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P
rof.

A
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G
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Q
U
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L
U
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N
S

Q
u
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D
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O
ctob
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6,

2009

P
R

O
B

L
E
M

1:
Q

U
E
S
T

IO
N

S
B

A
S
E
D

O
N

R
E
A

D
IN

G
A

N
D

S
H

O
R
T

C
A

L
C

U
L
A

T
IO

N
S

(30
points) †

P
lease

answ
er

part
(a)

directly
next

to
each

part,
but

answ
er

parts
(b)

and
(c)

on
the

blank
page

at
the

right.

(a)
(7

points)
T
he

follow
ing

quantities
all

have
a
pow

er
law

dependence
on

the
cosm

ologicalscale
factor,

a(t).
State

the
dependences

(in
the

form
of∝

a
n):

(i)
T
he

num
ber

density
of

baryons:
A
ns:

n
B
∝

a −
3

E
xplanation:

baryons
are

conserved,
so

they
are

sim
ply

diluted
by

the
in-

crease
in

the
volum

e.

(ii)
T
he

num
ber

density
of

photons:
A
ns:

n
γ ∝

a −
3

E
xplanation:

photons
are

not
rigorously

conserved,
but

their
num

ber
is

essentially
unchanged

as
the

universe
expands,

so
they

are
also

diluted
by

the
increase

in
the

volum
e.

(iii)
T
he

energy
density

of
baryons

(protons
and

neutrons):
A
ns:

u
B
∝

a −
3

E
xplanation:

baryons
are

heavy
and

behave
nonrelatistically

during
m
ost

of
the

evolution
of

the
universe,

so
their

energy
is

dom
inated

by
their

rest
energy,

w
hich

is
in

turn
proportionalto

their
num

ber
density.

(iv)
T
he

energy
density

of
photons:

A
ns:

u
γ ∝

a −
4

E
xplanation:

photons
redshift

as
the

universe
expands,

so
the

energy
of

each
photon

falls
off

proportionally
to

1
/
a.

T
hus

the
energy

density
falls

off
one

pow
er

of
a(t)

faster
than

the
num

ber
density.

(v)
T
he

pressure
of

photons:
A
ns:

p
γ ∝

a −
4

E
xplanation:

the
pressure

of
a

photon
gas

is
proportional

to
its

energy
density.

M
ore

precisely,
p

γ
=

u
γ
/3

.

(vi)
T
he

w
avelength

of
photons:

A
ns:

λ
γ ∝

a

E
xplanation:

the
w
avelength

ofa
photon

is
sim

ply
stretched

as
the

universe
expands.

(vii)
T
he

tem
perature

ofa
blackbody

distribution
ofphotons:

A
ns:

T
γ ∝

a −
1

E
xplanation:

the
tem

perature
of

blackbody
radiation

is
proportionalto

the
average

energy
of

each
photon,

w
hich

in
turn

redshifts
as

a −
1.
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(b)
T
he

Friedm
an

equation
for

the
first

derivative
of

the
scale

factor,

(
ȧa )

2

=
8
π
G3

ρ−
k
c
2

a
2

depends
on

the
m
ass

density
for

non-relativistic
m
atter,

or,
for

relativistic
m
atter,

on
the

energy
density.

From
(a)-(iii)

above,
the

energy
density

for
non-relativistic

m
atter

goes
like

a −
3,w

hereas
the

energy
density

for
relativistic

m
atter

goes
as

a −
4.

A
lthough

the
radiation

background
has

a
low

energy
density

today
(three

orders
of

m
agnitude

low
er

than
baryonic

m
atter),it

does
exist.

O
ne

m
ay

trace
the

energy
densities

backw
ards

in
tim

e,
to

w
hen

a
w
as

very
sm

all
in

the
early

universe.
N
o
m
atter

w
hat

the
prefactors,

for
som

e
suffi

ciently
sm

all
a,

a −
4
dom

inated
over

a −
3.

A
t
that

tim
e,

and
before,

the
universe

w
ould

not
have

been
m
atter

dom
inated;

rather,
it

w
ould

have
been

radiation
dom

inated,
w
hich

m
eans

that
the

assum
ption

a
∝

t
2
/
3
w
ould

not
have

been
valid.

