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P
R

O
B

L
E
M

1:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(32
points) †

W
ith

the
prevalence

of
G
oogle

today,
a
budding

physicist
m
ay

w
onder

“do
I

really
need

to
m
em

orize
all

these
num

bers?”
T
his

physicist
has

failed
to

consider
the

im
portance

of
im

pressing
one’s

peers
at

cocktails
or

beer
hour,

w
hen

googling
is

generally
considered

a
socialfaux

pas.

(A
)
T
he

follow
ing

is
a
list

of
num

bers
you

m
ay

need
to

have
handy

w
hen

doing
a
back-of-the-envelope

calculation
(B

O
T
E
C
)
in

a
bar

(since
these

are
going

into
B
O
T
E
C
s,

know
ing

the
answ

er
to

w
ithin

an
order

of
m
agnitude

is
good

enough).
For

each
of

the
follow

ing,one
and

only
one

answ
er

is
correct:

(i)
(2

points)
R
est

m
ass

of
the

proton:
(a)

9.38
eV

(b)
93.8

keV
(c)

93.8
M
eV

(d)
0.938

G
eV

(e)
9
.38×

10
1
3
eV

.

T
he

value
of

1
G

eV
is

often
fine

for
order

of
m

agnitude
calculations.

(ii)
(4

points)
M
ass

difference
betw

een
the

proton
and

neutron:
(a)

.129
eV

(b)
12.9

keV
(c)

1.29
M
eV

(d)
129

G
eV

(e)
1
.29×

10
1
0
eV

.

C
ircle

the
heavier

species:
proton

or
neutron?

If
you

have
trouble

rem
em

bering
w
hich

species
is

heavier,
just

rem
em

ber
that

it
is

the
unstable

species
–

since
a

decay
can

only
produce

a
lighter

product.
T

hen,
rem

em
ber

that
m

ost
of

the
universe

is
H

ydrogen,
so

a
proton

m
ust

be
the

stable
species

–
and

hence
the

lighter
one!

(iii)
(2

points)
R
est

m
ass

of
the

electron:
(a)

0
eV

(b)
0.511

eV
(c)

511
keV

(d)
51.1

M
eV

(e)
5.11

G
eV

.

A
convenient

num
ber

to
rem

em
ber

is
that

the
proton

to
electron

m
ass

ratio
is

roughly
1800.

(iv)
(2

points)
B
aryon

to
photon

ratio
(i.e,the

ratio
of

num
ber

densities):
(a)

10
1
(b)

10
0
(c)

10 −
3
(d)

10 −
5
(e)

10 −
9
.

T
he

W
M

A
P

5-year
value

for
η
=
n
b /
n
γ
=

(6
.225±

0
.170)×

10 −
1
0,

w
hich

to
closest

order
of

m
agnitude

is
10 −

9.
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(v)
(2

points)
A
ge

of
the

universe
w
hen

big
bang

nucleosynthesis
is

over:
(a)

1
nanosecond

(b)
1
second

(c)
10

m
inutes

(d)
380,000

years
(e)

1
.37×

10
1
0
years.

T
he

process
ends

gradually,
so

valid
answ

ers
range

from
3

m
inutes

to
15

m
inutes.

(B
)
Im

portant
interactions

and
particle

properties
in

nucleosynthesis:
(i)

(5
points)

W
rite

dow
n
the

tw
o
m
ost

im
portant

reactions
w
hich

m
aintain

a
neutron-proton

equilibrium
in

the
very

early
universe.

T
he

tw
o
m
ost

im
portant

interactions
are:

p
+
e −
←→

n
+
ν
e

p
+
ν̄
e ←→

n
+
e
+

N
ote

that
both

reactions
are

tw
o-body

interactions
in

both
directions.

A
com

m
on

error
w
as

to
include

the
decay

process
n
−→

p+
e −

+
ν̄
e .

T
here

are
tw

o
problem

s
w
ith

this
interaction:

(1)
the

forw
ard

reaction
is

slow
,
w
ith

a
decay

tim
e
of

about
15

m
inutes,

and
(2)

the
reverse

reaction
is

a
three

body
interaction,

m
aking

it
unlikely.

