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REVIEW PROBLEMS FOR QUIZ 2

QUIZ DATE: Thursday, November 3, 2011, during the normal class time.

COVERAGE: Lecture Notes 4 and 5; Problem Sets 4 and 5; Weinberg, The First
Three Minutes, Chapters 4 and 5; In Ryden’s Introduction to Cosmology, we
have read Chapters 4, 5, and 6 during this period. These chapters, however,
parallel what we have done or will be doing in lecture, so you should take them
as an aid to learning the lecture material. Therefore, there will be no questions
on this quiz explicitly based on the reading from Ryden. Chapters 4 and 5
of Weinberg’s book are packed with numbers; you need not memorize these
numbers, but you should be familiar with their orders of magnitude. We will
not take off for the spelling of names, as long as they are vaguely recognizable.
For dates before 1900, it will be sufficient for you to know when things happened
to within 100 years. For dates after 1900, it will be sufficient if you can place
events within 10 years. You should expect one problem based on the reading
from Weinberg, and several calculational problems. One of the problems on
the quiz will be taken verbatim (or at least almost verbatim) from
either the homework assignments, or from the starred problems from
this set of Review Problems. The starred problems are the ones that I
recommend that you review most carefully: Problems 3, 4, 5, 6, 8, 10, 13, 14,
15, and 16. There are only two reading questions, Problems 1 and 2. Note that
parts 1(d), 1(e), and 2(a) are based on Chapter 6 of Weinberg’s book, which
we have not yet read.

PURPOSE: These review problems are not to be handed in, but are being made
available to help you study. They come mainly from quizzes in previous years.
In some cases the number of points assigned to the problem on the quiz is listed
— in all such cases it is based on 100 points for the full quiz.

In addition to this set of problems, you will find on the course web page the
actual quizzes that were given in 1994, 1996, 1998, 2000, 2002, 2004, 2005,
2007, and 2009. The relevant problems from those quizzes have mostly been
incorporated into these review problems, but you still may be interested in
looking at the quizzes, just to see how much material has been included in
each quiz. The coverage of the upcoming quiz will not necessarily match the
coverage of any of the quizzes from previous years. The coverage for each quiz
in recent years is usually described at the start of the review problems, as I did
here.

REVIEW SESSION AND OFFICE HOURS: To help you study for the quiz,
Daniele Bertolini will hold a review session on Monday, October 31, at 7:15
pm, in a room to be announced. I will have my usual office hour on Wednesday
evening, 7:30 pm, in Room 8-320.
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INFORMATION TO BE GIVEN ON QUIZ:

Each quiz in this course will have a section of “useful information” for your
reference. For the second quiz, this useful information will be the following:

SPEED OF LIGHT IN COMOVING COORDINATES:

vcoord =
c

a(t)
.

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=

a(tobserved)
a(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β
0/c .

EVOLUTION OF A MATTER-DOMINATED
UNIVERSE:

H2 =
(
ȧ

a

)2

=
8π
3
Gρ− kc2

a2
, ä = −4π

3
Gρa ,

ρ(t) =
a3(ti)
a3(t)

ρ(ti)
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Ω ≡ ρ/ρc , where ρc =
3H2

8πG
.

Flat (k = 0): a(t) ∝ t2/3

Ω = 1 .

Closed (k > 0): ct = α(θ − sin θ) ,
a√
k
= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π
3
Gρ

c2

(
a√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
a√
κ
= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π
3
Gρ

c2

(
a√
κ

)3

,

κ ≡ −k > 0 .

ROBERTSON-WALKER METRIC:

ds2 = −c2 dτ2 = −c2 dt2+a2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}

SCHWARZSCHILD METRIC:

ds2 = −c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1
2
(∂igk�)

dxk

ds

dx�

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
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PROBLEM 1: DID YOU DO THE READING?

(a) (5 points) By what factor does the lepton number per comoving volume of the
universe change between temperatures of kT = 10 MeV and kT = 0.1 MeV?
You should assume the existence of the normal three species of neutrinos for
your answer.

(b) (5 points) Measurements of the primordial deuterium abundance would give
good constraints on the baryon density of the universe. However, this abun-
dance is hard to measure accurately. Which of the following is NOT a reason
why this is hard to do?

(i) The neutron in a deuterium nucleus decays on the time scale of 15 minutes,
so almost none of the primordial deuterium produced in the Big Bang is
still present.

(ii) The deuterium abundance in the Earth’s oceans is biased because, being
heavier, less deuterium than hydrogen would have escaped from the Earth’s
surface.

(iii) The deuterium abundance in the Sun is biased because nuclear reactions
tend to destroy it by converting it into helium-3.

(iv) The spectral lines of deuterium are almost identical with those of hydrogen,
so deuterium signatures tend to get washed out in spectra of primordial
gas clouds.

(v) The deuterium abundance is so small (a few parts per million) that it
can be easily changed by astrophysical processes other than primordial
nucleosynthesis.