(c)
T
oday,the

tem
perature

ofthe
background

radiation
is
approxim

ately
3
K
elvin,

and
w
hen

the
universe

first
becam

e
transparent

(know
as

“last
scattering,”

“decoupling,”
or

“recom
bination,”

w
hich

should
rightfully

be
called

“com
bina-

tion”),
the

radiation
w
as

approxim
ately

3000
K
elvin.

From
(a)-(vii),

w
e
can

w
rite

(
T

ls

T
0 )

= (
a

o

a
ls )

=
1
+

z
ls ,

w
here

a
subscript

of
ls

m
eans

“last
scattering.”

E
valuating

this
w
ith

the
values

above,
w
e
have

z≈
1000.

(d)
Ifw

e
take

the
m
atter

dom
inated

form
a(t)

=
bt

2
/
3,then

the
H
ubble

param
eter

is

H
(t)

=
ȧ(t)
a(t)

=
23
bt −

1
/
3

bt
2
/
3

=
23
t .

Solving
this

for
t
at

som
e
tim

e,
t
=

2
3
H
.
T
o
find

the
age

of
the

universe
today,

one
evaluates

this
form

ula
w
ith

H
=

H
0 ,finding

an
age

t
0 ≈

9×
10

9
years.

T
o

find
the

age
at

last
scattering,

one
can

use

1
+

z
ls
=

a(t
0 )

a(t
l s)

=
t
2
/
3

0

t
2
/
3

ls

.

Solving
for

t
ls ,one

finds
t
ls
=

t
0 (1

+
z) −

3
/
2.

T
he

value
t
0
w
as

calculated
above,

and
z
com

es
from

part
(c).

P
lugging

these
in,

one
finds

t
ls ≈

2
.8×

10
5
years.
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(e)
T
he

horizon
distance

at
tim

e
t
is

the
physical

distance
that

light
has

been
traveling

betw
een

w
hen

a
w
as

zero
and

tim
e

t.
T
he

general
physical

distance
that

light
has

traveled
betw

een
tim

e
t
i
and

t
f
is

lp (t
f )

=
a(t

f ) ∫
t
f

t
i

cd
t ′

a(t ′)
.

W
e
norm

ally
choose

t
=

0
to

denote
the

tim
e
w
hen

a
vanishes,

so
the

horizon
distance

is

d
h (t)

=
a(t) ∫

t

0

cd
t ′

a(t ′)
.

E
valuating

this
w
ith

a(t)
=

bt
2
/
3,

w
e
find

d
h (t)

=
3
ct.

O
ne

evaluates
this

form
ula

w
ith

the
tw

o
answ

ers
from

part
(d).

T
he

horizon
distance

today
w
ould

be
8
.3

G
pc

=
27×

10
9
lyr

=
2
.6×

10
2
6
m
.
A
t
the

tim
e
of

last
scattering,

the
horizon

distance
w
ould

have
been

0.26
M
pc

=
8
.5×

10
5
lyr

=
8×

10
2
1
m
.

P
R

O
B

L
E
M

2:
A

T
W

O
-L

E
V

E
L

H
IG

H
-S

P
E
E
D

M
E
R

R
Y

-G
O

-R
O

U
N

D
(15

points) ∗

(a)
Since

the
relative

positions
of

all
the

cars
rem

ain
fixed

as
the

m
erry-go-round

rotates,
each

successive
pulse

from
any

given
car

to
any

other
car

takes
the

sam
e
am

ount
of

tim
e
to

com
plete

its
trip.

T
hus

there
w
illbe

no
D
oppler

shift
caused

by
pulses

taking
different

am
ounts

of
tim

e;
the

only
D
oppler

shift
w
ill

com
e
from

tim
e
dilation.

W
e
w
ill

describe
the

events
from

the
point

of
view

of
an

inertial
reference

fram
e
at

rest
relative

to
the

hub
of

the
m
erry-go-round,

w
hich

w
e
w
illcall

the
laboratory

fram
e.

T
his

is
the

fram
e
in

w
hich

the
problem

is
described,in

w
hich

the
inner

cars
are

m
oving

at
speed

v,
and

the
outer

cars
are

m
oving

at
speed
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2
v.

In
the

laboratory
fram

e,the
tim

e
intervalbetw

een
the

w
ave

crests
em

itted
by

the
source

∆
t
L
a
b

S
w
ill

be
exactly

equal
to

the
tim

e
interval

∆
t
L
a
b

O
betw

een
tw

o
crests

reaching
the

observer:∆
t
L
a
b

O
=

∆
t
L
a
b

S
.

