ,$$

= 1.616 × 10⁻³³ cm ,
$$t_P = \sqrt{\frac{\hbar G}{c^5}} = 5.391 \times 10^{-44} \text{ s} ,$$

$$m_P = \sqrt{\frac{\hbar c}{G}} = 2.177 \times 10^{-8} \text{ kg} ,$$

= 2.177 × 10⁻⁵ g ,
$$E_P = \sqrt{\frac{\hbar c^5}{G}} = 1.221 \times 10^{19} \text{ GeV} .$$

ର

PROBLEM 1: DID YOU DO THE READING? (25 points)

points.The following problem was Problem 1, Quiz 3, in 2007. Each part was worth 5

- (a) (CMB basic facts) Which one of the following statements about CMB is not correct:
- (i) After the dipole distortion of the CMB is subtracted away, the mean temper ature averaging over the sky is $\langle T\rangle=2.725K$
- (ii) After the dipole distortion of the CMB is subtracted away, the root mean square temperature fluctuation is $\left\langle \left(\frac{\delta T}{T}\right)^2 \right\rangle^{1/2}$ $= 1.1 \times 10^{-3}.$
- (iii) The dipole distortion is a simple Doppler shift, caused by the net motion of the observer relative to a frame of reference in which the CMB is isotropic.
- (iv) In their groundbreaking paper, Wilson and Penzias reported the measure-Dicke, Peebles, Roll and Wilkinson, the authors interpreted the radiation ized, and free from seasonal variations. In a companion paper written by ment of an excess temperature of about 3.5 K that was isotropic, unpolarto be a relic of an early, hot, dense, and opaque state of the universe.
- (b) (CMB experiments) The current mean energy per CMB photon, about $6 \times$ measure the CMB at $\lambda < 3$ cm, which one of the following methods is *not* a molecule such as H_2O . Thus microwaves with wavelengths shorter than feasible solution to this problem? $\lambda \sim 3$ cm are strongly absorbed by water molecules in the atmosphere. To 10^{-4} eV, is comparable to the energy of vibration or rotation for a small
- (i) Measure CMB from high-altitude balloons, e.g. MAXIMA.
- (ii) Measure CMB from the South Pole, e.g. DASI.
- (iii) Measure CMB from the North Pole, e.g. BOOMERANG
- (iv) Measure CMB from a satellite above the atmosphere of the Earth, e.g. COBE, WMAP and PLANCK.
- (c) (Temperature fluctuations) The creation of temperature fluctuations in CMB Which one of the following statements is *not* correct concerning this effect? by variations in the gravitational potential is known as the Sachs-Wolfe effect.
- (i) A CMB photon is redshifted when climbing out of a gravitational potential well, and is blueshifted when falling down a potential hill
- (ii) At the time of last scattering, the nonbaryonic dark matter dominated the energy density, and hence the gravitational potential, of the universe.

Š
65
Õõ.
6
_
െ
\simeq
5
5
LN.
ಲು
77
Ĺн
5
\leq
(F)
∇
$\overline{}$
-
<u> </u>
77
$\tilde{\mathbf{C}}$
\geq
ω.
Н
ÊH.
23
\leq
cn.
1
-
Г
2.
\simeq
2
Q.
\neg

- p. 9 8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2007
- (iii) The large-scale fluctuations in CMB temperatures arise from the gravitational effect of primordial density fluctuations in the distribution of nonbaryonic dark matter.
- (iv) The peaks in the plot of temperature fluctuation Δ_T vs. multipole l are due to variations in the density of nonbaryonic dark matter, while the contributions from baryons alone would not show such peaks.
- (d) (Dark matter candidates) Which one of the following is not a candidate of nonbaryonic dark matter?
- (i) massive neutrinos
- (ii) axions
- (iii) matter made of top quarks (a type of quarks with heavy mass of about 171 GeV).
- (iv) WIMPs (Weakly Interacting Massive Particles)
- (v) primordial black holes
- (e) (Signatures of dark matter) By what methods can signatures of dark matter be detected? List two methods. (Grading: 3 points for one correct answer, 5 points for two correct answers. If you give more than two answers, your score will be based on the number of right answers minus the number of wrong answers, with a lower bound of zero.)

* PROBLEM 2: PRESSURE AND ENERGY DENSITY OF MYSTERIOUS STUFF (25 points)

The following problem was Problem 3, Quiz 3, 2002. Although it is couched in the language of Lecture Notes 13, the physics is really the same as the pressure calculations in Lecture Notes 7, so a modified form of this problem would be fair for the coming quiz.

In Lecture Notes 13, a thought experiment involving a piston was used to show that $p = -\rho c^2$ for any substance for which the energy density remains constant under expansion. In this problem you will apply the same technique to calculate the pressure of **mysterious stuff**, which has the property that the energy density falls off in proportion to $1/\sqrt{V}$ as the volume V is increased.

If the initial energy density of the mysterious stuff is $u_0 = \rho_0 c^2$, then the initial configuration of the piston can be drawn as

The piston is then pulled outward, so that its initial volume V is increased to $V + \Delta V$. You may consider ΔV to be infinitesimal, so ΔV^2 can be neglected.

- (a) (15 points) Using the fact that the energy density of mysterious stuff falls off as $1/\sqrt{V}$, find the amount ΔU by which the energy inside the piston changes when the volume is enlarged by ΔV . Define ΔU to be positive if the energy increases.
- (b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how much work ΔW is done by the agent that pulls out the piston?
- (c) (5 points) Use your results from (a) and (b) to express the pressure p of the mysterious stuff in terms of its energy density u. (If you did not answer parts (a) and/or (b), explain as best you can how you would determine the pressure if you knew the answers to these two questions.)

PROBLEM 3: NUMBER DENSITIES IN THE COSMIC BACK-GROUND RADIATION

Today the temperature of the cosmic microwave background radiation is 2.7° K. Calculate the number density of photons in this radiation. What is the number density of thermal neutrinos left over from the big bang?

a) (5 points) What would be the number density of 8.286 ions, in particles per cubic meter, when the temperature T was given by $kT = 3$ MeV?	actors included. (For example, if you were asked how many meters a light pulse in vacuum travels in 5 minutes, you could express the answer as $2.998 \times 10^8 \times 5 \times 60.$)	not told to bring calculators, you need not carry out the arithmetic. Your answer The I should be expressed, however, in "calculator-ready" form— that is, it should be an $U + \Delta$ expression involving pure numbers only (no units), with any necessary conversion	Parts (a)-(c) of this question require numerical answers, but since you were	ng an additional, hypothetical lepton, called an 8.286ion. The 8.286ion has roughly the same properties as an electron, except that its mass is given by $mc^2 = 0.750$ MeV.	The following problem was Problem 2, Quiz 3, 1992, worth 25 points. Suppose the calculations describing the early universe were modified by includ.	* PROBLEM 5: A NEW SPECIES OF LEPTON	config	(e) (5 points) What is the average entropy per particle for the black-body radiation falls c falls c	particles are fermions with spin $1/2$, and we will assume that they are massless II and have only one possible spin state. What is the average energy per particle that l for this case?	(d) (5 points) Now consider the black-body radiation of electron neutrinos. These	and (b)? If so, how would they change? *PR	 (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now consider the black-body radiation of a massless boson which has (c) (5 points) Now construct the black-body radiation of a massless boson which has (c) (5 points) Now construct the black-body radiation of a massless boson which has (c) (5 points) Now construct the black-body radiation of a massless boson which has (c) (5 points) Now construct the black-body radiation of a massless boson which has (c) (5 points) Now construct the black-body radiation of a massless boson which has (c) (5 point	(b) (5 points) For the same radiation, what is the average entropy per photon? e) $\binom{6}{8}$	(a) (5 points) For the black-body radiation (also called thermal radiation) of pho- tons at temperature T , what is the average energy per photon?	may leave your answers in the form of algebraic expressions, such as $\pi^{32}/\sqrt{5\zeta(3)}$. d) (In answering the following questions, remember that you can refer to the for- c) (nulas at the front of the exam. Since you were not asked to bring calculators, you k	r: p	* PROBLEM 4: PROPERTIES OF BLACK-BODY RADIATION (25 v points)	3.286 QUIZ 3 REVIEW PROBLEMS, FALL 2007 p. 11 8.286 (
	ΔV	piston is then pulled outward, so that its initial volume V is increased to ΔV . You may consider ΔV to be infinitesimal, so ΔV^2 can be neglected.	$\mathbf{Pressure} = 0 \ .$	$ \begin{array}{c} V \\ \hline V \\ \hline \end{array} \end{array} \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \begin{array}{c} \\ \\ \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \begin{array}{c} \\ \\ \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \end{array} \right. \\ \left. \left. \begin{array}{c} \\ \end{array} \right. \\ \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \left. \end{array} \right. \\ \left. \left. \\ \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \left. \left. \end{array} \right. \\ \left. \left. \\ \left. \end{array} \right. \\ \left. \left. \end{array} \right. \\ \left. \left. \\ \right. \\ \left. \end{array} \right. \\ \left. \left. \end{array} \right. \\ \left. \left. \\ \right. \\ \left. \end{array} \right. \\ \left. \left. \\ \left. \end{array} \right. \\ \left. \left. \\ \right. \\ \left. \end{array} \right. \\ \left. \\ \left. \end{array} \right. \\ \left. \\ \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \\ \left. \end{array} \right. \\ \left. \\ \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \left. \\ \left. \end{array} \right. \\ \left. \\ \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \left. \end{array} \right. \\ \left. \\ \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \left. \end{array} \right. \\ \left. \\ \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \left. \end{array} \right. \\ \left. \\ \left. \end{array} \right. \\ \left. \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \left. \\ \left. \end{array} \right. \\ \left. \\ \left. \end{array} \right. \\ \left. \left. \end{array} \right. \\ \left. \left. \\ \left. \end{array} \right. \\ \left. \end{array} \right. \\ \left. \\ \left. \end{array} \right. \\ \left. \left. \\ \left. \end{array} \right. \\ \left. \left. \end{array} \right. \\ \left. \left. \\ \left. \end{array} \right. \\ \left. \left. \end{array} \right. \\ \left. \left$	(Energy density $= u_0 = ho_0 c^{\star}$.	Mysterious Stuff	f the initial energy density of the mysterious stuff is $u_0 = \rho_0 c^2$, then the initial uration of the piston can be drawn as	ressure of mysterious stuff , which has the property that the energy density iff in proportion to $1/\sqrt{V}$ as the volume V is increased.	n Lecture Notes 13, a thought experiment involving a piston was used to show $p = -\rho c^2$ for any substance for which the energy density remains constant expansion. In this problem you will apply the same technique to calculate	RIOUS STUFF (25 points)	OBLEM 6: PRESSURE AND ENERGY DENSITY OF MYSTE-	Here T_{ν} denotes the temperature of the neutrinos, and T_{γ} denotes the tem- erature of the cosmic background radiation photons.)	5 points) Suppose the neutrinos decouple while $kT \gg 0.75$ MeV. If the .286ions are included, what does one predict for the value of T_{ν}/T_{γ} today?	t the 8.286ion, is the production of helium increased or decreased? Explain our answer in a few sentences.	5 points) When nucleosynthesis calculations are modified to include the effect	5 points) Under the same assumptions as in (b), what would be the value of T , in MeV, at $t = .01$ sec?	adiation include the photons, neutrinos, $e^+ - e^-$ pairs, and 8.286ion-anti8286ion- airs. Express your answer in the units of g/cm^3 .	alue of the mass density at $t = .01 \text{ sec}$? You may assume that $0.75 \text{ MeV} \ll T \ll 100 \text{ MeV}$, so the particles contributing significantly to the black-body	QUIZ 3 REVIEW PROBLEMS, FALL 2007

