
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department
QUIZ 1
Physics 8.286: The Early Universe
Prof. Alan Guth
Reformatted to Remove Blank Pages
A SUMMARY OF USEFUL INFORMATION
IS AT THE END OF THE EXAM

problem we will consider only light waves, not sound waves, and we will assume
 central hub, and also another four cars that are attached to extensions of the four spaced cars which travel around a central hub at speed v at a distance R from a
 Consider a high-speed merry-go-round which is similar to the one discussed in

600Z TTVA 'I ZIПÔ 987.8
$\varepsilon \cdot d$
('squed snọnaid of siəmsur әчך
 your answer should have no explicit units, but should be expressed in terms of

(f) (10 points) Suppose that galaxy A, at time t_{1}, emits electromagnetic radiation

$$
\begin{aligned}
& \text { flat, so Euclidean geometry applies. }
\end{aligned}
$$

 (10 points) Suppose that there is another galaxy, galaxy

 galaxy B at time t. (i) Find the speed of approach of the light signal towards
(c) (10 points) Let $\ell_{p, s B}(t)$ denote the physical distance of the light signal from galaxy B ?
 Suppose that the light signal described above, which is emitted from galaxy expansion rate and c is the speed of light. ($c H^{-1}$ is called the Hubble length.) a physical distance $c H^{-1}$ from A at time t_{1}, where $H(t)$ denotes the Hubble (b) (5 points) Suppose that there is a second galaxy, galaxy B, that is located at is its limiting value at arbitrarily late times?

 corresponds to the origin of the universe, not to the emission of the signal.) denote the physical distance of the signal from A at time t. (Note that $t=0$
(a) (10 points) At time $t=t_{1}$, a light signal is sent from galaxy A. Let $\ell_{p, s A}(t)$ part may contain symbols representing the answers to previous parts, whether or
not the previous part was answered correctly. where b is an arbitrary constant. For the following questions, the answer to any ${ }_{\varepsilon / z^{7 Q}}=(7)^{n}$

I $=v$

DOPPLER SHIFT (For motion along a line):

XЮОTONHOGL HO GLOLILSNI SLLASOHOVSSVN