T
he

clocks
on

the
m
erry-go-round

cars
are

m
oving

relative
to

the
laboratory

fram
e,

so
they

w
illappear

to
be

running
slow

ly
by

the
factor

γ
1
=

1
√

1−
v
2/

c
2

for
the

inner
cars,

and
by

the
factor

γ
2
=

1
√
1−

4
v
2/

c
2

for
the

outer
cars.

T
hus,

if
w
e
let

∆
t
S

denote
the

tim
e
betw

een
crests

as
m
easured

by
a
clock

on
the

source,
and

∆
t
O

as
the

tim
e
betw

een
crests

as
m
easured

by
a
clock

m
oving

w
ith

the
observer,then

these
quantities

are
related

to
the

laboratory
fram

e
tim

es
by

γ
2 ∆

t
S
=

∆
t
L
a
b

S
and

γ
1 ∆

t
O
=

∆
t
L
a
b

O
.

T
o
m
ake

sure
that

the
γ-factors

are
on

the
right

side
of

the
equation,

you
should

keep
in

m
ind

that
any

tim
e
interval

should
be

m
easured

as
shorter

on
the

m
oving

clocks
than

on
the

lab
clocks,

since
these

clocks
appear

to
run

slow
ly.

P
utting

together
the

equations
above,

one
has

im
m
ediately

that

∆
t
O
=

γ
2

γ
1 ∆

t
S

.

T
he

redshift
z
is

defined
by

∆
t
O
≡

(1
+

z)∆
t
S

,

so

z
=

γ
2

γ
1 −

1
= √

1−
v
2

c
2

1−
4
v
2

c
2

−
1

.

(b)
For

this
part

of
the

problem
is
useful

to
im

agine
a
relay

station
located

just
to

the
right

of
car

6
in

the
diagram

,
at

rest
in

the
laboratory

fram
e.

T
he

relay
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station
rebroadcasts

the
w
aves

as
it

receives
them

,
and

hence
has

no
effect

on
the

frequency
received

by
the

observer,
but

serves
the

purpose
of

allow
ing

us
to

clearly
separate

the
problem

into
tw

o
parts.

T
he

first
part

of
the

discussion
concerns

the
redshift

of
the

signalas
m
easured

by
the

relay
station.

T
his

calculation
w
ould

involve
both

the
tim

e
dilation

and
a
change

in
path

lengths
betw

een
successive

pulses,
but

w
e
do

not
need

to
do

it.
It

is
the

standard
situation

of
a
source

and
observer

m
oving

directly
aw

ay
from

each
other,as

discussed
at

the
end

ofL
ecture

N
otes

1.
T
he

D
oppler

shift
is

given
by

E
q.

(1.33),
w
hich

w
as

included
in

the
form

ula
sheet.

W
riting

the
form

ula
for

a
recession

speed
u,

it
becom

es

(1
+

z)|re
la

y
= √

1
+

uc

1−
uc

.

If
w
e
again

use
the

sym
bol

∆
t
S
for

the
tim

e
betw

een
w
ave

crests
as

m
easured

by
a
clock

on
the

source,
then

the
tim

e
betw

een
the

receipt
of

w
ave

crests
as

m
easured

by
the

relay
station

is

∆
t
R
= √

1
+

uc

1−
uc

∆
t
S

.

T
he

second
part

of
the

discussion
concerns

the
transm

ission
from

the
relay

station
to

car
6.

T
he

velocity
of

car
6
is

perpendicular
to

the
direction

from
w
hich

the
pulse

is
being

received,
so

this
is

a
transverse

D
oppler

shift.
A
ny

change
in

path
length

betw
een

successive
pulses

is
second

order
in

∆
t,so

it
can

be
ignored.

T
he

only
effect

is
therefore

the
tim

e
dilation.

A
s
described

in
the

laboratory
fram

e,
the

tim
e
separation

betw
een

crests
reaching

the
observer

is
the

sam
e
as

the
tim

e
separation

m
easured

by
the

relay
station:

∆
t
L
a
b

O
=

∆
t
R

.
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A
s
in

part
(a),the

tim
e
dilation

im
plies

that

γ
2 ∆

t
O
=

∆
t
L
a
b

O
.