Extra Credit for Super-Sharpies (no partial credit): For 5 points extra credit, you can calculate the angular diameter $\Delta \theta$ of the image of a spherical object at redshift z which had a physical diameter w at the time of emission. You should assume that $\Omega_{\text{tot}} < 1$, and also that $\Delta \theta \ll 1$. The calculation is to be carried out for the same model universe described above.	 (a) (8 points) Let x(t) denote the ratio x(t) ≡ a(t)/a(t_0) for an arbitrary time t. Write an expression for the total mass density of the universe ρ(t) in terms of x(t) and the given quantities described above. (b) (7 points) Write an integral expression for the age of the universe t₀. The expression should depend only on H₀ and the various contributions to Ω₀ listed above (Ω_{m,0}, Ω_{r,0}, etc.), but it might include x as a variable of integration. 	Suppose that you are given the present value of the Hubble parameter H_0 , \mathbf{F} and also the present values of the contributions to $\Omega \equiv \rho/\rho_c$ from each of the constituents: $\Omega_{m,0}$ (nonrelativistic matter), $\Omega_{r,0}$ (radiation), $\Omega_{v,0}$ (vacuum energy density), and $\Omega_{ms,0}$ (mysterious stuff). Our goal is to express the age of the universe t_0 in terms of these quantities.	* PROBLEM 7: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF (15 points) Consider a universe that contains nonrelativistic matter, radiation, vacuum energy, and the same mysterious stuff that was introduced in the previous problem. Since the mass density of mysterious stuff falls off as $1/\sqrt{V}$, where V is the volume, it follows that in an expanding universe the mass density of mysterious stuff falls off as $1/a^{3/2}(t)$.	(c) (5 points) Use your results from (a) and (b) to express the pressure p of the mysterious stuff in terms of its energy density u . (If you did not answer parts (a) and/or (b), explain as best you can how you would determine the pressure if you knew the answers to these two questions.)	 (a) (15 points) Using the fact that the energy density of mysterious stuff falls off as 1/√V, find the amount ΔU by which the energy inside the piston changes when the volume is enlarged by ΔV. Define ΔU to be positive if the energy increases. (b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how much work ΔW is done by the agent that pulls out the piston? 	5.286 QUIZ 3 REVIEW PROBLEMS, FALL 2007 p. 13 8
* PROBLEM 9: EVOLUTION OF FLATNESS (15 points) The following problem was Problem 3, Quiz 3, 2004. The "flatness problem" is related to the fact that during the evolution of the	 (c) the time of the phase transition predicted by grand unified theories, which takes place when kT ≈ 10¹⁶ GeV; (d) "recombination", the time at which the matter in the universe converted from a plasma to a gas of neutral atoms; (e) the phase transition at which the quarks became confined, believed to occur when kT ≈ 300 MeV. Since cosmology is fraught with uncertainty, in some cases more than one answer will be acceptable. You are asked, however, to give ONLY ONE of the acceptable answers. 	For this problem it will be sufficient to state an answer from memory, without explanation. The events which must be placed are the following:(a) the beginning of the processes involved in big bang nucleosynthesis;(b) the end of the processes involved in big bang nucleosynthesis;	1 sec. 4 mins. 10,000 – 1,000,000 years. 2 billion years. 5 billion years. 10 billion years. 20 billion years.	10^{-43} sec. 10^{-37} sec. 10^{-12} sec. 10^{-5} sec.	PROBLEM 8: TIME SCALES IN COSMOLOGY In this problem you are asked to give the approximate times at which various mportant events in the history of the universe are believed to have taken place. The times are measured from the instant of the big bang. To avoid ambiguities, you are asked to choose the best answer from the following list:	9.286 QUIZ 3 REVIEW PROBLEMS, FALL 2007 p. 14

- bang nucleosynthesis;
- nucleosynthesis;
- rand unified theories, which
- er in the universe converted
- came confined, believed to

$(15 \ points)$

standard cosmological model, Ω is always driven away from 1.

$ u_e + n \longleftrightarrow p + e^-$.	expressed in terms of H_0 , Ω_m , Ω_Λ , and z. Definite integrals need not be evaluated.
$e^+ + n \longleftrightarrow p + \bar{\nu}_e$	The goal of this problem is to check all of these conclusions, although you are of course not expected to actually work out the numbers. Your answers can be
The equilibrium between protons and neutrons in the early universe is sustained mainly by the following reactions:	(e) that the present speed of the quasar, defined as the rate at which the distance between us and the quasar is increasing, is 1.8 times the velocity of light.
(a) (10 points) Give the correct version of Eq. (1), allowing for the possibility that $\mu_n \neq \mu_p$.	(d) that the distance to the quasar, at the time the light was emitted, was 4.0 billion light-years.
where k is Boltzmann's constant, T is the temperature, and $\Delta E = 1.29$ MeV is the proton-neutron mass-energy difference. This formula is believed to be very accurate, but it assumes that the chemical potential for neutrons μ_n is the same as the chemical potential for protons μ_p .	(b) that the light that we now see was emitted when the universe was 0.95 billion years old.(c) that the distance to the quasar, as it would be measured by a ruler today, is 27 billion light-years.
$\frac{n_n}{n_p} = e^{-\Delta E/kT} , \qquad (1)$	(a) that the age of the universe is 13.9 billion years.
The following problem was 1998 Quiz 4, Problem 4. In the standard treatment of big bang nucleosynthesis it is assumed that at early times the ratio of neutrons to protons is given by the Boltzmann formula,	To explain to the public how this object fits into the universe, the SDSS posted on their website an article by Michael Turner and Craig Wiegert titled "How Can An Object We See Today be 27 Billion Light Years Away If the Universe is only 14 Billion Years Old?" Using a model with $H_0 = 65$ km-s ⁻¹ -Mpc ⁻¹ , $\Omega_m = 0.35$, and $\Omega_{-1} = 0.65$ there elemend
*PROBLEM 11: NEUTRINO NUMBER AND THE NEUTRON/ PROTON EQUILIBRIUM (35 points)	The following problem was Problem 4, Quiz 3, 2004. On April 13, 2000, the Sloan Digital Sky Survey announced the discovery of what was then the most distant object known in the universe: a quasar at $z = 5.82$.
(e) (5 points) Write an expression for the present speed of the quasar, defined as the rate at which the distance between us and the quasar is increasing.	*PROBLEM 10: THE SLOAN DIGITAL SKY SURVEY $z = 5.82$ QUASAR (40 points)
(d) (5 points) Write an expression for the physical distance $\ell_{phys,e}$ between us and the quasar at the time that the light was emitted.	In each part, you may assume that the universe was $always$ dominated by the specified form of matter.
 (c) (c) receive from the distant quasar was emitted. (c) (10 points) Write an expression for the present physical distance l_{phys,0} to the quasar. 	same quantity will grow like a different power of t . Show that this is true, and derive the power. (Stating the right power without a derivation will again be worth 3 points.)
(a) (15 points) Write an expression for the age t_0 of this model universe?	(b) (6 moints) During a position in which the universe is realistion dominated the
Note that Ω_m represents the present density of nonrelativistic matter, expressed as a fraction of the critical density; and Ω_Λ represents the present density of vacuum energy, expressed as a fraction of the critical density. In answering each of the following questions, you may consider the answer to any previous part — whether you answered it or not — as a given piece of information, which can be used in your answer.	(a) (9 points) During a period in which the universe is matter-dominated (meaning that the only relevant component is nonrelativistic matter), the quantity $\frac{\Omega - 1}{\Omega}$ grows as a power of t. Show that this is true, and derive the power. (Stating
8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2007	8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2007 p. 15