Since
the

neutron
and

proton
are

in
equilibrium

during
the

period
before

about
1
second,only

fast
interactions

are
im

portant.
A
nother

com
m
on

m
istake

w
as

to
exchange

ν
e
and

ν̄
e
in

the
interactions.

T
he

electron
neutrino

is
the

neutrino
w
ith

the
sam

e
(electron)

lepton
num

ber
as

the
electron

itself,and
since

lepton
num

ber
is

conserved
in

these
interactions,

the
electron

neutrino
m
ust

appear
on

the
opposite

side
of

the
interaction

as
the

electron
to

balance
it.

(ii)
(5

points)
C
reate

a
list

ofallthe
unique

species
in

the
above

tw
o
reactions.

For
each

of
the

species
in

your
list,

state
the

charge,
baryon

num
ber,

and
lepton

num
ber.

Species
Sym

bol
C
harge

(q)
B
aryon

N
um

ber
(B

)
L
epton

N
um

ber
(L

)

N
eutron

n
0

+
1

0

P
roton

p
+
1

+
1

0

E
lectron

e −
-1

0
+
1

P
ositron

e
+

+
1

0
-1

e
N
eutrino

ν
e

0
0

+
1

e
A
nti-neutrino

ν̄
e

0
0

-1
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(C
)
M
ore

on
nucleosynthesis:

(i)
(5

points)
A

theory
of

big
bang

nucleosynthesis
w
as

first
w
orked

out
in

the
late

1940’s
by

G
eorge

G
am

ow
,
R
alph

A
lpher,

and
R
obert

H
erm

an.
T
his

theory
differed

from
the

currently
accepted

theory
in

at
least

four
significant

w
ays.

N
am

e
one.

(1)
T
hey

assum
ed

that
the

universe
began

in
a
state

ofallneutrons,rather
the

therm
al

equilibrium
m
ix

assum
ed

in
m
odern

calculations.

(2)
T
hey

took
into

account
the

conversion
ofneutrons

to
protons

only
by

free
decay

of
the

neutrons.
T
hey

ignored
the

reactions

n
+
e
+
←→

p
+
ν̄
e

n
+
ν
e ←→

p
+
e −
,

w
hich

play
a
very

im
portant

role
in

m
odern

calculations.

(3)
T
hey

attem
pted

(unsuccessfully)
to

account
for

allof
nucleosynthesis

—
they

did
not

realize
that

the
nucleosynthesis

of
heavier

elem
ents

takes
place

prim
arily

in
the

interior
of

stars.

(4)
T
hey

used
few

er
than

the
presently

accepted
num

ber
of

neutrinos.

(ii)
(5

points)
W
einberg

em
phasizes

that
m
ost

ofthe
detailed

properties
ofthe

early
universe

are
determ

ined
by

the
assum

ption
that

it
w
as

in
a
state

of
therm

alequilibrium
.
T
herm

alequilibrium
,how

ever,cannot
change

a
con-

served
quantity,

so
each

conserved
quantity

m
ust

be
specified.

W
einberg

m
entions

three
conserved

quantities
w
hose

densities
m
ust

be
specified

in
the

recipe
for

the
early

universe.
O
ne

is
electric

charge
(w

hich
is
specified

to
be

zero
or

negligibly
sm

all).
W

hat
are

the
other

tw
o?

T
he

other
tw

o
conserved

quantities
are

b
aryon

n
u
m

b
er

and

lep
ton

n
u
m

b
er.

(W
einberg

also
m
entions

that
the

electron
lep-

ton
num

ber
and

the
m
uon

lepton
num

ber
appear

to
be

separately
conserved.

T
oday

w
e
w
ould

have
to

add
tau

lepton
num

ber
to

this
list.

T
hese

conservation
law

s
are

stillconsistent
w
ith

allknow
n
exper-

im
ents,but

there
are

theoreticalreasons
for

doubting
their

exactness.
W
e
w
ill

talk
about

this
later

in
the

course.)
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P
R

O
B

L
E
M

2:
T

R
A

C
IN

G
L
IG

H
T

R
A

Y
S

IN
A

C
L
O

S
E
D

,
M

A
T

T
E
R

-
D

O
M

IN
A

T
E
D

U
N

IV
E
R

S
E

(33
points) ∗

(a)
Since

θ
=
φ
=

constant,
d
θ
=
d
φ
=

0,and
for

light
rays

one
alw

ays
has

d
τ
=

0.
T
he

line
elem

ent
therefore

reduces
to

0
=
−
c
2
d
t
2
+
a
2(t)d

ψ
2
.