C
om

bining
the

form
ulas

above,

∆
O
=

1γ
2 √

1
+

uc

1−
uc

∆
t
S

.

A
gain

∆
t
O
≡

(1
+

z)∆
t
S ,

so

z
=

1γ
2 √

1
+

uc

1−
uc

−
1
= √(1−

4
v
2

c
2 )(1

+
uc )

1−
uc

−
1

.

P
R

O
B

L
E
M

3:
S
IG

N
A

L
P

R
O

P
A

G
A

T
IO

N
IN

A
F
L
A

T
M

A
T

T
E
R

-
D

O
M

IN
A

T
E
D

U
N

IV
E
R

S
E

(55
points) ∗

(a)-(i)
If

w
e
let

�
c (t)

denote
the

coordinate
distance

of
the

light
signal

from
A
,
then

w
e
can

m
ake

use
of

E
q.(3.8)

from
the

lecture
notes

for
the

coordinate
velocity

of
light:

d
�
c

d
t
=

c

a(t)
.

(3.1)

Integrating
the

velocity,�
c (t)

= ∫
t

t1

cd
t ′

a(t ′)
=

cb ∫
t

t1

d
t ′

t ′2
/
3

=
3
cb [t

1
/
3−

t
1
/
3

1 ]
.

(3.2)

T
he

physical
distance

is
then

�
p
,s

A
(t)

=
a(t)�

c (t)
=

bt
2
/
3 3

cb [t
1
/
3−

t
1
/
3

1 ]
=

3
c (

t−
t
2
/
3t

1
/
3

1 )

=
3
ct [1− (

t
1t )

1
/
3 ]

.

(3.3)
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W
e
now

need
to

differentiate,
w
hich

is
done

m
ost

easily
w
ith

the
m
iddle

line
of

the
above

equation:

d
�
p
,s

A

d
t

=
c [3−

2 (
t
1t )

1
/
3 ]

.
(3.4)

(ii)
A
t

t
=

t
1 ,

the
tim

e
of

em
ission,

the
above

form
ula

gives

d
�
p
,s

A

d
t

=
c

.
(3.5)

T
his

is
w
hat

should
be

expected,
since

the
speed

of
separation

of
the

light
signal

at
the

tim
e
of

em
ission

is
really

just
a
local

m
easurem

ent
of

the
speed

of
light,w

hich
should

alw
ays

give
the

standard
value

c.

(iii)
A
t
arbitrarily

late
tim

es,
the

second
term

in
brackets

in
E
q.

(3.4)
becom

es
negligible,

so

d
�
p
,s

A

d
t

→
3
c

.
(3.6)

A
lthough

this
answ

er
is

larger
than

c,
it

does
not

violate
relativity.

O
nce

the
signal

is
far

from
its

origin
it

is
carried

by
the

expansion
of

the
universe,

and
relativity

places
no

speed
lim

it
on

the
expansion

of
the

universe.

(b)
T
his

part
of

the
problem

involves
H
(t

1 ),
so

w
e
can

start
by

evaluating
it:

H
(t)

=
ȧ(t)
a(t)

=
dd
t (bt

2
/
3)

bt
2
/
3

=
23
t

.
(3.7)

T
hus,

the
physical

distance
from

A
to

B
at

tim
e

t
1
is

�
p
,B

A
=

32
ct

1
.

(3.8)

T
he

coordinate
distance

is
the

physicaldistance
divided

by
the

scale
factor,so

�
c
,B

A
=

cH
−

1(t
1 )

a(t
1 )

=
32
ct

1

bt
2
/
3

1

=
3
c

2
b

t
1
/
3

1
.

(3.9)
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Since
light

travels
at

a
coordinate

speed
c/

a(t),the
light

signalw
illreach

galaxy
B

at
tim

e
t
2
if

�
c
,B

A
= ∫

t2

t1

c

bt ′2
/
3
d
t ′

=
3
cb [t

1
/
3

2
−

t
1
/
3

1 ]
.

