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PROBLEM 1: QUESTIONS BASED ON READING AND SHORT
CALCULATIONS (30 points)†

Please answer part (a) directly next to each part, but answer parts (b) and (c) on
the blank page at the right.

(a) (7 points) The following quantities all have a power law dependence on the
cosmological scale factor, a(t). State the dependences (in the form of ∝ an):

(i) The number density of baryons: Ans: nB ∝ a−3

Explanation: baryons are conserved, so they are simply diluted by the in-
crease in the volume.

(ii) The number density of photons: Ans: nγ ∝ a−3

Explanation: photons are not rigorously conserved, but their number is
essentially unchanged as the universe expands, so they are also diluted by
the increase in the volume.

(iii) The energy density of baryons (protons and neutrons): Ans: uB ∝ a−3

Explanation: baryons are heavy and behave nonrelatistically during most
of the evolution of the universe, so their energy is dominated by their rest
energy, which is in turn proportional to their number density.

(iv) The energy density of photons: Ans: uγ ∝ a−4

Explanation: photons redshift as the universe expands, so the energy of
each photon falls off proportionally to 1/a. Thus the energy density falls
off one power of a(t) faster than the number density.

(v) The pressure of photons: Ans: pγ ∝ a−4

Explanation: the pressure of a photon gas is proportional to its energy
density. More precisely, pγ = uγ/3.

(vi) The wavelength of photons: Ans: λγ ∝ a

Explanation: the wavelength of a photon is simply stretched as the universe
expands.

(vii) The temperature of a blackbody distribution of photons: Ans: Tγ ∝ a−1

Explanation: the temperature of blackbody radiation is proportional to the
average energy of each photon, which in turn redshifts as a−1.
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(b) The Friedman equation for the first derivative of the scale factor,

(
ȧ

a

)2

=
8πG

3
ρ − kc2

a2

depends on the mass density for non-relativistic matter, or, for relativistic
matter, on the energy density. From (a)-(iii) above, the energy density for
non-relativistic matter goes like a−3, whereas the energy density for relativistic
matter goes as a−4. Although the radiation background has a low energy
density today (three orders of magnitude lower than baryonic matter), it does
exist. One may trace the energy densities backwards in time, to when a was
very small in the early universe. No matter what the prefactors, for some
sufficiently small a, a−4 dominated over a−3. At that time, and before, the
universe would not have been matter dominated; rather, it would have been
radiation dominated, which means that the assumption a ∝ t2/3 would not
have been valid.

(c) Today, the temperature of the background radiation is approximately 3 Kelvin,
and when the universe first became transparent (know as “last scattering,”
“decoupling,” or “recombination,” which should rightfully be called “combina-
tion”), the radiation was approximately 3000 Kelvin. From (a)-(vii), we can
write (

Tls

T0

)
=
(

ao

als

)
= 1 + zls,

where a subscript of ls means “last scattering.” Evaluating this with the values
above, we have z ≈ 1000.

(d) If we take the matter dominated form a(t) = bt2/3, then the Hubble parameter
is

H(t) =
ȧ(t)
a(t)

=
2
3
bt−1/3

bt2/3
=

2
3t

.

Solving this for t at some time, t = 2
3H . To find the age of the universe today,

one evaluates this formula with H = H0, finding an age t0 ≈ 9× 109 years. To
find the age at last scattering, one can use

1 + zls =
a(t0)
a(tls)

=
t
2/3
0

t
2/3
ls

.

Solving for tls, one finds tls = t0(1+z)−3/2. The value t0 was calculated above,
and z comes from part (c). Plugging these in, one finds tls ≈ 2.8× 105 years.



8.286 QUIZ 1 SOLUTIONS, FALL 2009 p. 3

(e) The horizon distance at time t is the physical distance that light has been
traveling between when a was zero and time t. The general physical distance
that light has traveled between time ti and tf is

lp(tf ) = a(tf )
∫ tf

ti

c dt′

a(t′)
.

We normally choose t = 0 to denote the time when a vanishes, so the horizon
distance is

dh(t) = a(t)
∫ t

0

c dt′

a(t′)
.