R
earranging

gives
(
d
ψd
t )

2

=
c
2

a
2(t)

,

w
hich

im
plies

that

d
ψd
t
=
±
c

a(t)
.

T
he

plus
sign

describes
outw

ard
radialm

otion,w
hile

the
m
inus

sign
describes

inw
ard

m
otion.

(b)
T
he

m
axim

um
value

ofthe
ψ
coordinate

that
can

be
reached

by
tim

e
t
is
found

by
integrating

its
rate

of
change:

ψ
h
o
r
= ∫

t

0

c

a(t ′)
d
t ′
.

T
he

physicalhorizon
distance

is
the

proper
length

ofthe
shortest

line
draw

n
at

the
tim

e
t
from

the
origin

to
ψ
=
ψ

h
o
r ,
w
hich

according
to

the
m
etric

is
given

by

�
p
h
y
s (t)

= ∫
ψ

=
ψ

h
o
r

ψ
=

0

d
s
= ∫

ψ
h
o
r

0

a(t)
d
ψ
=

a(t) ∫
t

0

c

a(t ′)
d
t ′
.

(c)
From

part
(a),

d
ψd
t
=

c

a(t)
.

B
y
differentiating

the
equation

ct
=
α
(θ−

sin
θ)

stated
in

the
problem

,
one

finds
d
t

d
θ
=
αc
(1−

cos
θ)
.

T
hen

d
ψd
θ
=
d
ψd
t

d
t

d
θ
=
α
(1−

cos
θ)

a(t)
.
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T
hen

using
a
=
α
(1−

cos
θ),as

stated
in

the
problem

,one
has

the
very

sim
ple

result

d
ψd
θ
=

1
.

(d)
T
his

part
is

very
sim

ple
if

one
know

s
that

ψ
m
ust

change
by

2
π

before
the

photon
returns

to
its

starting
point.

Since
d
ψ
/
d
θ
=

1,this
m
eans

that
θ
m
ust

also
change

by
2
π
.
From

a
=
α
(1−

cos
θ),

one
can

see
that

a
returns

to
zero

at
θ
=

2
π
,so

this
is

exactly
the

lifetim
e
of

the
universe.

So,

T
im

e
for

photon
to

return
L
ifetim

e
of

universe
=

1
.

If
it

is
not

clear
w
hy
ψ

m
ust

change
by

2
π

for
the

photon
to

return
to

its
starting

point,
then

recall
the

construction
of

the
closed

universe
that

w
as

used
in

L
ecture

N
otes

6.
T
he

closed
universe

is
described

as
the

3-dim
ensional

surface
of

a
sphere

in
a
four-dim

ensional
E
uclidean

space
w
ith

coordinates
(x
,y
,z
,w

):
x

2
+
y
2
+
z
2
+
w

2
=
a
2
,

w
here

a
is

the
radius

of
the

sphere.
T
he

R
obertson-W

alker
coordinate

system
is

constructed
on

the
3-dim

ensional
surface

of
the

sphere,
taking

the
point

(0
,0
,0
,1)

as
the

center
of

the
coordinate

system
.
If

w
e
define

the
w
-direction

as
“north,”

then
the

point
(0,0

,0
,1)

can
be

called
the

north
pole.

E
ach

point
(x
,y
,z
,w

)
on

the
surface

ofthe
sphere

is
assigned

a
coordinate

ψ
,defined

to
be

the
angle

betw
een

the
positive

w
axis

and
the

vector
(x
,y
,z
,w

).
T
hus

ψ
=

0
at

the
north

pole,and
ψ
=
π
for

the
antipodalpoint,(0,0

,0
,−

1),w
hich

can
be

called
the

south
pole.

In
m
aking

the
round

trip
the

photon
m
ust

travel
from

the
north

pole
to

the
south

pole
and

back,
for

a
totalrange

of
2π

.

D
iscussion:

Som
e
students

answ
ered

that
the

photon
w
ould

return
in

the
life-

tim
e
ofthe

universe,but
reached

this
conclusion

w
ithout

considering
the

details
ofthe

m
otion.