(3.10)

Setting
the

expressions
(3.9)

and
(3.10)

for
�
c
,B

A
equalto

each
other,one

finds

12
t
1
/
3

1
=

t
1
/
3

2
−

t
1
/
3

1
=⇒

t
1
/
3

2
=

32
t
1
/
3

1
=⇒

t
2
=

278
t
1

.
(3.11)

(c)-(i)
P
hysicaldistances

are
additive,so

ifone
adds

the
distance

from
A

and
the

light
signal

to
the

distance
from

the
light

signal
to

B
,
one

gets
the

distance
from

A
to

B
:

�
p
,s

A
+

�
p
,s

B
=

�
p
,B

A
.

(3.12)

B
ut

�
p
,B

A
(t)

is
just

the
scale

factor
tim

es
the

coordinate
separation,

a(t)�
c
,B

A
.

U
sing

the
previous

relations
(3.3)

and
(3.9)

for
�
p
,s

A
(t)

and
�
c
,B

A
,
w
e
find

3
ct [1− (

t
1t )

1
/
3 ]

+
�
p
,s

B
(t)

=
32
ct

1
/
3

1
t
2
/
3

,
(3.13)

so

�
p
,s

B
(t)

=
92
ct

1
/
3

1
t
2
/
3−

3
ct

=
3
ct [

32 (
t
1t )

1
/
3−

1 ]
.

(3.14)

A
s
a
check,

one
can

verify
that

this
expression

vanishes
for

t
=

t
2
=

(27
/8)

t
1 ,

and
that

it
equals

(3/2)ct
1
at

t
=

t
1 .

B
ut

w
e
are

asked
to

find
the

speed
of

approach,
the

negative
of

the
derivative

of
E
q.(3.14):

Speed
of

approach
=

−
d
�
p
,s

B

d
t

=
−
3
ct

1
/
3

1
t −

1
/
3
+
3
c

=
3
c [1− (

t
1t )

1
/
3 ]

.

(3.15)
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(ii)
A
t
the

tim
e
of

em
ission,

t
=

t
1 ,

E
q.(3.15)

gives

Speed
of

approach
=

0
.

(3.16)

T
his

m
akes

sense,
since

at
t
=

t
1
galaxy

B
is

one
H
ubble

length
from

galaxy
A
,
w
hich

m
eans

that
its

recession
velocity

is
exactly

c.
T
he

recession
velocity

ofthe
light

signalleaving
A

is
also

c,so
the

rate
ofchange

ofthe
distance

from
the

light
signalto

B
is

initially
zero.

(iii)
A
t
the

tim
e
of

reception,
t
=

t
2
=

(27
/8)

t
1 ,

E
q.(3.15)

gives

Speed
of

approach
=

c
,

(3.17)

w
hich

is
exactly

w
hat

is
expected.

A
s
in

part
(a)-(ii),

this
is

a
local

m
easure-

m
ent

of
the

speed
of

light.

(d)
T
o
find

the
redshift,

w
e
first

find
the

tim
e

t
B

A
at

w
hich

a
light

pulse
m
ust

be
em

itted
from

galaxy
B

so
that

it
arrives

at
galaxy

A
at

tim
e

t
1 .

U
sing

the
coordinate

distance
given

by
E
q.(3.9),the

tim
e
of

em
ission

m
ust

satisfy

3
c

2
b

t
1
/
3

1
= ∫

t1

t
B

A

c

bt ′2
/
3
d
t ′=

3
cb (

t
1
/
3

1
−

t
1
/
3

B
A )

,
(3.18)

w
hich

can
be

solved
to

give

t
B

A
=

18
t
1

.
(3.19)

T
he

redshift
is

given
by

1
+

z
B

A
=

a(t
1 )

a(t
B

A
)
= (

t
1

t
B

A )
2
/
3

=
4

.
(3.20)

T
hus,

z
B

A
=

3
.

(3.21)

(e)
A
pplying

E
uclidean

geom
etry

to
the

triangle
C
-A

-B
show

s
that

the
physical

distance
from

C
to

B
,
at

tim
e

t
1 ,

is √
2cH

−
1.

T
he

coordinate
distance

is
also

larger
than

the
A
-B

separation
by

a
factor

of √
2.

T
hus,

�
c
,B

C
=

3 √
2
c

2
b

t
1
/
3

1
.