Evaluating this with a(t) = bt2/3, we find dh(t) = 3ct. One evaluates this
formula with the two answers from part (d). The horizon distance today would
be 8.3 Gpc = 27 × 109 lyr = 2.6× 1026 m. At the time of last scattering, the
horizon distance would have been 0.26 Mpc = 8.5× 105 lyr = 8× 1021 m.

PROBLEM 2: A TWO-LEVEL HIGH-SPEED MERRY-GO-ROUND
(15 points)∗

(a) Since the relative positions of all the cars remain fixed as the merry-go-round
rotates, each successive pulse from any given car to any other car takes the
same amount of time to complete its trip. Thus there will be no Doppler shift
caused by pulses taking different amounts of time; the only Doppler shift will
come from time dilation.

We will describe the events from the point of view of an inertial reference
frame at rest relative to the hub of the merry-go-round, which we will call the
laboratory frame. This is the frame in which the problem is described, in which
the inner cars are moving at speed v, and the outer cars are moving at speed
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2v. In the laboratory frame, the time interval between the wave crests emitted
by the source ∆tLab

S will be exactly equal to the time interval ∆tLab
O between

two crests reaching the observer:

∆tLab
O = ∆tLab

S .

The clocks on the merry-go-round cars are moving relative to the laboratory
frame, so they will appear to be running slowly by the factor

γ1 =
1√

1− v2/c2

for the inner cars, and by the factor

γ2 =
1√

1− 4v2/c2

for the outer cars. Thus, if we let ∆tS denote the time between crests as
measured by a clock on the source, and ∆tO as the time between crests as
measured by a clock moving with the observer, then these quantities are related
to the laboratory frame times by

γ2∆tS = ∆tLab
S and γ1∆tO = ∆tLab

O .

To make sure that the γ-factors are on the right side of the equation, you
should keep in mind that any time interval should be measured as shorter on
the moving clocks than on the lab clocks, since these clocks appear to run
slowly. Putting together the equations above, one has immediately that

∆tO =
γ2

γ1
∆tS .

The redshift z is defined by

∆tO ≡ (1 + z)∆tS ,

so

z =
γ2

γ1
− 1 =

√
1− v2

c2

1− 4v2

c2

− 1 .

(b) For this part of the problem is useful to imagine a relay station located just to
the right of car 6 in the diagram, at rest in the laboratory frame. The relay
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station rebroadcasts the waves as it receives them, and hence has no effect on
the frequency received by the observer, but serves the purpose of allowing us
to clearly separate the problem into two parts.

The first part of the discussion concerns the redshift of the signal as measured
by the relay station. This calculation would involve both the time dilation and
a change in path lengths between successive pulses, but we do not need to do
it. It is the standard situation of a source and observer moving directly away
from each other, as discussed at the end of Lecture Notes 1. The Doppler shift
is given by Eq. (1.33), which was included in the formula sheet. Writing the
formula for a recession speed u, it becomes

(1 + z)|relay =

√
1 + u

c

1− u
c

.

If we again use the symbol ∆tS for the time between wave crests as measured
by a clock on the source, then the time between the receipt of wave crests as
measured by the relay station is

∆tR =

√
1 + u

c

1− u
c

∆tS .

The second part of the discussion concerns the transmission from the relay
station to car 6. The velocity of car 6 is perpendicular to the direction from
which the pulse is being received, so this is a transverse Doppler shift. Any
change in path length between successive pulses is second order in ∆t, so it can
be ignored. The only effect is therefore the time dilation. As described in the
laboratory frame, the time separation between crests reaching the observer is
the same as the time separation measured by the relay station:

∆tLab
O = ∆tR .
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As in part (a), the time dilation implies that

γ2∆tO = ∆tLab
O .

Combining the formulas above,

∆O =
1
γ2

√
1 + u

c

1− u
c

∆tS .

Again ∆tO ≡ (1 + z)∆tS, so

z =
1
γ2

√
1 + u

c

1− u
c

− 1 =

√(
1− 4v2

c2

) (
1 + u

c

)
1− u

c

− 1 .

