

(a) 10^{1} (b) 10^{0} (c) 10^{-3} (d) 10^{-5} (e) 10^{-9}.
$(\Lambda!)$ is roughly 1800.
A convenient number to remember is that the proton to electron mass ratio
(a) 0 eV (b) 0.511 eV (c) 511 keV (d) 51.1 MeV (e) 5.11 GeV (2 points) Rest mass of the electron:
proton must be the stable species - and hence the lighter one! product. Then, remember that most of the universe is Hydrogen, so a that it is the unstable species - since a decay can only produce a lighter If you have trouble remembering which species is heavier, just remember Circle the heavier species: proton or neutron? (a) .129 eV (b) 12.9 keV (c) 1.29 MeV (d) 129 GeV (e) $1.29 \times 10^{10} \mathrm{eV}$. E:
The value of $1 G e V$ is often fine for order of magnitude calculations.
(a) 9.38 eV (b) 93.8 keV (c) 93.8 MeV (d) 0.938 GeV (e) $9.38 \times 10^{13} \mathrm{eV}$.
(i) enough). For each of the following, one and only one answer is correct: into BOTECs, knowing the answer to within an order of magnitude is good a back-of-the-envelope calculation (BOTEC) in a bar (since these are going (A) The following is a list of numbers you may need to have handy when doing is generally considered a social faux pas. the importance of impressing one's peers at cocktails or beer hour, when googling really need to memorize all these numbers?" This physicist has failed to consider With the prevalence of Google today, a budding physicist may wonder "do I

PROBLEM 1: DID YOU DO THE READING? (32 points) ${ }^{\dagger}$

 SNOIUคTOS 7 ZIoN Prof. Alan Guth Physics Department
ХЮОTONHOGL HO GLOLILSNI SLLASOHOVSSVIN

 to be zero or negligibly small). What are the other two?

s!̣әчұuКsoə
(2) They took into account the conversion of neutrons to protons only by
free decay of the neutrons. They ignored the reactions

(1) They assumed that the universe began in a state of all neutrons, rather significant ways. Name one. This theory differed from the currently accepted theory in at least four the late 1940's by George Gamow, Ralph Alpher, and Robert Herman.
(i) (5 points) A theory of big bang nucleosynthesis was first worked out in
$\varepsilon \cdot d$
(C) More on nucleosynthesis:
8.286 QUIZ 2 SOLUTIONS, FALL 2009

$$
{ }^{\partial} \underline{\underline{n}}+d \longleftrightarrow+{ }^{\partial}+u
$$

$$
\begin{aligned}
& -{ }^{2}+d \longleftrightarrow{ }^{2} n+u \\
& { }^{2}+d \longleftrightarrow{ }^{2}+d
\end{aligned}
$$

8.286 QUIZ 2 SOLUTIONS, FALL 2009
(a) Since $\theta=\phi=$ constant, $d \theta=d \phi=0$, and for light rays one always has $d \tau=0$,
-yGLLEN 'GASOTO V NI SXVY LHפIT ĐNIOVYL :z NGTGOYd

 sәop $7!$! \ddagger nq 'ұәәл.

 the north pole to the south pole and back, for a total range of 2π.

 qu!̣od әчд su!̣чеұ 'әәәч

${ }_{z} n={ }_{z} m+{ }_{z} z+{ }_{z} n+{ }_{z} x$

$:\left(m^{‘} z^{`} h^{‘} x\right)$
 used in Lecture Notes 6. The closed universe is described as the 3-dimensional its starting point, then recall the construction of the closed universe that was

PROBLEM 3: EXAMINING A PECULIAR SPACETIME METRIC (35

* sturod
 come only half-way back to its starting point.
 approach $1 / 2$ as $\epsilon \rightarrow 0$. Thus, from this point of view the two cases look very
 $\epsilon \rightarrow 0$. By contrast, for the radiation-dominated closed universe, the photon a fraction of the full circle that would be almost 1, and would approach 1 as case of the matter-dominated closed universe, such a photon would traverse
 what happens exactly at $t=0$ or $t=t_{\text {Crunch }}$. Thus, we now consider a photon

 final crunch are both too singular to be considered part of the spacetime. We the principle that the instant of the initial singularity and the instant of the is zero at $t=t_{\text {Crunch }}$, the time of the big crunch. However, suppose we adopt to the north pole, since the distance between the north pole and the south pole

-

$\frac{{ }_{z}^{0} L}{z^{x}}-=00 \sigma$
where the nonzero components of $g_{\mu \nu}$ are
you to have expanded this equation, but if you did you should have gotten Either boxed equation is a perfectly acceptable answer. There was no need for

You were not asked to carry out the integration, but you can do it by using
the trigonometric substitution $x \equiv a \sin \theta$. Then $\mathrm{d} x=a \cos \theta \mathrm{~d} \theta$, and
$\int \frac{x \mathrm{~d} x}{\sqrt{a^{2}-x^{2}}}=\int \frac{a^{2} \sin \theta \cos \theta \mathrm{~d} \theta}{a \cos \theta}=\int a \sin \theta \mathrm{~d} \theta=-a \cos \theta=-\sqrt{a^{2}-x^{2}}$.

Note that I removed the minus sign by reversing the limits of integration.
Equivalently, one can drop the subscripts f and use x and τ to describe the
position and proper time variables, but then one should give a different name
(such as x^{\prime}) to the variable of integration: $\cdot \frac{z^{x}-{ }_{z} p \wedge_{0}}{x p x}{ }_{p}^{f_{x}}=f_{\perp}$

9

$6 \cdot d$
 Rindler coordinate system has a horizon at $x=0$, which has many similarities in this problem was actually standing still in the Minkowski coordinates. The magnitude of the uniform acceleration depends on x. The particle described coordinates is undergoing uniform acceleration in its own rest frame, where the described in Minkowski coordinates, a particle that is stationary in the Rindler only one quadrant of the Minkowski space, with $X>0$ and $|T|<X / c$. When The Rindler coordinate system (which is restricted to $x>0$) actually covers $z=Z$
$y=Y$
 Rindler coordinates are related by Discussion: The metric discussed in this problem is called the Rindler metric,
and it is actually a description of Minkowski space with peculiar coordinates.
If we let X, Y, Z, and T denote the usual Minkowski space coordinates, the

$z^{\perp} z^{\partial}-{ }_{z^{p}} \mathcal{L}=(\perp) x$

or

Finally,
8.286 QUIZ 2 SOLUTIONS, FALL 2009

\dagger Solution written by Leo Stein.

\longrightarrow.

-

路
$z=Z$

3