(c) (5 points) Give three examples of hadrons.

(d) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg posed the
question, “Why was there no systematic search for this [cosmic background]
radiation, years before 1965?” In discussing this issue, he contrasted it with
the history of two different elementary particles, each of which were predicted
approximately 20 years before they were first detected. Name one of these
two elementary particles. (If you name them both correctly, you will get 3
points extra credit. However, one right and one wrong will get you 4 points for
the question, compared to 6 points for just naming one particle and getting it
right.)

Answer:
2nd Answer (optional):

(e) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg discusses
three reasons why the importance of a search for a 3◦ K microwave radiation



8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2011 p. 5

background was not generally appreciated in the 1950s and early 1960s. Choose
those three reasons from the following list. (2 points for each right answer, circle
at most 3.)

(i) The earliest calculations erroneously predicted a cosmic background tem-
perature of only about 0.1◦ K, and such a background would be too weak
to detect.

(ii) There was a breakdown in communication between theorists and experi-
mentalists.

(iii) It was not technologically possible to detect a signal as weak as a 3◦ K
microwave background until about 1965.

(iv) Since almost all physicists at the time were persuaded by the steady state
model, the predictions of the big bang model were not taken seriously.

(v) It was extraordinarily difficult for physicists to take seriously any theory
of the early universe.

(vi) The early work on nucleosynthesis by Gamow, Alpher, Herman, and Follin,
et al., had attempted to explain the origin of all complex nuclei by reactions
in the early universe. This program was never very successful, and its
credibility was further undermined as improvements were made in the
alternative theory, that elements are synthesized in stars.

PROBLEM 2: DID YOU DO THE READING? (24 points)

The following problem was Problem 1 of Quiz 2 in 2007.

(a) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predict-
ing a cosmic microwave background with a temperature of 5 K. The paper was
based on a cosmological model that they had developed with George Gamow,
in which the early universe was assumed to have been filled with hot neutrons.
As the universe expanded and cooled the neutrons underwent beta decay into
protons, electrons, and antineutrinos, until at some point the universe cooled
enough for light elements to be synthesized. Alpher and Herman found that to
account for the observed present abundances of light elements, the ratio of pho-
tons to nuclear particles must have been about 109. Although the predicted
temperature was very close to the actual value of 2.7 K, the theory differed
from our present theory in two ways. Circle the two correct statements in the
following list. (3 points for each right answer; circle at most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but
now the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of
protons and neutrons, not all neutrons as Gamow, Alpher, and Herman
assumed.
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(iii) In the current theory, the universe started with mainly alpha particles, not
all neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha
particle is the nucleus of a helium atom, composed of two protons and two
neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice
versa) took place mainly through collisions with electrons, positrons, neu-
trinos, and antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now be-
lieved to have been about 103, not 109 as Alpher and Herman concluded.

(b) (6 points) In Weinberg’s “Recipe for a Hot Universe,” he described the primor-
dial composition of the universe in terms of three conserved quantities: electric
charge, baryon number, and lepton number. If electric charge is measured in
units of the electron charge, then all three quantities are integers for which
the number density can be compared with the number density of photons. For
each quantity, which choice most accurately describes the initial ratio of the
number density of this quantity to the number density of photons:

Electric Charge: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1
(iv) ∼ 10−6 (v) either zero or negligible

Baryon Number: (i) ∼ 10−20 (ii) ∼ 10−9 (iii) ∼ 10−6

(iv) ∼ 1 (v) anywhere from 10−5 to 1

Lepton Number: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1
(iv) ∼ 10−6 (v) could be as high as ∼ 1, but

is assumed to be very small
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(c) (12 points) The figure below comes from Weinberg’s Chapter 5, and is labeled
The Shifting Neutron-Proton Balance.

(i) (3 points) During the period labeled “thermal equilibrium,” the neutron
fraction is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into through reac-
tions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such
as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.
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(ii) (3 points) During the period labeled “neutron decay,” the neutron fraction
is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such
as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.

(iii) (3 points) The masses of the neutron and proton are not exactly equal,
but instead

(A) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 GeV (1 GeV = 109 eV).

(B) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 MeV (1 MeV = 106 eV).

(C) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 KeV (1 KeV = 103 eV).

(D) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 GeV.

(E) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 MeV.

(F) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 KeV.
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(iv) (3 points) During the period labeled “era of nucleosynthesis,” (choose one:)

(A) Essentially all the neutrons present combine with protons to form
helium nuclei, which mostly survive until the present time.

(B) Essentially all the neutrons present combine with protons to form
deuterium nuclei, which mostly survive until the present time.

(C) About half the neutrons present combine with protons to form helium
nuclei, which mostly survive until the present time, and the other half
of the neutrons remain free.

(D) About half the neutrons present combine with protons to form deu-
terium nuclei, which mostly survive until the present time, and the
other half of the neutrons remain free.

