

 lepton number.

эuren 2 mod

$$	ω	\sim	\checkmark	\square 0 0 0 0 0
$\stackrel{\rightharpoonup}{8}$	¢	$\stackrel{\leftrightarrow}{6}$	¢	高
				$\stackrel{\square}{6}$

 \boldsymbol{Z} ZI@O Prof. Alan Guth ЧL :987•8 so!̣SКчd ХПОТОNHOGL HO GLOLILSNI SLLASOHOVSSVIN

(Warning: The symbol θ is used for two things: before part (b), θ is an angular чวunso sṭq of surq sṭq worf

әләчм
$(\theta \operatorname{soo}-\mathrm{I}) x=p$ parametric equations

 quantities that appear in the metric.

up
иәчL

 $$
d s^{2}=-c^{2} d \tau^{2}=-c^{2} d t^{2}+a^{2}(t)\left\{\frac{d r^{2}}{1-r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right\},
$$

where I have taken $k=1$. To discuss motion in the radial direction, it is more
 The spacetime metric for a homogeneous, isotropic, closed universe is given by the Review Problems for Quiz 2.

 PROBLEM 2: TRACING LIGHT RAYS IN A CLOSED, MATTER-
(e) (5 points) By using your answers from parts (c) and (d), find x as a function
of τ, or τ as a function of x, where in either case the parameters c, T_{0}, and/or
a may appear in your equations. You will get full credit for your answer if you
write an expression for τ as a definite integral, which you need not evaluate.
(Hint: the particle moves toward smaller values of x.) direction. may use the fact that, for the case of interest, there is no motion in the y or z

 relation between x and τ, which is what we want to be able to understand the (d) (10 points) The geodesic equation derived in part (c) is not enough to find the

 as is also given in the formula sheet for this quiz. Expand the $\mu=0$ (where $x^{0} \equiv$

$$
\frac{\lrcorner \mathrm{p}}{{ }_{\rho}^{x \mathrm{p}}} \frac{\lrcorner \mathrm{p}}{{ }_{\gamma} x \mathrm{p}}\left({ }^{\circ}{ }^{\circ} b^{r} \varrho\right) \frac{\mathrm{z}}{\mathrm{~L}}=\left\{\frac{\lrcorner \mathrm{p}}{{ }_{x} x \mathrm{p}}{ }^{n r} B\right\} \frac{\lrcorner \mathrm{p}}{\mathrm{p}}
$$ on the particle, its motion will be described by the geodesic equation, released from rest at $x=a$, at time $t=0$. Since gravity is the only force acting (c) (10 points) Suppose a particle moving under the influence of gravity alone is $t=\beta$, where β is a constant. is located at $x=a$. How much time does the clock measure between $t=0$ and (b) (5 points) Suppose that a clock, which is also stationary in these coordinates, physical length of the ruler?

${ }_{z} z \mathrm{p}+{ }_{z} \kappa \mathrm{p}+{ }_{z} x \mathrm{p}+{ }_{z^{\prime}} \not \mathrm{p} \frac{z L}{z^{x}}-={ }_{z}\left\llcorner\mathrm{p} z^{\partial-}={ }_{z} s \mathrm{p}\right.$

Consider the spacetime metric (squiod

8.286 QUIZ 2, FALL 2009