* This fact is a consequence of the principle that the chemical potential of a particle is the sum of the chemical potentials associated with its conserved quantities, while particle and antiparticle always have the opposite values of all conserved quantities.	In Problem Set 9 we calculated the time $t_{H1}(\lambda)$ of the first Hubble crossing for a mode specified by its (physical) wavelength λ at the present time. In this problem we will calculate the time $t_{H2}(\lambda)$ of the second Hubble crossing, the time at which the growing Hubble length $cH^{-1}(t)$ catches up to the physical wavelength, which is also growing. At the time of the second Hubble crossing for the wavelengths of	PROBLEM 12: SECOND HUBBLE CROSSING (40 points) This problem was Problem 3, Quiz 3, 2007. In 2009 we have not yet talked about Hubble crossings and the evolution of density perturbations, so this problem would not be fair as worded. Actually, however, you have learned how to do these calcu- lations, so the problem would be fair if it described in more detail what needs to be calculated.	universe: Explain your answer.	(d) (5 points) Would an excess of anti-electron neutrinos, as considered in part (c), increase or decrease the amount of helium that would be produced in the early	ratio \bar{n}_{ν}/n_{ν} or the antineutrino excess $\Delta n = \bar{n}_{\nu} - n_{\nu}$. (Your answer may also contain fundamental constants, such as k , \hbar , and c .)	(c) (10 points) Suppose that the density of anti-electron neutrinos \bar{n}_{ν} in the early universe was higher than the density of electron neutrinos n_{ν} . Express the thermal equilibrium value of the ratio n_n/n_p in terms of ΔE , T , and either the	$n_i = g_i^* rac{\zeta(3)}{\pi^2} \; rac{(kT)^3}{(\hbar c)^3} e^{\mu_i/kT} \; .$	The black-body radiation formulas at the beginning of the quiz did not allow for the possibility of a chemical potential, but they can easily be generalized. For example, the formula for the number density n_i (of particles of type i) becomes	(b) (10 points) Express the neutron/proton chemical potential difference $\mu_n - \mu_p$ in terms of μ_e and μ_{ν} .	Let μ_e and μ_{ν} denote the chemical potentials for the electrons (e^-) and the electron neutrinos (ν_e) respectively. The chemical potentials for the positrons (e^+) and the anti-electron neutrinos $(\bar{\nu}_e)$ are then $-\mu_e$ and $-\mu_{\nu}$, respectively, since the chemi- cal potential of a particle is always the negative of the chemical potential for the antiparticle.*	8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2007 p. 17
able to answer some of the previous parts, you may leave the symbols $\ell_H(t)$, and/or $T_{\gamma}(t)$ in your answer.	 variable that can be left in your answers, whether or not you found it.) (c) (10 points) For times in the range described in part (b), what is the photon temperature T_γ(t) as a function of t? (d) (15 points) Finally, we are ready to find the time t_{H2}(λ) of the second Hubble crossing, for a given value of the physical wavelength λ today. Making use of the provide the photon to the photon	when the mass density of the universe is dominated by photons and neutrinos. During this era the neutrinos are a little colder than the photons, with $T_{\nu} = (4/11)^{1/3}T_{\gamma}$. The total energy density of the photons and neutrinos together can be written as $u_{\text{tot}} = g_1 \frac{\pi^2}{30} \frac{(kT_{\gamma})^4}{(\hbar c)^3}$. What is the value of g_1 ? (For the following parts you can treat g_1 as a given	$30 \sec \ll t \ll 50,000 \text{ years},$	(b) (10 points) The second Hubble crossing will occur during the interval	(a) (5 points) For a radiation-dominated flat universe, what is the Hubble length $\ell_H(t) \equiv c H^{-1}(t)$ as a function of time t?	expected to give a numerical answer, so the above list will serve only to define the symbols that can appear in your answers, along with λ and the physical constants G, \hbar, c , and k .	The mass densities are defined as contributions to Ω , and hence describe the mass density of each constituent relative to the critical density. Note that the model is exactly flat, so you need not worry about spatial curvature. Here you are not	Hubble expansion rate $H_0 = 73.5 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}$ Nonrelativistic mass density $\Omega_m = 0.237$ Vacuum mass density $\Omega_{\text{vac}} = 0.763$ CMB temperature $T_{\gamma,0} = 2.725 \text{ K}$	9, the model universe that we consider will be described by the WMAP 3-year best fit parameters:	interest, the universe can be described very simply: it is a radiation-dominated flat universe. However, since λ is defined as the present value of the wavelength, the evolution of the universe between $t_{H2}(\lambda)$ and the present will also be relevant to the problem. We will need to use methods, therefore, that allow for both the matter- dominated era and the onset of the dark-energy-dominated era. As in Problem Set	8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2007

 (iv) Measure CMB from a satellite above the atmosphere of the Earth, e.g. COBE, WMAP and PLANCK. Explanation: The North Pole is at sea level. In contrast, the South Pole is nearly 3 kilometers above sea level. BOOMERANG is a balloon-borne experiment launched from Antarctica. 	 (i) Measure CMB from high-altitude balloons, e.g. MAXIMA. (ii) Measure CMB from the South Pole, e.g. DASI. (iii) Measure CMB from the North Pole, e.g. BOOMERANG. 	(b) (CMB experiments) The current mean energy per CMB photon, about 6 × 10 ⁻⁴ eV, is comparable to the energy of vibration or rotation for a small molecule such as H ₂ O. Thus microwaves with wavelengths shorter than λ ~ 3 cm are strongly absorbed by water molecules in the atmosphere. To measure the CMB at λ < 3 cm, which one of the following methods is <i>not</i> a feasible solution to this problem?	to be a relic of an early, hot, dense, and opaque state of the universe. Explanation: After subtracting the dipole contribution, the temperature fluctuation is about 1.1×10^{-5} .	(iv) In their groundbreaking paper, Wilson and Penzias reported the measure- ment of an excess temperature of about 3.5 K that was isotropic, unpolar- ized, and free from seasonal variations. In a companion paper written by Dicke, Peebles, Roll and Wilkinson, the authors interpreted the radiation	square temperature fluctuation is $\left\langle \left(\frac{\delta T}{T}\right)^2 \right\rangle^{1/2} = 1.1 \times 10^{-3}$. (iii) The dipole distortion is a simple Doppler shift, caused by the net motion of the observer relative to a frame of reference in which the CMB is isotropic.	 (i) After the dipole distortion of the CMB is subtracted away, the mean temperature averaging over the sky is ⟨T⟩ = 2.725K. (ii) After the dipole distortion of the CMB is subtracted away, the root mean 	(a) (CMB basic facts) Which one of the following statements about CMB is not correct:	The following parts are each worth 5 points.	SOLUTIONS PROBLEM 1: DID YOU DO THE READING? (25 mints)	8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009 p. 19
Answers: (i) Galaxy rotation curves. (I.e., measurements of the orbital speed of stars in spiral galaxies as a function of radius R show that these curves remain flat at radii far beyond the visible stellar disk. If most of the matter were contained in the disk, then these velocities should fall off as $1/\sqrt{R}$.)	 (e) (Signatures of dark matter) By what methods can signatures of dark matter be detected? List two methods. (Grading: 3 points for one correct answer, 5 points for two correct answers. If you give more than two answers, your score will be based on the number of right answers minus the number of wrong answers, with a lower bound of zero.) 	 (iv) WIMPs (Weakly Interacting Massive Particles) (v) primordial black holes Explanation: Matter made of top quarks is so unstable that it is seen only fleetingly as a product in high energy particle collisions. 	 (i) axions (ii) axions (iii) matter made of top quarks (a type of quarks with heavy mass of about 	 (d) (Dark matter candidates) Which one of the following is not a candidate of nonbaryonic dark matter? (i) massive neutrinos 	(iv) The peaks in the plot of temperature fluctuation Δ_T vs. multipole l are due to variations in the density of nonbaryonic dark matter, while the contributions from baryons alone would not show such peaks. Explanation: These peaks are due to the acoustic oscillations in the photon- baryon fluid.	(iii) The large-scale fluctuations in CMB temperatures arise from the grav- itational effect of primordial density fluctuations in the distribution of nonbaryonic dark matter.	(ii) At the time of last scattering, the nonbaryonic dark matter dominated the energy density, and hence the gravitational potential, of the universe.	(i) A CMB photon is redshifted when climbing out of a gravitational potential well, and is blueshifted when falling down a potential hill.	(c) (Temperature fluctuations) The creation of temperature fluctuations in CMB by variations in the gravitational potential is known as the Sachs-Wolfe effect. Which one of the following statements is <i>not</i> correct concerning this effect?	5.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009 p. 20

8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009

- (ii) Use the virial theorem to estimate the mass of a galaxy cluster. (For example, the virial analysis shows that only 2% of the mass of the Coma cluster consists of stars, and only 10% consists of hot intracluster gas.
- (iii) Gravitational lensing. (For example, the mass of a cluster can be estimated from the distortion of the shapes of the galaxies behind the cluster.)
- (iv) CMB temperature fluctuations. (I.e., the analysis of the intensity of the fluctuations as a function of multipole number shows that $\Omega_{\rm tot} \approx 1$, and that dark energy contributes $\Omega_{\Lambda} \approx 0.7$, baryonic matter contributes $\Omega_{\rm bary} \approx 0.04$, and dark matter contributes $\Omega_{\rm dark}$ matter ≈ 0.26 .)

