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PROBLEM 1: DID YOU DO THE READING? (32 points)†

With the prevalence of Google today, a budding physicist may wonder “do I
really need to memorize all these numbers?” This physicist has failed to consider
the importance of impressing one’s peers at cocktails or beer hour, when googling
is generally considered a social faux pas.

(A) The following is a list of numbers you may need to have handy when doing
a back-of-the-envelope calculation (BOTEC) in a bar (since these are going
into BOTECs, knowing the answer to within an order of magnitude is good
enough). For each of the following, one and only one answer is correct:

(i) (2 points) Rest mass of the proton:
(a) 9.38 eV (b) 93.8 keV (c) 93.8 MeV (d) 0.938 GeV (e) 9.38× 1013 eV .

The value of 1 GeV is often fine for order of magnitude calculations.

(ii) (4 points) Mass difference between the proton and neutron:
(a) .129 eV (b) 12.9 keV (c) 1.29 MeV (d) 129 GeV (e) 1.29× 1010 eV .

Circle the heavier species: proton or neutron?

If you have trouble remembering which species is heavier, just remember
that it is the unstable species – since a decay can only produce a lighter
product. Then, remember that most of the universe is Hydrogen, so a
proton must be the stable species – and hence the lighter one!

(iii) (2 points) Rest mass of the electron:
(a) 0 eV (b) 0.511 eV (c) 511 keV (d) 51.1 MeV (e) 5.11 GeV .

A convenient number to remember is that the proton to electron mass ratio
is roughly 1800.

(iv) (2 points) Baryon to photon ratio (i.e, the ratio of number densities):
(a) 101 (b) 100 (c) 10−3 (d) 10−5 (e) 10−9 .

The WMAP 5-year value for η = nb/nγ = (6.225± 0.170)× 10−10, which
to closest order of magnitude is 10−9.
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(v) (2 points) Age of the universe when big bang nucleosynthesis is over:
(a) 1 nanosecond (b) 1 second (c) 10 minutes (d) 380,000 years
(e) 1.37× 1010 years.
The process ends gradually, so valid answers range from 3 minutes to 15
minutes.

(B) Important interactions and particle properties in nucleosynthesis:
(i) (5 points) Write down the two most important reactions which maintain

a neutron-proton equilibrium in the very early universe.
The two most important interactions are:

p+ e− ←→ n+ νe
p+ ν̄e ←→ n+ e+

Note that both reactions are two-body interactions in both directions. A
common error was to include the decay process n −→ p+e−+ν̄e. There are
two problems with this interaction: (1) the forward reaction is slow, with
a decay time of about 15 minutes, and (2) the reverse reaction is a three
body interaction, making it unlikely. Since the neutron and proton are in
equilibrium during the period before about 1 second, only fast interactions
are important. Another common mistake was to exchange νe and ν̄e in
the interactions. The electron neutrino is the neutrino with the same
(electron) lepton number as the electron itself, and since lepton number is
conserved in these interactions, the electron neutrino must appear on the
opposite side of the interaction as the electron to balance it.

(ii) (5 points) Create a list of all the unique species in the above two reactions.
For each of the species in your list, state the charge, baryon number, and
lepton number.

Species Symbol Charge (q)
Baryon

Number (B)
Lepton

Number (L)

Neutron n 0 +1 0

Proton p +1 +1 0

Electron e− -1 0 +1

Positron e+ +1 0 -1

e Neutrino νe 0 0 +1

e Anti-neutrino ν̄e 0 0 -1
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(C) More on nucleosynthesis:

(i) (5 points) A theory of big bang nucleosynthesis was first worked out in
the late 1940’s by George Gamow, Ralph Alpher, and Robert Herman.
This theory differed from the currently accepted theory in at least four
significant ways. Name one.

(1) They assumed that the universe began in a state of all neutrons, rather
the thermal equilibrium mix assumed in modern calculations.

(2) They took into account the conversion of neutrons to protons only by
free decay of the neutrons. They ignored the reactions

n+ e+ ←→ p+ ν̄e
n+ νe ←→ p+ e− ,

which play a very important role in modern calculations.