PROBLEM 3: SIGNAL PROPAGATION IN A FLAT MATTER-
DOMINATED UNIVERSE (55 points)∗

(a)-(i) If we let �c(t) denote the coordinate distance of the light signal from A, then
we can make use of Eq. (3.8) from the lecture notes for the coordinate velocity
of light:

d�c

dt
=

c

a(t)
. (3.1)

Integrating the velocity,

�c(t) =
∫ t

t1

c dt′

a(t′)
=

c

b

∫ t

t1

dt′

t′2/3

=
3c
b

[
t1/3 − t

1/3
1

]
.

(3.2)

The physical distance is then

�p,sA(t) = a(t)�c(t) = bt2/3 3c
b

[
t1/3 − t

1/3
1

]
= 3c

(
t − t2/3t

1/3
1

)

= 3ct

[
1−

(
t1
t

)1/3
]

.

(3.3)
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We now need to differentiate, which is done most easily with the middle line
of the above equation:

d�p,sA

dt
= c

[
3− 2

(
t1
t

)1/3
]

. (3.4)

(ii) At t = t1, the time of emission, the above formula gives

d�p,sA

dt
= c . (3.5)

This is what should be expected, since the speed of separation of the light
signal at the time of emission is really just a local measurement of the speed
of light, which should always give the standard value c.

(iii) At arbitrarily late times, the second term in brackets in Eq. (3.4) becomes
negligible, so

d�p,sA

dt
→ 3c . (3.6)

Although this answer is larger than c, it does not violate relativity. Once the
signal is far from its origin it is carried by the expansion of the universe, and
relativity places no speed limit on the expansion of the universe.

(b) This part of the problem involves H(t1), so we can start by evaluating it:

H(t) =
ȧ(t)
a(t)

=
d
dt
(bt2/3)
bt2/3

=
2
3t

. (3.7)

Thus, the physical distance from A to B at time t1 is

�p,BA =
3
2
ct1 . (3.8)

The coordinate distance is the physical distance divided by the scale factor, so

�c,BA =
cH−1(t1)

a(t1)
=

3
2ct1

bt
2/3
1

=
3c
2b

t
1/3
1 . (3.9)
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Since light travels at a coordinate speed c/a(t), the light signal will reach galaxy
B at time t2 if

�c,BA =
∫ t2

t1

c

bt′2/3
dt′

=
3c
b

[
t
1/3
2 − t

1/3
1

]
.

(3.10)

Setting the expressions (3.9) and (3.10) for �c,BA equal to each other, one finds

1
2
t
1/3
1 = t

1/3
2 − t

1/3
1 =⇒ t

1/3
2 =

3
2
t
1/3
1 =⇒ t2 =

27
8

t1 . (3.11)

(c)-(i) Physical distances are additive, so if one adds the distance from A and the light
signal to the distance from the light signal to B, one gets the distance from A
to B:

�p,sA + �p,sB = �p,BA . (3.12)

But �p,BA(t) is just the scale factor times the coordinate separation, a(t)�c,BA.
Using the previous relations (3.3) and (3.9) for �p,sA(t) and �c,BA, we find

3ct

[
1−

(
t1
t

)1/3
]
+ �p,sB(t) =

3
2
ct

1/3
1 t2/3 , (3.13)

so

�p,sB(t) =
9
2
ct

1/3
1 t2/3 − 3ct = 3ct

[
3
2

(
t1
t

)1/3

− 1

]
. (3.14)

As a check, one can verify that this expression vanishes for t = t2 = (27/8) t1,
and that it equals (3/2)ct1 at t = t1. But we are asked to find the speed of
approach, the negative of the derivative of Eq. (3.14):

Speed of approach = −d�p,sB

dt

= −3ct1/3
1 t−1/3 + 3c

= 3c

[
1−

(
t1
t

)1/3
]

.

(3.15)
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(ii) At the time of emission, t = t1, Eq. (3.15) gives

Speed of approach = 0 . (3.16)

This makes sense, since at t = t1 galaxy B is one Hubble length from galaxy
A, which means that its recession velocity is exactly c. The recession velocity
of the light signal leaving A is also c, so the rate of change of the distance from
the light signal to B is initially zero.

(iii) At the time of reception, t = t2 = (27/8) t1, Eq. (3.15) gives

Speed of approach = c , (3.17)

which is exactly what is expected. As in part (a)-(ii), this is a local measure-
ment of the speed of light.