There are other possible answers as well, but these are the ones discussed by Ryden in Chapters 8 and 9.

PROBLEM 2: PRESSURE AND ENERGY DENSITY OF MYSTERIOUS STUFF

(a) If $u \propto 1/\sqrt{V}$, then one can write

$$(+\Delta V) = u_0 \sqrt{rac{V}{V+\Delta V}} \; .$$

u(V

(The above expression is proportional to $1/\sqrt{V + \Delta V}$, and reduces to $u = u_0$ when $\Delta V = 0$.) Expanding to first order in ΔV ,

$$u = rac{u_0}{\sqrt{1 + rac{\Delta V}{V}}} = rac{u_0}{1 + rac{1}{2} rac{\Delta V}{V}} = u_0 \left(1 - rac{1}{2} rac{\Delta V}{V}
ight) \,.$$

The total energy is the energy density times the volume, so

$$U = u(V + \Delta V) = u_0 \left(1 - \frac{1}{2} \frac{\Delta V}{V}\right) V \left(1 + \frac{\Delta V}{V}\right) = U_0 \left(1 + \frac{1}{2} \frac{\Delta V}{V}\right)$$

where $U_0 = u_0 V$. Then

$$\Delta U = \frac{1}{2} \frac{\Delta V}{V} U_0 \ .$$

(b) The work done by the agent must be the negative of the work done by the gas, which is $p \Delta V$. So

$$\Delta W = -p \, \Delta V$$

8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009

p. 21

(c) The agent must supply the full change in energy, so

$$\Delta W = \Delta U = \frac{1}{2} \frac{\Delta V}{V} U_0$$

Combining this with the expression for ΔW from part (b), one sees immediately that

$$p = -\frac{1}{2} \frac{U_0}{V} = \left| \begin{array}{c} -\frac{1}{2} u_0 \end{array} \right|.$$

PROBLEM 3: NUMBER DENSITIES IN THE COSMIC BACK-GROUND RADIATION

In general, the number density of a particle in the black-body radiation is given by

$$n = g^* \frac{\xi(3)}{\pi^2} \left(\frac{kT}{\hbar c}\right)^3$$

For photons, one has $g^* = 2$. Then

$$\left. \begin{array}{l} k = 1.381 \times 10^{-16} \mathrm{erg}/^{o}\mathrm{K} \\ T = 2.7 \,^{\circ}\mathrm{K} \\ \hbar = 1.055 \times 10^{-27} \mathrm{erg}\text{-sec} \\ c = 2.998 \times 10^{10} \mathrm{cm}/\mathrm{sec} \end{array} \right\} \quad \Longrightarrow \quad \left(\frac{kT}{\hbar c} \right)^{3} = 1.638 \times 10^{3} \mathrm{cm}^{-3} \ .$$

Then using $\xi(3) \simeq 1.202$, one finds

$$n_\gamma = 399/{
m cm}^3$$
 .

For the neutrinos,

$$g_{\nu}^* = 2 \times \frac{3}{4} = \frac{3}{2}$$
 per species.

The factor of 2 is to account for ν and $\bar{\nu}$, and the factor of 3/4 arises from the Pauli exclusion principle. So for three species of neutrinos one has

$$g^*_
u=rac{9}{2}$$
 .

Using the result

$$T_{\nu}^3 = \frac{4}{11}T_{\gamma}^3$$

from Problem 8 of Problem Set 3 (2000), one finds

PROBLEM 4: PROPERTIES OF BLACK-BODY RADIATION

(a) The average energy per photon is found by dividing the energy density by the number density. The photon is a boson with two spin states, so $g = g^* = 2$. Using the formulas on the front of the exam,

$$E = \frac{g \frac{\pi^2}{30} \frac{(kT)^4}{(\hbar c)^3}}{g^* \frac{\zeta(3)}{\pi^2} \frac{(kT)^3}{(\hbar c)^3}}$$
$$= \boxed{\frac{\pi^4}{30\zeta(3)} kT}.$$

You were not expected to evaluate this numerically, but it is interesting to know that

$$C = 2.701 \ kT$$
 .

Note that the average energy per photon is significantly more than kT, which is often used as a rough estimate.

(b) The method is the same as above, except this time we use the formula for the entropy density:

$$S = \frac{g \frac{2\pi^2}{45} \frac{k^4 T^3}{(\hbar c)^3}}{g^* \frac{\zeta(3)}{\pi^2} \frac{(kT)^3}{(\hbar c)^3}}$$
$$= \boxed{\frac{2\pi^4}{45\zeta(3)} k}.$$

Numerically, this gives 3.602 k, where k is the Boltzmann constant.

- (c) In this case we would have $g = g^* = 1$. The average energy per particle and the average entropy particle depends only on the ratio g/g^* , so there would be no difference from the answers given in parts (a) and (b).
- (d) For a fermion, g is 7/8 times the number of spin states, and g^* is 3/4 times the number of spin states. So the average energy per particle is

11	II	E =
${7\pi^4\over 180\zeta(3)}kT$.	$\frac{7}{8} \frac{\pi^2}{30} \frac{(kT)^4}{(\hbar c)^3} \\ \frac{3}{4} \frac{\zeta(3)}{\pi^2} \frac{(kT)^3}{(\hbar c)^3}$	$\frac{g \frac{\pi^2}{30} \frac{(kT)^4}{(\hbar c)^3}}{g^* \frac{\zeta(3)}{\pi^2} \frac{(kT)^3}{(\hbar c)^3}}$

Numerically, $E = 3.1514 \, kT$

Warning: the Mathematician General has determined that the memorization of this number may adversely affect your ability to remember the value of π .

If one takes into account both neutrinos and antineutrinos, the average energy per particle is unaffected — the energy density and the total number density are both doubled, but their ratio is unchanged.

Note that the energy per particle is higher for fermions than it is for bosons. This result can be understood as a natural consequence of the fact that fermions must obey the exclusion principle, while bosons do not. Large numbers of bosons can therefore collect in the lowest energy levels. In fermion systems, on the other hand, the low-lying levels can accommodate at most one particle, and then additional particles are forced to higher energy levels.

$$\begin{aligned} \text{(a) The values of y and y'' are again 7/8 and 3/4 respectively, so
$$s = \frac{y_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ s = \frac{y_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ s = \frac{y_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}{k + y_{a}}}{y_{a} + \frac{k + y_{a}}}{k + y_{a}}}, \\ \frac{z_{a} + \frac{k + y_{a}}}{k + y_{a}}}, \\$$$$

8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009

$$tot = 14\frac{1}{4}$$

9

Solving for kT in terms of ρ gives

$$\ \ = \left[\frac{30}{\pi^2}\frac{1}{g_{\rm tot}}\hbar^3c^5\rho\right]^{1/4}$$

kT

from the cover sheet of the exam gives Using the result for ρ from part (b) as well as the list of fundamental constants

$$kT = \left[\frac{90 \times (1.055 \times 10^{-27})^3 \times (2.998 \times 10^{10})^5}{14.24 \times 32\pi^3 \times 6.6732 \times 10^{-8} \times (0.01)^2}\right]^{1/4} \times \frac{1}{1.602 \times 10^{-6}}$$

kT = 8.02 MeV. where the answer is given in units of MeV. Putting in the numbers yields

- d) The production of helium is increased. At any given temperature, the addiequilibrium value of the ratio of neutron to proton densities is larger at higher helium production. implies that fewer neutrons will have a chance to decay, further increasing the temperature at which the deuterium bottleneck breaks is reached sooner. This to build helium nuclei. In addition, the faster evolution rate implies that the ence. Consequently, there are more neutrons present to combine with protons densities of neutrons and protons, and Δm is the neutron-proton mass differtemperatures: $n_n/n_p \propto \exp(-\Delta mc^2/kT)$, where n_n and n_p are the number occur sooner. The freeze-out will therefore occur at a higher temperature. The perature at which these rates can no longer keep pace with the universe will by the additional particle, but the higher value of H will mean that the temof the universe. The reaction rates at a given temperature will be unaffected trons "freeze out" when they can no longer keep up with the rate of evolution perature falls faster. The weak interactions that interconvert protons and neuany given temperature is higher if the additional particle exists, and the temenergy density speeds the expansion of the universe— the Hubble constant at tional particle increases the energy density. Since $H \propto \rho^{1/2}$, the increased
- e After the neutrinos decouple, the entropy in the neutrino bath is conserved separately from the entropy in the rest of the radiation bath. Just after neuin equilibrium just after the neutrinos decouple is temperature which cools as $T \propto 1/a$. The entropy in the bath of particles still trino decoupling, all of the particles in equilibrium are described by the same

$$S \propto g_{\rm rest} T^3(t) a^3(t)$$

ton bath. As a result the temperature of the photon bath is increased relative entropy after annihilations is equal to the entropy before annihilations to that of the neutrino bath. From conservation of entropy we have that the antis.286 ion pairs have annihilated, thus transferring their entropy to the phowhere $g_{\text{rest}} = g_{\text{tot}} - g_{\nu} = 9$. By today, the $e^+ - e^-$ pairs and the 8.286 ion-

$$g_{\gamma}T_{\gamma}^3a^3(t) = g_{\rm rest}T^3(t)a^3(t)$$
 .