(3) They attempted (unsuccessfully) to account for all of nucleosynthesis
— they did not realize that the nucleosynthesis of heavier elements
takes place primarily in the interior of stars.

(4) They used fewer than the presently accepted number of neutrinos.

(ii) (5 points) Weinberg emphasizes that most of the detailed properties of the
early universe are determined by the assumption that it was in a state of
thermal equilibrium. Thermal equilibrium, however, cannot change a con-
served quantity, so each conserved quantity must be specified. Weinberg
mentions three conserved quantities whose densities must be specified in
the recipe for the early universe. One is electric charge (which is specified
to be zero or negligibly small). What are the other two?

The other two conserved quantities are baryon number and

lepton number. (Weinberg also mentions that the electron lep-
ton number and the muon lepton number appear to be separately
conserved. Today we would have to add tau lepton number to this
list. These conservation laws are still consistent with all known exper-
iments, but there are theoretical reasons for doubting their exactness.
We will talk about this later in the course.)
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PROBLEM 2: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE (33 points)∗

(a) Since θ = φ = constant, dθ = dφ = 0, and for light rays one always has dτ = 0.
The line element therefore reduces to

0 = −c2 dt2 + a2(t)dψ2 .

Rearranging gives (
dψ

dt

)2

=
c2

a2(t)
,

which implies that

dψ

dt
= ± c

a(t)
.

The plus sign describes outward radial motion, while the minus sign describes
inward motion.

(b) The maximum value of the ψ coordinate that can be reached by time t is found
by integrating its rate of change:

ψhor =
∫ t

0

c

a(t′)
dt′ .

The physical horizon distance is the proper length of the shortest line drawn at
the time t from the origin to ψ = ψhor, which according to the metric is given
by

�phys(t) =
∫ ψ=ψhor

ψ=0

ds =
∫ ψhor

0

a(t) dψ = a(t)
∫ t

0

c

a(t′)
dt′ .

(c) From part (a),
dψ

dt
=

c

a(t)
.

By differentiating the equation ct = α(θ − sin θ) stated in the problem, one
finds

dt

dθ
=
α

c
(1− cos θ) .

Then
dψ

dθ
=
dψ

dt

dt

dθ
=
α(1− cos θ)

a(t)
.
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Then using a = α(1− cos θ), as stated in the problem, one has the very simple
result

dψ

dθ
= 1 .

(d) This part is very simple if one knows that ψ must change by 2π before the
photon returns to its starting point. Since dψ/dθ = 1, this means that θ must
also change by 2π. From a = α(1− cos θ), one can see that a returns to zero
at θ = 2π, so this is exactly the lifetime of the universe. So,

Time for photon to return
Lifetime of universe

= 1 .

If it is not clear why ψ must change by 2π for the photon to return to
its starting point, then recall the construction of the closed universe that was
used in Lecture Notes 6. The closed universe is described as the 3-dimensional
surface of a sphere in a four-dimensional Euclidean space with coordinates
(x, y, z, w):

x2 + y2 + z2 + w2 = a2 ,

where a is the radius of the sphere. The Robertson-Walker coordinate system
is constructed on the 3-dimensional surface of the sphere, taking the point
(0, 0, 0, 1) as the center of the coordinate system. If we define the w-direction
as “north,” then the point (0, 0, 0, 1) can be called the north pole. Each point
(x, y, z, w) on the surface of the sphere is assigned a coordinate ψ, defined to be
the angle between the positive w axis and the vector (x, y, z, w). Thus ψ = 0
at the north pole, and ψ = π for the antipodal point, (0, 0, 0,−1), which can be
called the south pole. In making the round trip the photon must travel from
the north pole to the south pole and back, for a total range of 2π.