T
he

argum
ent

w
as

sim
ply

that,at
the

big
crunch

w
hen

the
scale

factor
returns

to
zero,alldistances

w
ould

return
to

zero,including
the

distance
betw

een
the

photon
and

its
starting

place.
T
his

statem
ent

is
correct,but

it
does

not
quite

answ
er

the
question.

F
irst,the

statem
ent

in
no

w
ay

rules
out

the
pos-

sibility
that

the
photon

m
ight

return
to

its
starting

point
before

the
big

crunch.
Second,

if
w
e
use

the
delicate

but
w
ell-m

otivated
definitions

that
general

rel-
ativists

use,
it

is
not

necessarily
true

that
the

photon
returns

to
its

starting
point

at
the

big
crunch.

T
o
be

concrete,let
m
e
consider

a
radiation-dom

inated
closed

universe—
a
hypothetical

universe
for

w
hich

the
only

“m
atter”

present
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consists
of

m
assless

particles
such

as
photons

or
neutrinos.

In
that

case
(you

can
check

m
y
calculations)

a
photon

that
leaves

the
north

pole
at
t
=

0
just

reaches
the

south
pole

at
the

big
crunch.

It
m
ight

seem
that

reaching
the

south
pole

at
the

big
crunch

is
not

any
different

from
com

pleting
the

round
trip

back
to

the
north

pole,since
the

distance
betw

een
the

north
pole

and
the

south
pole

is
zero

at
t
=
t
C

ru
n
ch ,

the
tim

e
of

the
big

crunch.
H
ow

ever,
suppose

w
e
adopt

the
principle

that
the

instant
of

the
initial

singularity
and

the
instant

of
the

final
crunch

are
both

too
singular

to
be

considered
part

of
the

spacetim
e.

W
e

w
ill

allow
ourselves

to
m
athem

atically
consider

tim
es

ranging
from

t
=
ε
to

t
=
t
C

ru
n
ch −

ε,
w
here

ε
is

arbitrarily
sm

all,
but

w
e
w
ill

not
try

to
describe

w
hat

happens
exactly

at
t
=

0
or
t
=
t
C

ru
n
ch .

T
hus,w

e
now

consider
a
photon

that
starts

its
journey

at
t
=
ε,

and
w
e
follow

it
until

t
=
t
C

ru
n
ch −

ε.
For

the
case

of
the

m
atter-dom

inated
closed

universe,
such

a
photon

w
ould

traverse
a
fraction

of
the

full
circle

that
w
ould

be
alm

ost
1,

and
w
ould

approach
1
as

ε→
0.

B
y
contrast,

for
the

radiation-dom
inated

closed
universe,

the
photon

w
ould

traverse
a
fraction

of
the

full
circle

that
is

alm
ost

1/2,
and

it
w
ould

approach
1/2

as
ε→

0.
T
hus,

from
this

point
of

view
the

tw
o
cases

look
very

different.
In

the
radiation-dom

inated
case,

one
w
ould

say
that

the
photon

has
com

e
only

half-w
ay

back
to

its
starting

point.

P
R

O
B

L
E
M

3:
E
X

A
M

IN
IN

G
A

P
E
C

U
L
IA

R
S
P
A

C
E
T

IM
E

M
E
T

R
IC

(35
points) ∗

(a)
T
he

ruler
extends

only
in

the
x
direction,

so
d
y
=

d
z
=

d
t
=

0.
T
hen

d
s
2
=

d
x

2,
or

d
s
=
|d
x|.

T
he

physical
length

is
then

�
p
h
y
s
= ∫

d
s
= ∫

b

a

d
x
=

b−
a
.

(b)
Since

the
clock

is
stationary,

d
x

=
d
y

=
d
z

=
0,

and
then

−
c
2
d
τ

2
=

−
(x

2/
T

20 )d
t
2.

So
d
τ
=
xcT

0
d
t
,

w
here

x
=
a
is

the
position

of
the

clock.
T
hen

τ
= ∫

β

0

acT
0
d
t
=

a
β

cT
0
.

(c)
T
he

geodesic
equation

has
the

form

dd
τ {
g
µ
ν
d
x
ν

d
τ }

=
12
(∂
µ
g
λ
σ )

d
x
λ

d
τ

d
x
σ

d
τ
,
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w
here

the
nonzero

com
ponents

of
g
µ
ν
are

g
0
0
=
−
x

2

T
20

,
g
1
1
=
g
2
2
=
g
3
3
=

1
.