(3.22)
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If
w
e
let

t
B

C
be

the
tim

e
at

w
hich

a
light

pulse
m
ust

be
em

itted
from

galaxy
B

so
that

it
arrives

at
galaxy

C
at

tim
e

t
1 ,

w
e
find

3 √
2
c

2
b

t
1
/
3

1
= ∫

t1

t
B

C

c

bt ′2
/
3
d
t ′=

3
cb (

t
1
/
3

1
−

t
1
/
3

B
C )

,
(3.23)

w
hich

can
be

solved
to

find

t
B

C
= (

1−
√
22 )

3

t
1

.
(3.24)

T
hen

1
+

z
B

C
=

a(t
1 )

a(t
B

C
)
= (

t
1

t
B

C )
2
/
3

=
1

(1−
√

22 )
2

,
(3.25)

and

z
B

C
=

1
(1−

√
22 )

2 −
1

.
(3.26)

Fullcredit
w
illbe

given
for

the
answ

er
in

the
form

above,but
it
can

be
sim

plified
by

rationalizing
the

fraction:

z
B

C
=

1
(1−

√
22 )

2 (1
+

√
22 )

2

(1
+

√
22 )

2 −
1

=
1
+

√
2
+

12
14

−
1

=
5
+

4 √
2

.

(3.27)

N
um

erically,
z
B

C
=

10
.657.

(f)
Follow

ing
the

solution
to

P
roblem

6
of

P
roblem

Set
2,

w
e
draw

a
diagram

in
com

oving
coordinates,

putting
the

source
at

the
center

of
a
sphere:
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T
he

energy
from

galaxy
A
w
illradiate

uniform
ly

over
the

sphere.
Ifthe

detector
has

physicalarea
A

D
,then

in
the

com
oving

coordinate
picture

it
has

coordinate
area

A
D

/
a
2(t

2 ),
since

the
detection

occurs
at

tim
e

t
2
T
he

full
coordinate

area
of

the
sphere

is
4π

�
2c
,B

A
,
so

the
fraction

of
photons

that
hit

the
detector

is

fraction
= [A

/
a(t

2 )
2 ]

4
π
�
2c
,B

A

.
(3.28)

A
s
in

P
roblem

6,
the

pow
er

hitting
the

detector
is

reduced
by

tw
o
factors

of
(1

+
z):

one
factor

because
the

energy
of

each
photon

is
proportional

to
the

frequency,
and

hence
is

reduced
by

the
redshift,

and
one

m
ore

factor
because

the
rate

of
arrival

of
photons

is
also

reduced
by

the
redshift

factor
(1

+
z).

T
hus,

P
ow

er
hitting

detector
=

P [A
/
a(t

2 )
2 ]

4
π
�
2c
,B

A

1
(1

+
z)

2

=
P [A

/
a(t

2 )
2 ]

4
π
�
2c
,B

A

[
a(t

1 )
a(t

2 ) ]
2

=
P

A

4
π
�
2c
,B

A

a
2(t

1 )
a
4(t

2 )
.

(3.29)

T
he

energy
flux

is
given

by

J
=

P
ow

er
hitting

detector
A

,
(3.30)

so

J
=

P

4
π
�
2c
,B

A

a
2(t

1 )
a
4(t

2 )
.

(3.31)
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From
here

it
is

just
algebra,

using
E
qs.

(3.9)
and

(3.11),and
a(t)

=
bt

2
/
3:

J
=

P

4
π [

3
c

2
b t

1
/
3

1 ]
2

b
2t

4
/
3

1

b
4t

8
/
3

2

=
P

4
π [

3
c

2
b t

1
/
3

1 ]
2

b
2t

4
/
3

1
(

2
78 )

8
/
3
b
4t

8
/
3

1

=
P

4
π [

3
c2
t
1
/
3

1 ]
2

t
4
/
3

1
(

32 )
8
t
8
/
3

1

=
2
8

3
1
0π

Pc
2t

21

=
256

59
,049

π

Pc
2t

21

.

(3.32)

It
is
debatable

w
hich

ofthe
last

tw
o
expressions

is
the

sim
plest,so

I
have

boxed
both

of
them

.
O
ne

could
also

w
rite

J
=

1
.380×

10 −
3

Pc
2t

21

.
(3.33)

†Solutions
to

parts
(b)-(e)

w
ritten

by
L
eo

Stein;solution
to

part
(a)

by
A
lan

G
uth.

∗Solution
w
ritten

by
A
lan

G
uth.

(A
ttributions

added
10/23/09.)