Discussion: Some students answered that the photon would return in the life-
time of the universe, but reached this conclusion without considering the details
of the motion. The argument was simply that, at the big crunch when the scale
factor returns to zero, all distances would return to zero, including the distance
between the photon and its starting place. This statement is correct, but it does
not quite answer the question. First, the statement in no way rules out the pos-
sibility that the photon might return to its starting point before the big crunch.
Second, if we use the delicate but well-motivated definitions that general rel-
ativists use, it is not necessarily true that the photon returns to its starting
point at the big crunch. To be concrete, let me consider a radiation-dominated
closed universe—a hypothetical universe for which the only “matter” present
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consists of massless particles such as photons or neutrinos. In that case (you
can check my calculations) a photon that leaves the north pole at t = 0 just
reaches the south pole at the big crunch. It might seem that reaching the south
pole at the big crunch is not any different from completing the round trip back
to the north pole, since the distance between the north pole and the south pole
is zero at t = tCrunch, the time of the big crunch. However, suppose we adopt
the principle that the instant of the initial singularity and the instant of the
final crunch are both too singular to be considered part of the spacetime. We
will allow ourselves to mathematically consider times ranging from t = ε to
t = tCrunch − ε, where ε is arbitrarily small, but we will not try to describe
what happens exactly at t = 0 or t = tCrunch. Thus, we now consider a photon
that starts its journey at t = ε, and we follow it until t = tCrunch − ε. For the
case of the matter-dominated closed universe, such a photon would traverse
a fraction of the full circle that would be almost 1, and would approach 1 as
ε → 0. By contrast, for the radiation-dominated closed universe, the photon
would traverse a fraction of the full circle that is almost 1/2, and it would
approach 1/2 as ε→ 0. Thus, from this point of view the two cases look very
different. In the radiation-dominated case, one would say that the photon has
come only half-way back to its starting point.

PROBLEM 3: EXAMINING A PECULIAR SPACETIME METRIC (35
points)∗

(a) The ruler extends only in the x direction, so dy = dz = dt = 0. Then ds2 =
dx2, or ds = |dx|. The physical length is then

�phys =
∫

ds =
∫ b

a

dx = b− a .

(b) Since the clock is stationary, dx = dy = dz = 0, and then −c2 dτ2 =
−(x2/T 2

0 )dt
2. So

dτ =
x

cT0
dt ,

where x = a is the position of the clock. Then

τ =
∫ β

0

a

cT0
dt =

aβ

cT0
.

(c) The geodesic equation has the form

d
dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ
dxσ

dτ
,
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where the nonzero components of gµν are

g00 = − x
2

T 2
0

, g11 = g22 = g33 = 1 .

On the left-hand side of the geodesic equation, µ = 0 and ν is summed from
0 to 3 (using the Einstein summation convention). But the only value of ν for
which g0ν is nonzero is ν = 0, so the left-hand side becomes

LHS =
d
dτ

{
g00

dx0

dτ

}
=

d
dτ

{[
− x

2

T 2
0

]
dt
dτ

}
.

The right-hand side is proportional to

∂0gλσ ≡ ∂gλσ
∂t

= 0 ,

since none of the components of gµν depend on t.

Pedagogical Note: The derivative here is a partial derivative (∂/∂t)
and not a total derivative (d/dt) like the derivative on the left-hand
side. If we let X denote an arbitrary quantity, then the partial deriva-
tive ∂X/∂t is the derivative of X with respect to t, treating the other
coordinates (x, y, and z) as constants. Since none of the components
of gµν depend on t, the derivative ∂gµν/∂t vanishes. The total deriva-
tive dX/dt, on the other hand, means to calculate the full change in
X as t varies. When evaluating dX/dt, if X depends on x, y, or z,
and they in turn depend on t, then this dependence would be taken
into account through the chain rule:

dX
dt

=
∂X

∂t
+
∂X

∂x

dx
dt

+
∂X

∂y

dy
dt

+
∂X

∂z

dz
dt

=
∂X

∂xµ
dxµ

dt
.

When comparing the two lines above, note that dx0/dt = dt/dt = 1.

Putting together the two sides,

d
dτ

{[
− x

2

T 2
0

]
dt
dτ

}
= 0 .
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Since T0 is a constant, the equation is equivalent to

d
dτ

{
x2 dt

dτ

}
= 0 .

