

 - $\iota_{u / \text { кıеq }} u$
 the CMB. 1.1×10^{-5} dipole anisotropy corresponding to the motion of the observer relative to
 in terms of the speed of light, $v / c \approx 2 \times 10^{-3}$. which is not due to the expansion of the universe) of $630 \pm 20 \mathrm{~km} \mathrm{~s}^{-1}$, or
 (•dnox about the galaxy, and the galaxy relative to the center of mass of the Local

 fraction v / c of the speed of light. (The speed of the Local Group is found

(i) The average temperature T of the CMB (to within 10%). 2.725 K
 these numbers, to within an order of magnitude unless otherwise stated. In all crowave background (CMB) that one should never forget. State the values of
(a) (10 points) This question concerns some numbers related to the cosmic mi-
 6007 ' ε ләquәәәด :əұе

Prof. Alan Guth

 (v) dark matter in galactic halos, but th 7 имочs әлеч suо!̣елләsqo su!̣suәТ (1)

 (10 points) For each of the following statements, say whether it is true or false:

 bluer because of absorption in the intergalactic medium. redder because of absorption in the intergalactic medium.
(vi) Photons traveling toward us from the surface of last scat
 bluer because they must climb out of the gravitational potential well.
 redder because they must climb out of the gravitational potential well.
 appear bluer because of the Doppler effect. Photons from fluid which had a velocity toward us along the line of sight appear redder because of the Doppler effect.

 $0 \mathrm{~g} / \mathrm{L}$ (!!
G/L (!)
$09 / \mathrm{I}(!!) \quad \mathrm{C} / \mathrm{I}(!)$

 But we also know how each of these contributions to the mass density scales

se
The total mass density today is then expressed in terms of its four components

The mass density today of any species X is then related to $\Omega_{X, 0}$ by $\rho_{c}=\frac{3 H_{0}^{2}}{8 \pi G}$
Thus the critical density today is given by
$\frac{z^{p}}{z^{\partial y}}-d_{\eta} \eta \frac{\varepsilon}{\mu 8}={ }_{z} H$
(d) The critical density ρ_{c} is defined as that density for which $k=0$, where the
Friedmann equation from the front of the exam implies that
600z tTVA 'SNOILATOS \& ZInÔ 98z'8
(a) If $u \propto 1 / \sqrt{V}$, then one can write

$\underset{i}{i}$

 decay process will cause the ratio n_{n} / n_{p} to fall below 1 before the start of
 the neutrons and protons can be bound into He nuclei, with no protons left

| 'әлиерииqе әН рәұэ!̣әлд ләчэ!ч |
| :---: | implies a become bound into He nuclei, the higher neutron abundance of the NTWI

 $-{ }^{2}+d \leftrightarrow{ }^{2} n+u$

and
 ${ }^{2} \underline{\imath}+d \leftrightarrow+{ }^{2}+u$

 neutrino interactions when the ratio is about 1 . When $k T$ falls below 200 MeV in the NTWI, the ratio freezes out at the high temperature corresponding to $k T=200 \mathrm{MeV}$, In the standard theory this ratio would decrease rapidly as the universe cooled

(d) At $k T=200 \mathrm{MeV}$, the thermal equilibrium ratio of neutrons to protons is
given by

$$
\begin{aligned}
& \text { ₹ } \\
& \cdot \frac{\mathrm{I} \varepsilon}{6}=\frac{\mathrm{I} \varepsilon}{\mathrm{~T}} \frac{Z}{\left(\frac{Z}{\mathrm{~T}} \tau\right)}
\end{aligned}
$$

While of coure you were not expected to work out the numerics, this gives

In the standard model Ryden estimates the time of nucleosynthesis as $t_{\mathrm{nuc}}^{\mathrm{sm}} \approx$
200 s , so in the NTWI it would be longer by the factor
verse is given in the formula sheets as

IMLN әч子 лоғ рие

where
For the
where ture T_{γ} and neutrinos at a lower temperature T_{ν}. The energy density is given
 sis occurs during the radiation-dominated era, but long after the $e^{+}-e^{-}$pairs However, to be as accurate as possible, one should recognize that nucleosyntheSince this effect is rather subtle, no points will be taken off if you omitted it.

$$
\frac{n_{n}}{n_{B}} \approx \frac{1}{2} e^{-t_{\mathrm{nuc}} / \tau_{d}}
$$

If free decay is ignored, we found $Y=1$. Since
bound into He, the corrected value of Y is sim
the fraction of neutrons that do not undergo
NTWI is
Just before nucleosynthesis, at time $t_{\text {nuc }}$, the ratio will be
 ratio neutrons to baryon number, n_{n} / n_{B}, since n_{B} does not change during this
period. At freeze-out, when $k T \approx 200 \mathrm{MeV}$, To follow the effect of this free decay, it is easiest to do it by considering the Note that Ryden gives $t_{\text {nuc }} \approx 200 s$, while Weinberg places it at $3 \frac{3}{4}$ minutes
$\approx 225 \mathrm{~s}$, which is close enough.