O
n
the

left-hand
side

of
the

geodesic
equation,

µ
=

0
and

ν
is

sum
m
ed

from
0
to

3
(using

the
E
instein

sum
m
ation

convention).
B
ut

the
only

value
of
ν
for

w
hich

g
0
ν
is

nonzero
is
ν
=

0,
so

the
left-hand

side
becom

es

L
H
S
=

dd
τ {
g
0
0 d
x

0

d
τ }

=
dd
τ {[−

x
2

T
20 ]

d
t

d
τ }
.

T
he

right-hand
side

is
proportional

to

∂
0 g
λ
σ ≡

∂
g
λ
σ

∂
t

=
0
,

since
none

of
the

com
ponents

of
g
µ
ν
depend

on
t.

P
edagogical

N
ote:

T
he

derivative
here

is
a
partial

derivative
(∂
/
∂
t)

and
not

a
total

derivative
(d
/d
t)

like
the

derivative
on

the
left-hand

side.
Ifw

e
let
X

denote
an

arbitrary
quantity,then

the
partialderiva-

tive
∂
X
/
∂
t
is
the

derivative
of
X

w
ith

respect
to
t,treating

the
other

coordinates
(x,
y,and

z)
as

constants.
Since

none
of

the
com

ponents
of
g
µ
ν
depend

on
t,the

derivative
∂
g
µ
ν /
∂
t
vanishes.

T
he

totalderiva-
tive

d
X
/d
t,
on

the
other

hand,
m
eans

to
calculate

the
full

change
in

X
as
t
varies.

W
hen

evaluating
d
X
/d
t,

if
X

depends
on
x,
y,

or
z,

and
they

in
turn

depend
on
t,

then
this

dependence
w
ould

be
taken

into
account

through
the

chain
rule:

d
Xd
t

=
∂
X∂
t
+
∂
X∂
x

d
xd
t
+
∂
X∂
y

d
yd
t
+
∂
X∂
z

d
zd
t

=
∂
X

∂
x
µ

d
x
µ

d
t
.

W
hen

com
paring

the
tw

o
lines

above,
note

that
d
x

0/d
t
=

d
t/d
t
=

1.

P
utting

together
the

tw
o
sides,

dd
τ {[−

x
2

T
20 ]

d
t

d
τ }

=
0
.
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Since
T

0
is

a
constant,

the
equation

is
equivalent

to

dd
τ {
x

2
d
t

d
τ }

=
0
.

E
ither

boxed
equation

is
a
perfectly

acceptable
answ

er.
T
here

w
as

no
need

for
you

to
have

expanded
this

equation,but
if
you

did
you

should
have

gotten

x
2
d

2t

d
τ

2
+
2
x
d
x

d
τ

d
t

d
τ
=

0
.

(d)
W

ith
no

m
otion

in
the

y
or
z
directions,

the
m
etric

equation
becom

es

−
c
2
d
τ

2
=
−
x

2

T
20

d
t
2
+

d
x

2
.

D
ividing

by
d
τ

2,

−
c
2
=
−
x

2

T
20 (

d
t

d
τ )

2

+ (
d
x

d
τ )

2

.

Solving
for

d
t

d
τ
,

d
t

d
τ
=
T

0

x √
c
2
+ (

d
x

d
τ )

2

.

(e)
T
he

geodesic
equation

im
plies

that

dd
τ {
x

2
d
t

d
τ }

=
0

=⇒
x

2
d
t

d
τ
=

const
.

W
e
can

evaluate
the

constant
by

determ
ining

the
value

of
x

2
d
t/d
τ
w
hen

the
particle

is
released

at
t
=

0.
A
t
this

instant
x
=
a
and

d
x
/d
τ
=

0,so
according

to
the

answ
er

to
(d),d

t/d
τ
=
cT

0 /
a
.
T
hus,

at
any

tim
e

x
2
d
t

d
τ
=
a
cT

0
.

R
eplacing

d
t/d
τ
by

the
answ

er
from

(d),

x
T

0 √
c
2
+ (

d
x

d
τ )

2

=
a
cT

0
.