°S

$$rac{T_{\gamma}}{T(t)} = \left(rac{g_{
m rest}}{g_{\gamma}}
ight)^{1/3} \; .$$

Since the neutrino temperature was equal to the temperature before annihilations, we have that

$$rac{T_{
u}}{T_{\gamma}} = \left(rac{2}{9}
ight)^{1/3} \; .$$

PROBLEM 6: PRESSURE AND ENERGY DENSITY OF MYSTERI-OUS STUFF

(a) If $u \propto 1/\sqrt{V}$, then one can write

$$u(V + \Delta V) = u_0 \sqrt{\frac{V}{V + \Delta V}}$$

when $\Delta V = 0$.) Expanding to first order in ΔV , (The above expression is proportional to $1/\sqrt{V + \Delta V}$, and reduces to $u = u_0$

$$u = rac{u_0}{\sqrt{1 + rac{\Delta V}{V}}} = rac{u_0}{1 + rac{1}{2} rac{\Delta V}{V}} = u_0 \left(1 - rac{1}{2} rac{\Delta V}{V}
ight) \; .$$

The

$$u = \frac{u_0}{\sqrt{1 + \frac{\Delta V}{V}}} = \frac{u_0}{1 + \frac{1}{2}\frac{\Delta V}{V}} = u_0 \left(1 - \frac{1}{2}\frac{\Delta V}{V}\right) \; .$$

$$u = \frac{u_0}{\sqrt{1 + \frac{\Delta V}{V}}} = \frac{u_0}{1 + \frac{1}{2}\frac{\Delta V}{V}} = u_0 \left(1 - \frac{1}{2}\frac{\Delta V}{V}\right),$$

$$u = \frac{u_0}{\sqrt{1 + \frac{\Delta V}{V}}} = \frac{u_0}{1 + \frac{1}{2}\frac{\Delta V}{V}} = u_0 \left(1 - \frac{1}{2}\frac{\Delta V}{V}\right) \,.$$

$$u = \frac{u_0}{\sqrt{1 + \frac{\Delta V}{V}}} = \frac{u_0}{1 + \frac{1}{2}\frac{\Delta V}{V}} = u_0 \left(1 - \frac{1}{2}\frac{\Delta V}{V}\right)$$

$$\sqrt{1 + \frac{\Delta V}{V}}$$
 $1 + \frac{1}{2} \frac{1}{V}$ $\sqrt{2}$ regy is the energy density times the volume,

$$U = u(V + \Delta V) = u_0 \left(1 - \frac{1}{2} \frac{\Delta V}{V}\right) V \left(1 + \frac{\Delta V}{V}\right) = U_0 \left(1 + \frac{1}{2} \frac{\Delta V}{V}\right) ,$$

where $U_0 = u_0 V$. Then

$$\Delta U = rac{1}{2} rac{\Delta V}{V} U_0 \; .$$

 $\frac{2}{V}$

(b) The work done by the agent must be the negative of the work done by the gas, which is $p \Delta V$. So

$$\Delta W = -p \, \Delta V \quad \left| \right.$$

(c) The agent must supply the full change in energy, so

$$W = \Delta U = rac{1}{2} rac{\Delta V}{V} U_0 \; .$$

 \triangleright

that Combining this with the expression for ΔW from part (b), one sees immediately

$$p = -\frac{1}{2} \frac{U_0}{V} = \left[\begin{array}{c} -\frac{1}{2} \, u_0 \ . \end{array} \right.$$

PROBLEM 7: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF

(a) The critical density ρ_c is defined as that density for which k = 0, where the Friedmann equation from the front of the exam implies that

$$^{2}=rac{8\pi}{3}G
ho-rac{kc^{2}}{a^{2}}$$

H

Thus the critical density today is given by

$$\rho_c = \frac{3H_0^2}{8\pi G} \ . \label{eq:rho_c}$$

The mass density today of any species X is then related to $\Omega_{X,0}$ by

$$=
ho_c \Omega_{X,0} = rac{3H_0^2 \Omega_{X,0}}{8\pi G} \; .$$

 $\rho_{X,0}$

The total mass density today is then expressed in terms of its four components

$$ho_0 = rac{3H_0^2}{8\pi G} \left[\Omega_{m,0} + \Omega_{r,0} +
ight.$$

 $\Omega_{v,0}+\Omega_{\mathrm{ms},0}]$.

g

But we also know how each of these contributions to the mass density scales with x(t): $\rho_m \propto 1/x^3$, $\rho_r \propto 1/x^4$, $\rho_v \propto 1$, and $\rho_{\rm ms} \propto 1/\sqrt{V} \propto 1/x^{3/2}$. Inserting these factors,

$$\rho(t) = \frac{3H_0^2}{8\pi G} \left[\frac{\Omega_{m,0}}{x^3} + \frac{\Omega_{r,0}}{x^4} + \Omega_{v,0} + \frac{\Omega_{\mathrm{ms},0}}{x^{3/2}} \right]$$

p. 29

(b) The Friedmann equation then becomes

$$\left(\frac{\dot{x}}{x}\right)^2 = \frac{8\pi G}{3} \frac{3H_0^2}{8\pi G} \left[\frac{\Omega_{m,0}}{x^3} + \frac{\Omega_{r,0}}{x^4} + \Omega_{v,0} + \frac{\Omega_{\mathrm{ms},0}}{x^{3/2}}\right] - \frac{kc^2}{a^2} \ .$$

Defining

$$H_0^2 \Omega_{k,0} = - rac{k c^2}{a^2(t_0)} \; ,$$

 $\overset{\mathrm{OS}}{\mathrm{OS}}$

$$-rac{kc^2}{a^2(t)} = -rac{kc^2}{a^2(t_0)}rac{1}{x^2} = rac{H_0^2\Omega_{k,0}}{x^2} \; ,$$

and then the Friedmann equation becomes

$$\left(\frac{\dot{x}}{x}\right)^2 = H_0^2 \left[\frac{\Omega_{m,0}}{x^3} + \frac{\Omega_{r,0}}{x^4} + \Omega_{v,0} + \frac{\Omega_{\mathrm{ms},0}}{x^{3/2}} + \frac{\Omega_{k,0}}{x^2}\right]$$

Applying this equation today, when $\dot{x}/x = H_0$, one finds that

$$\Omega_{k,0} = 1 - \Omega_{m,0} - \Omega_{r,0} - \Omega_{v,0} - \Omega_{\mathrm{ms},0} \; .$$

Rearranging the equation for $(\dot{x}/x)^2$ above.

$$H_0 \,\mathrm{d}t = \frac{\mathrm{d}x}{x\sqrt{\frac{\Omega_{m,0}}{x^{3}} + \frac{\Omega_{r,0}}{x^{4}} + \Omega_{\nu,0} + \frac{\Omega_{ms,0}}{x^{3/2}} + \frac{\Omega_{k,0}}{x^{2}}}$$

starts from 0 when the universe is born, and is equal to 1 today. So The age of the universe is found by integrating over the full range of x, which

$$t_0 = \frac{1}{H_0} \int_0^1 \frac{\mathrm{d}x}{x \sqrt{\frac{\Omega_{m,0}}{x^3} + \frac{\Omega_{r,0}}{x^4} + \Omega_{v,0} + \frac{\Omega_{ms,0}}{x^{3/2}} + \frac{\Omega_{k,0}}{x^2}}} \,.$$

$$t_0 = \frac{1}{H_0} \int_0^1 \frac{\mathrm{d}x}{x \sqrt{\frac{\Omega_{m,0}}{x^3} + \frac{\Omega_{r,0}}{x^4} + \Omega_{v,0} + \frac{\Omega_{m,0}}{x^{3/2}} + \frac{\Omega_{k,0}}{x^2}}} .$$

Extra Credit for Super-Sharpies (no partial credit):

Since
$$\Omega_{\rm tot} < 1$$
, we use the Robertson-Walker open universe form

$$ds^2 = -c^2 d\tau^2 = -c^2 dt^2 + a^2(t) \left\{ \frac{dr^2}{1+r^2} + r^2 \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right) \right\} ,$$

to define a new radial coordinate replaced k by -1. To discuss the radial transmission of light rays it is useful where I have started with the general form from the front of the exam, and

$$r = \sinh \psi$$
,

 $^{\rm OS}$

$$\mathrm{d}r = \cosh\psi\,\mathrm{d}\psi = \sqrt{1+r^2}\,\mathrm{d}\psi\;,$$

rewritten as where I used the identity that $\cosh^2 \psi = 1 + \sinh^2 \psi$. The metric can then be

$$ds^{2} = -c^{2} d\tau^{2} = -c^{2} dt^{2} + a^{2}(t) \left\{ d\psi^{2} + \sinh^{2} \psi \left(d\theta^{2} + \sin^{2} \theta \, d\phi^{2} \right) \right\} .$$

Light rays then travel with $d\tau^2 = 0$, so

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = \frac{c}{a(t)}$$

will travel an interval of ψ given by If a light ray leaves the object at time t_e and arrives at Earth today, then it

$$\psi = \int_{t_e}^{t_0} \frac{c}{a(t')} \,\mathrm{d}t' \ .$$

 $x = a(t')/a(t_0)$, one finds $dx = \dot{x} dt'$, and then things that we do know. Changing integration variables from t' to x, where manipulate the right-hand side of the above equation to express it in terms of We will need to know ψ , but we don't know either t_e or a(t). So we need to

$$\psi = \int_{x_e}^1 \frac{c}{a(t_0)} \frac{1}{x} \frac{\mathrm{d}x}{\dot{x}} \; .$$

Using $H = \dot{x}/x$.