Either boxed equation is a perfectly acceptable answer. There was no need for
you to have expanded this equation, but if you did you should have gotten

x2 d
2t

dτ2
+ 2x

dx
dτ

dt
dτ

= 0 .

(d) With no motion in the y or z directions, the metric equation becomes

−c2 dτ2 = − x
2

T 2
0

dt2 + dx2 .

Dividing by dτ2,

−c2 = − x
2

T 2
0

(
dt
dτ

)2

+
(
dx
dτ

)2

.

Solving for
dt
dτ

,

dt
dτ

=
T0

x

√
c2 +

(
dx
dτ

)2

.

(e) The geodesic equation implies that

d
dτ

{
x2 dt

dτ

}
= 0 =⇒ x2 dt

dτ
= const .

We can evaluate the constant by determining the value of x2 dt/dτ when the
particle is released at t = 0. At this instant x = a and dx/dτ = 0, so according
to the answer to (d), dt/dτ = cT0/a . Thus, at any time

x2 dt
dτ

= acT0 .

Replacing dt/dτ by the answer from (d),

xT0

√
c2 +

(
dx
dτ

)2

= acT0 .
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Manipulating,

c2 +
(
dx
dτ

)2

= c2
a2

x2

(
dx
dτ

)2

= c2
a2 − x2

x2

dx
dτ

= −c
√
a2 − x2

x
.

Note that I used the negative square root in the last step, because we were given
the hint that the particle moves to smaller x, so dx/dτ should be negative. If
we were not given this hint, we could have inferred that the particle moves to
smaller x, because otherwise the argument of the square root would be negative.

Rearranging,

dτ = − x dx
c
√
a2 − x2

.

To obtain a definite integral, we keep in mind that as τ changes from 0 to some
final value τf , x changes from a to some final value xf . Thus∫ τf

0

dτ = −
∫ xf

a

x dx
c
√
a2 − x2

,

or

τf =
∫ a

xf

x dx
c
√
a2 − x2

.

Note that I removed the minus sign by reversing the limits of integration.
Equivalently, one can drop the subscripts f and use x and τ to describe the
position and proper time variables, but then one should give a different name
(such as x′) to the variable of integration:

τ =
∫ a

x

x′ dx′

c
√
a2 − x′2 .

You were not asked to carry out the integration, but you can do it by using
the trigonometric substitution x ≡ a sin θ. Then dx = a cos θ dθ, and

∫
x dx√
a2 − x2

=
∫
a2 sin θ cos θ dθ

a cos θ
=

∫
a sin θ dθ = −a cos θ = −

√
a2 − x2 .
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Finally,

τ = −1
c

√
a2 − x′2

∣∣∣∣
a

x

=
1
c

√
a2 − x2 .

Solving for x,
x(τ) =

√
a2 − c2τ2 .

Discussion: The metric discussed in this problem is called the Rindler metric,
and it is actually a description of Minkowski space with peculiar coordinates.
If we let X , Y , Z, and T denote the usual Minkowski space coordinates, the
Rindler coordinates are related by

t = T0 arctanh
(
cT

X

)
T =

x

c
sinh

(
t

T0

)

x =
√
X2 − c2T 2 or X = x cosh

(
t

T0

)

y = Y Y = y

z = Z Z = z

The Rindler coordinate system (which is restricted to x > 0) actually covers
only one quadrant of the Minkowski space, with X > 0 and |T | < X/c. When
described in Minkowski coordinates, a particle that is stationary in the Rindler
coordinates is undergoing uniform acceleration in its own rest frame, where the
magnitude of the uniform acceleration depends on x. The particle described
in this problem was actually standing still in the Minkowski coordinates. The
Rindler coordinate system has a horizon at x = 0, which has many similarities
to the horizon of a black hole, in spite of the fact that the spacetime is simply
Minkowski space.

†Solution written by Leo Stein.
∗Solution written by Alan Guth.