8.286
Q

U
IZ

2
S
O

L
U

T
IO

N
S
,
F
A

L
L

2009
p
.
9

M
anipulating,

c
2
+ (

d
x

d
τ )

2

=
c
2
a
2

x
2

(
d
x

d
τ )

2

=
c
2
a
2−

x
2

x
2

d
x

d
τ
=
−
c √
a
2−

x
2

x
.

N
ote

that
Iused

the
negative

square
root

in
the

last
step,because

w
e
w
ere

given
the

hint
that

the
particle

m
oves

to
sm

aller
x,

so
d
x
/d
τ
should

be
negative.

If
w
e
w
ere

not
given

this
hint,

w
e
could

have
inferred

that
the

particle
m
oves

to
sm

aller
x,because

otherw
ise

the
argum

ent
ofthe

square
root

w
ould

be
negative.

R
earranging,

d
τ
=
−

x
d
x

c √
a
2−

x
2
.

T
o
obtain

a
definite

integral,w
e
keep

in
m
ind

that
as
τ
changes

from
0
to

som
e

final
value

τ
f ,
x
changes

from
a
to

som
e
final

value
x
f .

T
hus

∫
τ

f

0

d
τ
=
− ∫

x
f

a

x
d
x

c √
a
2−

x
2
,

or

τ
f
= ∫

a

x
f

x
d
x

c √
a
2−

x
2
.

N
ote

that
I
rem

oved
the

m
inus

sign
by

reversing
the

lim
its

of
integration.

E
quivalently,

one
can

drop
the

subscripts
f

and
use

x
and

τ
to

describe
the

position
and

proper
tim

e
variables,

but
then

one
should

give
a
different

nam
e

(such
as
x ′)

to
the

variable
of

integration:

τ
= ∫

a

x

x ′d
x ′

c √
a
2−

x ′2
.

Y
ou

w
ere

not
asked

to
carry

out
the

integration,
but

you
can

do
it

by
using

the
trigonom

etric
substitution

x≡
a
sin
θ.

T
hen

d
x
=
a
cos
θ
d
θ,

and

∫
x
d
x

√
a
2−

x
2
= ∫

a
2
sin
θ
cos
θ
d
θ

a
cos
θ

= ∫
a
sin
θ
d
θ
=
−
a
cos
θ
=
− √

a
2−

x
2
.
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F
inally,

τ
=
−
1c √
a
2−

x ′2 ∣∣∣∣ ax

=
1c √
a
2−

x
2
.

Solving
for
x,

x(τ)
= √

a
2−

c
2τ

2
.

D
iscussion:

T
he

m
etric

discussed
in

this
problem

is
called

the
R
indler

m
etric,

and
it

is
actually

a
description

of
M
inkow

ski
space

w
ith

peculiar
coordinates.

If
w
e
let
X
,
Y
,
Z
,
and

T
denote

the
usual

M
inkow

ski
space

coordinates,
the

R
indler

coordinates
are

related
by

t
=
T

0
arctanh (

cTX )
T

=
xc
sinh (

tT
0 )

x
= √

X
2−

c
2T

2
or

X
=
x
cosh (

tT
0 )

y
=
Y

Y
=
y

z
=
Z

Z
=
z

T
he

R
indler

coordinate
system

(w
hich

is
restricted

to
x
>

0)
actually

covers
only

one
quadrant

of
the

M
inkow

ski
space,

w
ith
X
>

0
and
|T|
<
X
/
c.

W
hen

described
in

M
inkow

skicoordinates,a
particle

that
is
stationary

in
the

R
indler

coordinates
is
undergoing

uniform
acceleration

in
its

ow
n
rest

fram
e,w

here
the

m
agnitude

of
the

uniform
acceleration

depends
on
x.

T
he

particle
described

in
this

problem
w
as

actually
standing

still
in

the
M
inkow

ski
coordinates.

T
he

R
indler

coordinate
system

has
a
horizon

at
x
=

0,w
hich

has
m
any

sim
ilarities

to
the

horizon
of

a
black

hole,
in

spite
of

the
fact

that
the

spacetim
e
is
sim

ply
M
inkow

ski
space.

†Solution
w
ritten

by
L
eo

Stein.
∗Solution

w
ritten

by
A
lan

G
uth.