 $\psi =$ $=\frac{c}{a(t_0)}\int_{x_e}$

Now use the formula for $H = \dot{x}/x$ from part (b), sc $\frac{\mathrm{d}x}{x^2H}$

$$\psi = \frac{c}{a(t_0)H_0} \int_{x_e}^1 \frac{\mathrm{d}x}{x^2 \sqrt{\frac{\Omega_{m,0}}{x^3} + \frac{\Omega_{r,0}}{x^4} + \Omega_{v,0} + \frac{\Omega_{\mathrm{ms},0}}{x^{3/2}} + \frac{\Omega_{k,0}}{x^2}}} \,.$$

p. 32

p. 31

Here

$$x_e = rac{a(t_e)}{a(t_0)} = rac{1}{1+z} \; ,$$

equation for k = -1: and the coefficient in front of the integral can be evaluated using the Friedman

$$H_0^2 = \frac{8\pi}{3}G\rho_0 + \frac{c^2}{a^2(t_0)} = H_0^2\Omega_0 + \frac{c^2}{a^2(t_0)}$$

 $^{\rm OS}$

$$rac{c^2}{a^2(t_0) \, H_0^2} = 1 - \Omega_0 = \Omega_{k,0} \; .$$

Finally, then, the expression for ψ can be written

$$\psi = \sqrt{\Omega_{k,0}} \int_{x_e}^{1} \frac{\mathrm{d}x}{x^2 \sqrt{\frac{\Omega_{m,0}}{x^3} + \frac{\Omega_{r,0}}{x^4} + \Omega_{v,0} + \frac{\Omega_{ms,0}}{x^{3/2}} + \frac{\Omega_{k,0}}{x^2}}},$$

where x_e is given by the boxed equation above.

coordinates of the light rays leaving the object and arriving at Earth: Once we know ψ , the rest is straightforward. We draw a picture in comoving

In this picture $\Delta \theta$ is the angular size that would be measured. Using the $d\theta^2$

part of the metric,

$$\mathrm{d}s^{2} = a^{2}(t)\sinh^{2}\psi\,\mathrm{d} heta^{2}$$
 ,

$$\mathrm{d}s^2 = a^2(t)\sinh^2\psi\,\mathrm{d}\theta^2 \;,$$

$$\mathrm{d}s^2 = a^2(t)\sinh^2\psi\,\mathrm{d}\theta^2\;,$$

$$\mathrm{d}s^2 = a^2(t) \sinh^2\psi \,\mathrm{d}\theta^2 \;,$$

$$\mathrm{d}s^2 = a^2(t)\sinh^2\psi\,\mathrm{d}\theta^2 \;,$$

$$\mathrm{d}s^2 = a^2(t) \sinh^2\psi \,\mathrm{d}\theta^2$$
,

$$\mathrm{d}s^2 = a^2(t) \sinh^2\psi \,\mathrm{d}\theta^2$$
,

$$\mathrm{d} s^{\mathbf{z}} = a^{\mathbf{z}}(t) \sinh^{\mathbf{z}} \psi \, \mathrm{d} \theta^{\mathbf{z}} \; ,$$

we can relate w, the physical size of the object at the time of emission, to
$$\Delta \theta$$
:

$$w = a(t_e) \sinh \psi \Delta \theta$$
.

To evaluate $a(t_e)$ we can use

$$a(t_e) = x_e a(t_0) = \frac{x_e c}{H_0 \sqrt{\Omega_{k,0}}}$$
.

Finally, then,

$$\Delta heta = rac{w H_0 \sqrt{\Omega_{k,0}}}{x_e c \, \sinh \psi} \; ,$$

where ψ is given by the boxed equation above.

PROBLEM 8: TIME SCALES IN COSMOLOGY

- (a) 1 sec. [This is the time at which the weak interactions begin to "freeze out", so that free neutron decay becomes the only mechanism that can interchange protons and neutrons. From this time onward, the relative number of protons and neutrons is no longer controlled by thermal equilibrium considerations.]
- (b) 4 mins. [By this time the universe has become so cool that nuclear reactions are no longer initiated.]
- (c) 10^{-37} sec. [We learned in Lecture Notes 7 that kT was about 1 MeV at t = 1 sec. Since 1 GeV = 1000 MeV, the value of kT that we want is 10^{19} times higher. In the radiation-dominated era $T \propto a^{-1} \propto t^{-1/2}$, so we get 10^{-38} sec.]
- (d) 10,000 1,000,000 years. [This number was estimated in Lecture Notes 7 as 200,000 years.]
- (e) 10^{-5} sec. [As in (c), we can use $t \propto T^{-2}$, with $kT \approx 1$ MeV at t = 1 sec.]

PROBLEM 9: EVOLUTION OF FLATNESS (15 points)

(a) We start with the Friedmann equation from the formula sheet on the quiz:

$$^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{kc^{2}}{a^{2}}G\rho$$

Ħ

The critical density is the value of ρ corresponding to k = 0, so

$$H^2 = \frac{8\pi}{3} G \rho_c \ . \label{eq:H2}$$

Using this expression to replace H^2 on the left-hand side of the Friedmann equation, and then dividing by $8\pi G/3$, one finds

$$\rho_c = \rho - \frac{3kc^2}{8\pi Ga^2}$$

p.

Rearranging,

$$\frac{\rho - \rho_c}{\rho} = \frac{3kc^2}{8\pi G a^2 \rho} \,.$$

On the left-hand side we can divide the numerator and denominator by ρ_c , and then use the definition $\Omega \equiv \rho/\rho_c$ to obtain

$$\frac{\Omega - 1}{\Omega} = \frac{3kc^2}{8\pi G a^2 \rho} \,. \tag{1}$$

For a matter-dominated universe we know that $\rho \propto 1/a^3(t)$, and so

$$rac{\Omega-1}{\Omega} \propto a(t) \ .$$

If the universe is nearly flat we know that $a(t) \propto t^{2/3}$, so

$$\frac{\Omega-1}{\Omega} \propto t^{2/3} \; .$$

(b) Eq. (1) above is still true, so our only task is to re-evaluate the right-hand side. For a radiation-dominated universe we know that $\rho \propto 1/a^4(t)$, so

$$rac{\Omega-1}{\Omega} \propto a^2(t) \; .$$

If the universe is nearly flat then $a(t) \propto t^{1/2}$, so

$$rac{\Omega-1}{\Omega} \propto t$$
 .

PROBLEM 10: THE SLOAN DIGITAL SKY SURVEY z = 5.82QUASAR (40 points)

(a) Since $\Omega_m + \Omega_\Lambda = 0.35 + 0.65 = 1$, the universe is flat. It therefore obeys a simple form of the Friedmann equation,

$$H^2 = \left(rac{\dot{a}}{a}
ight)^2 = rac{8\pi}{3}G(
ho_m +
ho_\Lambda) \; ,$$

const, the energy densities on the right-hand side can be expressed in terms of their present values $\rho_{m,0}$ and $\rho_{\Lambda} \equiv \rho_{\Lambda,0}$. Defining portional to k has been dropped. Using the fact that $\rho_m \propto 1/a^3(t)$ and $\rho_{\Lambda} =$ where the overdot indicates a derivative with respect to t, and the term pro-

$$x(t) \equiv \frac{a(t)}{a(t_0)} ,$$

or

one has

$$\left(\frac{\dot{x}}{x}\right)^2 = \frac{8\pi}{3} G\left(\frac{\rho_{m,0}}{x^3} + \rho_\Lambda\right)$$
$$= \frac{8\pi}{3} G\rho_{c,0} \left(\frac{\Omega_{m,0}}{x^3} + \Omega_{\Lambda,0}\right)$$
$$= H_0^2 \left(\frac{\Omega_{m,0}}{x^3} + \Omega_{\Lambda,0}\right) .$$

Here we used the facts that

$$\Omega_{m,0}\equivrac{
ho_{m,0}}{
ho_{c,0}};\qquad \Omega_{\Lambda,0}\equivrac{
ho_{\Lambda}}{
ho_{c,0}}\;,$$

and

$$H_0^2 = {8\pi \over 3} G
ho_{c,0} \; .$$

The equation above for $(\dot{x}/x)^2$ implies that

$$\dot{x} = H_0 x \sqrt{rac{\Omega_{m,0}}{x^3} + \Omega_{\Lambda,0}} \; ,$$

which in turn implies that

$$lt = \frac{1}{H_0} \frac{\mathrm{d}x}{x\sqrt{\frac{\Omega_{m,0}}{x^3} + \Omega_{\Lambda,0}}}$$

relation can be integrated to give Using the fact that x changes from 0 to 1 over the life of the universe, this

$$t_0 = \int_0^{t_0} dt = \left| \begin{array}{c} \frac{1}{H_0} \int_0^1 \frac{dx}{x \sqrt{\frac{\Omega_{m,0}}{x^3} + \Omega_{\Lambda,0}}} \end{array} \right|.$$