(d) To find the redshift, we first find the time tBA at which a light pulse must be
emitted from galaxy B so that it arrives at galaxy A at time t1. Using the
coordinate distance given by Eq. (3.9), the time of emission must satisfy

3c
2b

t
1/3
1 =

∫ t1

tBA

c

bt′2/3
dt′ =

3c
b

(
t
1/3
1 − t

1/3
BA

)
, (3.18)

which can be solved to give

tBA =
1
8

t1 . (3.19)

The redshift is given by

1 + zBA =
a(t1)

a(tBA)
=
(

t1
tBA

)2/3

= 4 . (3.20)

Thus,

zBA = 3 . (3.21)

(e) Applying Euclidean geometry to the triangle C-A-B shows that the physical
distance from C to B, at time t1, is

√
2cH−1. The coordinate distance is also

larger than the A-B separation by a factor of
√
2. Thus,

�c,BC =
3
√
2c

2b
t
1/3
1 . (3.22)
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If we let tBC be the time at which a light pulse must be emitted from galaxy
B so that it arrives at galaxy C at time t1, we find

3
√
2c

2b
t
1/3
1 =

∫ t1

tBC

c

bt′2/3
dt′ =

3c
b

(
t
1/3
1 − t

1/3
BC

)
, (3.23)

which can be solved to find

tBC =

(
1−

√
2
2

)3

t1 . (3.24)

Then

1 + zBC =
a(t1)

a(tBC)
=
(

t1
tBC

)2/3

=
1(

1−
√

2
2

)2 , (3.25)

and

zBC =
1(

1−
√

2
2

)2 − 1 . (3.26)

Full credit will be given for the answer in the form above, but it can be simplified
by rationalizing the fraction:

zBC =
1(

1−
√

2
2

)2

(
1 +

√
2

2

)2

(
1 +

√
2

2

)2 − 1

=
1 +

√
2 + 1

2
1
4

− 1

= 5 + 4
√
2 .

(3.27)

Numerically, zBC = 10.657.

(f) Following the solution to Problem 6 of Problem Set 2, we draw a diagram in
comoving coordinates, putting the source at the center of a sphere:
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The energy from galaxy A will radiate uniformly over the sphere. If the detector
has physical area AD, then in the comoving coordinate picture it has coordinate
area AD/a2(t2), since the detection occurs at time t2 The full coordinate area
of the sphere is 4π�2

c,BA, so the fraction of photons that hit the detector is

fraction =

[
A/a(t2)2

]
4π�2

c,BA

. (3.28)

As in Problem 6, the power hitting the detector is reduced by two factors of
(1 + z): one factor because the energy of each photon is proportional to the
frequency, and hence is reduced by the redshift, and one more factor because
the rate of arrival of photons is also reduced by the redshift factor (1 + z).
Thus,

Power hitting detector = P

[
A/a(t2)2

]
4π�2

c,BA

1
(1 + z)2

= P

[
A/a(t2)2

]
4π�2

c,BA

[
a(t1)
a(t2)

]2

= P
A

4π�2
c,BA

a2(t1)
a4(t2)

.

(3.29)

The energy flux is given by

J =
Power hitting detector

A
, (3.30)

so

J =
P

4π�2
c,BA

a2(t1)
a4(t2)

. (3.31)



8.286 QUIZ 1 SOLUTIONS, FALL 2009 p. 12

From here it is just algebra, using Eqs. (3.9) and (3.11), and a(t) = bt2/3:

J =
P

4π
[

3c
2b

t
1/3
1

]2 b2t
4/3
1

b4t
8/3
2

=
P

4π
[

3c
2b

t
1/3
1

]2 b2t
4/3
1(

27
8

)8/3
b4t

8/3
1

=
P

4π
[

3c
2

t
1/3
1

]2 t
4/3
1(

3
2

)8
t
8/3
1

=
28

310π

P

c2t21

=
256

59, 049π
P

c2t21
.

(3.32)

It is debatable which of the last two expressions is the simplest, so I have boxed
both of them. One could also write

J = 1.380× 10−3 P

c2t21
. (3.33)

†Solutions to parts (b)-(e) written by Leo Stein; solution to part (a) by Alan Guth.
∗Solution written by Alan Guth.

(Attributions added 10/23/09.)