So the SDSS people were right on target.

p. 36

p. 35

The answer can also be written as

$$t_{0} = \frac{1}{H_{0}} \int_{0}^{1} \frac{x \, \mathrm{d}x}{\sqrt{\Omega_{m,0}x + \Omega_{\Lambda,0}x^{4}}}$$

$$t_0 = rac{1}{H_0} \int_0^\infty rac{{\mathrm{d}} z}{(1+z)\sqrt{\Omega_{m,0}(1+z)^3 + \Omega_{\Lambda,0}}} \;,$$

where in the last answer I changed the variable of integration using

$$x = \frac{1}{1+z}$$
; $dx = -\frac{dz}{(1+z)^2}$.

of the limits of integration: x = 0 corresponds to $z = \infty$, and x = 1 corresponds to z = 0. Note that the minus sign in the expression for dx is canceled by the interchange

expected to complete the numerical calculation, but for pedagogical purposes I will continue. The integral can actually be carried out analytically, giving Your answer should look like one of the above boxed answers. You were not

$$\int_0^1 \frac{x \, \mathrm{d}x}{\sqrt{\Omega_{m,0} x + \Omega_{\Lambda,0} x^4}} = \frac{2}{3\sqrt{\Omega_{\Lambda,0}}} \ln\left(\frac{\sqrt{\Omega_m + \Omega_{\Lambda,0}} + \sqrt{\Omega_{\Lambda,0}}}{\sqrt{\Omega_m}}\right)$$

$$\int_0^1 \frac{x \, \mathrm{d}x}{\sqrt{\Omega_{m,0} x + \Omega_{\Lambda,0} x^4}} = \frac{2}{3\sqrt{\Omega_{\Lambda,0}}} \ln\left(\frac{\sqrt{\Omega_m + \Omega_{\Lambda,0}} + \sqrt{\Omega_{\Lambda,0}}}{\sqrt{\Omega_m}}\right)$$

$$\int_0^{\infty} \frac{1}{\sqrt{\Omega_{m,0}x + \Omega_{\Lambda,0}x^4}} = \frac{1}{3\sqrt{\Omega_{\Lambda,0}}} \ln \left(\frac{1}{\sqrt{\Omega_{M,0}}}\right)$$

where $H_0 = 100 h_0 \,\mathrm{km} \cdot \mathrm{sec}^{-1} \cdot \mathrm{Mpc}^{-1}$, one finds for $h_0 = 0.65 \,\mathrm{that}$

 $\frac{1}{H_0}$

||

— yr ,

 9.778×10^{9} h_0

 $\frac{1}{H_0} = 15.043 \times 10^9 \text{ yr}$.

Then using $\Omega_m = 0.35$ and $\Omega_{\Lambda,0} = 0.65$, one finds

 $t_0 = 13.88 \times 10^9 \text{ yr}$.

8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009

(b) Having done part (a), this part is very easy. The dynamics of the universe is from the quasar that we now receive was emitted when found the amount of time that it took for x to change from 0 to 1. The light of course the same, and the question is only slightly different. In part (a) we

$$x = \frac{1}{1+z} ,$$

since the cosmological redshift is given by

$$+ z = rac{a(t_{ ext{observed}})}{a(t_{ ext{emitted}})}$$
 .

universe to expand from x = 0 to x = 1/(1+z) is given by Using the expression for dt from part (a), the amount of time that it took the

$$t_e = \int_0^{t_e} dt = \left| \begin{array}{c} \frac{1}{H_0} \int_0^{1/(1+z)} \frac{dx}{x\sqrt{\frac{\Omega_{m,0}}{x^3} + \Omega_{\Lambda,0}}} \end{array} \right|.$$

Again one could write the answer other ways, including

$$t_0 = rac{1}{H_0} \int_z^\infty rac{\mathrm{d}z'}{(1+z')\sqrt{\Omega_{m,0}(1+z')^3 + \Omega_{\Lambda,0}}} \, .$$

tinuing, however, the integral can again be done analytically: Again you were expected to stop with an expression like the one above. Con-

Finally, then

 $\ell_c =$

0

dx

 $\overline{H_0 a(t_0)} \int_{1/(1+z)} x^2 \sqrt{\frac{\Omega_{m,0}}{x^3}} + \Omega_{\Lambda,0}$

$$\int_0^{x_{\max}} \frac{\mathrm{d}x}{x\sqrt{\frac{\Omega_m,0}{x^3} + \Omega_{\Lambda,0}}} = \frac{2}{3\sqrt{\Omega_{\Lambda,0}}} \ln\left(\frac{\sqrt{\Omega_m + \Omega_{\Lambda,0}x_{\max}^3} + \sqrt{\Omega_{\Lambda,0}}x_{\max}^{3/2}}{\sqrt{\Omega_m}}\right)$$

Using $x_{\text{max}} = 1/(1 + 5.82) = .1466$ and the other values as before, one finds

$$t_e = \frac{0.06321}{H_0} = 0.9509 \times 10^9 \text{ yr} \; .$$

So again the SDSS people were right.

$$t_e = \frac{0.06321}{H_0} = 0.9509 \times 10^9 \text{ yr} \; .$$

Alternatively, this result can be written as

 $\ell_{\rm phys,0} =$

 $\frac{c}{H_0}$

 $J_{1/(1+z)} \sqrt{\Omega_{m,0} x + \Omega_{\Lambda,0} x^4}$

dx

 $\ell_{\rm phys,0} = a(t_0) \, \ell_c = \frac{c}{H_0} \int_{1/(1+z)}^{z} \frac{dt}{x^2}$

 $rac{\Omega_{m,0}}{x^3}+\Omega_{\Lambda,0}$

dx

8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009

p. 37

(c) To find the physical distance to the quasar, we need to figure out how far light we multiply the coordinate distance by $a(t_0)$. For the flat metric can travel from z = 5.82 to the present. Since we want the present distance,

$$s^{2} = -c^{2} d\tau^{2} = -c^{2} dt^{2} + a^{2}(t) \left\{ dr^{2} + r^{2} (d\theta^{2} + \sin^{2} \theta d\phi^{2}) \right\} ,$$

the coordinate velocity of light (in the radial direction) is found by setting $ds^2 = 0$, giving

$$rac{\mathrm{d}r}{\mathrm{d}t} = rac{c}{a(t)} \; .$$

So the total coordinate distance that light can travel from t_e to t_0 is

$$\ell_c = \int_{t_e}^{t_0} rac{c}{a(t)} \,\mathrm{d}t \;.$$

This is not the final answer, however, because we don't explicitly know a(t). We can, however, change variables of integration from t to x, using

$$\mathrm{d}t = \frac{\mathrm{d}t}{\mathrm{d}x}\,\mathrm{d}x = \frac{\mathrm{d}x}{\dot{x}}\,.$$

So

$$\ell_c = rac{c}{a(t_0)} \int_{x_s}^1 rac{\mathrm{d}x}{x\,\dot{x}}$$

$$\ell_c = \frac{1}{a(t_0)} \int_{x_e} \frac{1}{x \cdot x}$$
,
he value of x at the time of emission, so x,

equation for where x_e is t z). Using the

the value of x at the time of emission, so
$$x_e = 1/(1 + x_e)$$

 \dot{x} from part (a), this integral can be rewritten as

$$a(t_0) \int_{x_e} x \dot{x}$$

he value of x at the time of emission, so $x_e = 1/2$
 \dot{x} from part (a) this integral can be rewritten

the value of x at the time of emission, so
$$x_e = 1/(1$$

$$a(t_0) J_{x_e} xx$$

the value of x at the time of emission, so $x_e = 1/(x_e)$
the value of x at the time of emission of $x_e = 1/(x_e)$

$$\ell_{\rm c} = \frac{c}{c} \int^1 \frac{\mathrm{d}x}{\mathrm{d}x}$$

PROBLEM 11: NEUTRINO NUMBER AND THE NEUTRON/PRO-TON EQUILIBRIUM

(a) From the chemical equilibrium equation on the front of the exam, the number densities of neutrons and protons can be written as

$$\begin{split} n_n &= g_n \frac{(2\pi m_n kT)^{3/2}}{(2\pi\hbar)^3} \, e^{(\mu_n - m_n c^2)/kT} \\ n_p &= g_p \frac{(2\pi m_p kT)^{3/2}}{(2\pi\hbar)^3} \, e^{(\mu_p - m_p c^2)/kT} \;, \end{split}$$

where $g_n = g_p = 2$. Dividing,

$$\frac{n_n}{n_p} = \left(\frac{m_n}{m_p}\right)^{3/2} e^{-(\Delta E + \mu_p - \mu_n)/kT}$$

proximating $m_n/m_p \approx 1$, one has where $\Delta E = (m_n - m_p)c^2$ is the proton-neutron mass-energy difference. Ap-

$$\frac{n_n}{n_p} = e^{-(\Delta E + \mu_p - \mu_n)/kT} \,.$$

necessary. Full credit was given whether or not this approximation was used. The approximation $m_n/m_p \approx 1$ is very accurate (0.14%), but is clearly not

(b) For any allowed chemical reaction, the sum of the chemical potentials on the two sides must be equal. So, from

$$e^+ + n \longleftrightarrow p + \bar{\nu}_e$$
,

we can infer that

$$-\mu_e+\mu_n=\mu_p-\mu_
u$$
 ,

which implies that

$$\mu_n-\mu_p=\mu_e-\mu_
u$$
 .

- (c) Applying the formula given in the problem to the number densities of electron

- neutrinos and the corresponding antineutrinos,
- $\bar{n}_{\nu} = g_{\nu}^* \frac{\zeta(3)}{\pi^2} \frac{(kT)^3}{(\hbar c)^3} e^{-\mu_{\nu}/kT}$ $n_{\nu} = g_{\nu}^* \frac{\zeta(3)}{\pi^2} \frac{(kT)^3}{(\hbar c)^3} e^{\mu_{\nu}/kT}$

since the chemical potential for the antineutrinos $(\bar{\nu})$ is the negative of the chemical potential for neutrinos. A neutrino has only one spin state, so $g_{\nu} = 3/4$, where the factor of 3/4 arises because neutrinos are fermions. Setting

$$x \equiv e^{-\mu_{\nu}/kT}$$

and

$$\equiv \frac{3}{4} \frac{\zeta(3)}{\pi^2} \frac{(kT)^3}{(\hbar c)^3} ,$$

where

 \mathbb{A}

the number density equations can be written compactly as

$$n_{
u} = \frac{A}{x}$$
, $\bar{n}_{
u} = xA$.

To express x in terms of the ratio \bar{n}_{ν}/n_{ν} , divide the second equation by the first to obtain

$$\frac{\bar{n}_{\nu}}{n_{\nu}} = x^2 \quad \Longrightarrow \quad x = \sqrt{\frac{\bar{n}_{\nu}}{n_{\nu}}} \,.$$

Alternatively, x can be expressed in terms of the difference in number densities $\bar{n}_{\nu}-n_{\nu}$ by starting with

$$\Delta n = \bar{n}_{\nu} - n_{\nu} = xA - \frac{A}{x} \, .$$

Rewriting the above formula as an explicit quadratic,

$$Ax^2 - \Delta n x - A = 0 ,$$

one finds

$$x = \frac{\Delta n \pm \sqrt{\Delta n^2 + 4A^2}}{2A}$$

Since the definition of x implies x > 0, only the positive root is relevant. Since the number of electrons is still assumed to be equal to the number of positrons, $\mu_e = 0$, so the answer to (b) reduces to $\mu_n - \mu_p = -\mu_{\nu}$. From (a),

$$\frac{n_n}{n_p} = e^{-(\Delta E + \mu_p - \mu_n)/kT}$$
$$= e^{-(\Delta E + \mu_\nu)/kT}$$
$$= x e^{-\Delta E/kT}$$

 $\sqrt{rac{ar{n}_
u}{n_
u}} e^{-\Delta E/kT}$.

p. 41

Alternatively, one can write the answer as

$$\frac{n_n}{n_p} = \frac{\sqrt{\Delta n^2 + 4A^2} + \Delta n}{2A} e^{-\Delta E/kT} ,$$

(d) For $\Delta n > 0$, the answer to (c) implies that the ratio n_n/n_p would be larger than in the usual case ($\Delta n = 0$). This is consistent with the expectation that an excess of antineutrinos will tend to cause p's to turn into n's according to

 $A \equiv \frac{3}{4} \frac{\zeta(3)}{\pi^2}$

 $\frac{(kT)^3}{(\hbar c)^3}$

$$p + \bar{\nu}_e \longrightarrow e^+ + n$$
.

the reaction

Since the amount of helium produced is proportional to the number of neutrons that survive until the breaking of the deuterium bottleneck, starting with a higher equilibrium abundance of neutrons will increase the production of helium.

PROBLEM 12: SECOND HUBBLE CROSSING (40 points)

(a) From the formula sheets, we know that for a flat radiation-dominated universe,

$$a(t) \propto t^{1/2}$$
 .

Since

$$H = \frac{\dot{a}}{a}$$

(which is also on the formula sheets),

$$H = rac{1}{2t}$$
 .

Then

 $\ell_H(t) \equiv c H^{-1}(t) =$

2ct.

(b) We are told that the energy density is dominated by photons and neutrinos, so we need to add together these two contributions to the energy density. For photons, the formula sheet reminds us that
$$a_{\nu} = 2$$
, so

$$u_{\gamma} = 2 \, rac{\pi^2}{30} \, rac{(kT_{\gamma})^4}{(\hbar c)^3} \, .$$

8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009

p. 43

8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2009

For neutrinos the formula sheet reminds us that

$$g_{\nu} = \frac{7}{8} \times \frac{3}{8} \times \frac{2}{8} \times \frac{1}{4} = \frac{21}{4} ,$$

Fermion 3 species Particle/ Spin states
factor $\nu_{e,\nu_{\mu},\nu_{\tau}}$ antiparticle

 $^{\rm O}$

$$u_{\nu} = \frac{21}{4} \frac{\pi^2}{30} \frac{(kT_{\nu})^4}{(\hbar c)^3} .$$

Combining these two expressions and using $T_{\nu} = (4/11)^{1/3} T_{\gamma}$, one has

$$u = u_{\gamma} + u_{\nu} = \left[2 + \frac{21}{4} \left(\frac{4}{11}\right)^{4/3}\right] \frac{\pi^2}{30} \frac{(kT_{\gamma})^4}{(\hbar c)^3} ,$$

so finally

$$g_1 = 2 + rac{21}{4} \left(rac{4}{11}
ight)^{4/3}$$
.

(c) The Friedmann equation tells us that, for a flat universe,

$$H^2 = {8\pi\over 3} G
ho$$

$$^{-2}=rac{8\pi}{3}G
ho$$
 ,

$$H^2 = {8\pi \over 3} G
ho \ ,$$

$$^{2} = \frac{8\pi}{3} G
ho \; ,$$

$$I^2 = {8\pi \over 3} G
ho \; ,$$

$$^{2}=rac{8\pi}{3}G
ho\;,$$

(2t) and

$$\rho = \frac{u}{c^2} = g_1 \frac{\pi^2}{30} \frac{(kT_{\gamma})^4}{\hbar^3 c^5} \,.$$

where in this case $H = 1/(2t) \epsilon$

Thus

 $\left(rac{1}{2t}
ight)^2 = rac{8\pi G}{3}g_1 rac{\pi^2}{30} rac{(kT_\gamma)^4}{\hbar^3 c^5}$

Solving for T_{γ} ,

 T_{γ}

 $h_{e} = rac{1}{k} \left(rac{45 \hbar^3 c^5}{16 \pi^3 g_1 G}
ight)^{1/4} rac{1}{\sqrt{t}}$

$$^2={8\pi\over 3}G
ho$$
 ,

$$f^2 = {8\pi \over 3} G
ho \ ,$$

$$H^2={8\pi\over 3}G
ho~,$$

$$^2={8\pi\over 3}G
ho~,$$

$$\begin{cases} 8 \\ \text{Fermion 3 species Particle}/ \\ \text{factor } \nu_{e,\nu}\mu,\nu_{\tau} \\ \text{ antiparticle} \end{cases} \text{ Spin states}$$

cussion, the wavelength at time t is scaled by the scale factor a(t):

 $\lambda(t) = \frac{a(t)}{a(t_0)} \, \lambda \; .$

If λ is the present physical wavelength of the density perturbations under dis-

any Hubble crossing during the radiation-dominated era must be the second

and the first Hubble crossing always occurs during the inflationary era. Thus

Hubble crossing.

of particle species. Today the entropy of the universe is still dominated by remained essentially constant between then and now. Thus, photons and neutrinos, so the conservation of entropy implies that aT_{γ} has Between the second Hubble crossing and now, there have been no freeze-outs

$$\lambda(t) = rac{T_{\gamma,0}}{T_{\gamma}(t)}\,\lambda\;.$$

 $cH^{-1}(t)$ can be rewritten as Using the previous results for $cH^{-1}(t)$ and for $T_{\gamma}(t)$, the condition $\lambda(t) =$

$$kT_{\gamma,0} \left(\frac{16\pi^3 g_1 G}{45\hbar^3 c^5}\right)^{1/4} \sqrt{t} \, \lambda = 2ct$$

Solving for t, the time of second Hubble crossing is found to be

$$t_{H2}(\lambda) = (kT_{\gamma,0}\lambda)^2 \left(\frac{\pi^3 g_1 G}{45\hbar^3 c^9}\right)^{1/2}$$

to know where the above formula leads. If we take $\lambda = 10^6$ lt-yr, it gives Extension: You were not asked to insert numbers, but it is of course interesting

$$t_{H2}(10^6 \text{ lt-yr}) = 1.04 \times 10^7 \text{ s} = 0.330 \text{ year}$$
.

For $\lambda = 1$ Mpc,

$$t_{H2}(1 \text{ Mpc}) = 1.11 \times 10^8 \text{ s} = 3.51 \text{ year}$$
.

galaxy, Taking $\lambda = 2.5 \times 10^6$ lt-yr, the distance to Andromeda, the nearest spiral

(d) The condition for Hubble crossing is

 $\lambda(t) = cH^{-1}(t) ,$

$$t_{H2}(2.5 \times 10^6 \text{ lt-yr}) = 6.50 \times 10^7 \text{ sec} = 2.06 \text{ year}$$