(E) Essentially all the protons present combine with neutrons to form
helium nuclei, which mostly survive until the present time.

(F) Essentially all the protons present combine with neutrons to form
deuterium nuclei, which mostly survive until the present time.

∗PROBLEM 3: EVOLUTION OF AN OPEN UNIVERSE

The following problem was taken from Quiz 2, 1990, where it counted 10 points out
of 100.

Consider an open, matter-dominated universe, as described by the evolution
equations on the front of the quiz. Find the time t at which a/

√
κ = 2α.

∗PROBLEM 4: ANTICIPATING A BIG CRUNCH

Suppose that we lived in a closed, matter-dominated universe, as described by
the equations on the front of the quiz. Suppose further that we measured the mass
density parameter Ω to be Ω0 = 2, and we measured the Hubble “constant” to have
some value H0. How much time would we have before our universe ended in a big
crunch, at which time the scale factor a(t) would collapse to 0?

∗PROBLEM 5: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE (30 points)

The following problem was Problem 3, Quiz 2, 1998.

The spacetime metric for a homogeneous, isotropic, closed universe is given by
the Robertson-Walker formula:

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{

dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,
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where I have taken k = 1. To discuss motion in the radial direction, it is more
convenient to work with an alternative radial coordinate ψ, related to r by

r = sinψ .

Then
dr√
1− r2

= dψ ,

so the metric simplifies to

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

(a) (7 points) A light pulse travels on a null trajectory, which means that dτ = 0
for each segment of the trajectory. Consider a light pulse that moves along
a radial line, so θ = φ = constant. Find an expression for dψ/dt in terms of
quantities that appear in the metric.

(b) (8 points) Write an expression for the physical horizon distance 
phys at time
t. You should leave your answer in the form of a definite integral.

The form of a(t) depends on the content of the universe. If the universe is matter-
dominated (i.e., dominated by nonrelativistic matter), then a(t) is described by the
parametric equations

ct = α(θ − sin θ) ,

a = α(1− cos θ) ,

where

α ≡ 4π
3
Gρa3

c2
.

These equations are identical to those on the front of the exam, except that I have
chosen k = 1.

(c) (10 points) Consider a radial light-ray moving through a matter-dominated
closed universe, as described by the equations above. Find an expression for
dψ/dθ, where θ is the parameter used to describe the evolution.

(d) (5 points) Suppose that a photon leaves the origin of the coordinate system
(ψ = 0) at t = 0. How long will it take for the photon to return to its starting
place? Express your answer as a fraction of the full lifetime of the universe,
from big bang to big crunch.
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∗PROBLEM 6: LENGTHS AND AREAS IN A TWO-DIMENSIONAL
METRIC (25 points)

The following problem was Problem 3, Quiz 2, 1994:

Suppose a two dimensional space, described in polar coordinates (r, θ), has a
metric given by

ds2 = (1 + ar)2 dr2 + r2(1 + br)2 dθ2 ,

where a and b are positive constants. Consider the path in this space which is
formed by starting at the origin, moving along the θ = 0 line to r = r0, then
moving at fixed r to θ = π/2, and then moving back to the origin at fixed θ. The
path is shown below:

a) (10 points) Find the total length of this path.

b) (15 points) Find the area enclosed by this path.

PROBLEM 7: GEOMETRY IN A CLOSED UNIVERSE (25 points)

The following problem was Problem 4, Quiz 2, 1988:

Consider a universe described by the Robertson–Walker metric on the first page
of the quiz, with k = 1. The questions below all pertain to some fixed time t, so
the scale factor can be written simply as a, dropping its explicit t-dependence.

A small rod has one end at the point (r = h, θ = 0, φ = 0) and the other end
at the point (r = h, θ = ∆θ, φ = 0). Assume that ∆θ � 1.



8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2011 p. 12

(a) Find the physical distance 
p from the origin (r = 0) to the first end (h, 0, 0)
of the rod. You may find one of the following integrals useful:

∫
dr√
1− r2

= sin−1 r

∫
dr

1− r2
=

1
2
ln
(
1 + r

1− r

)
.

(b) Find the physical length sp of the rod. Express your answer in terms of the
scale factor a, and the coordinates h and ∆θ.

(c) Note that ∆θ is the angle subtended by the rod, as seen from the origin. Write
an expression for this angle in terms of the physical distance 
p, the physical
length sp, and the scale factor a.

∗PROBLEM 8: THE GENERAL SPHERICALLY SYMMETRIC
METRIC (20 points)

The following problem was Problem 3, Quiz 2, 1986:

The metric for a given space depends of course on the coordinate system which
is used to describe it. It can be shown that for any three dimensional space which
is spherically symmetric about a particular point, coordinates can be found so that
the metric has the form

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
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for some function ρ(r). The coordinates θ and φ have their usual ranges: θ varies
between 0 and π, and φ varies from 0 to 2π, where φ = 0 and φ = 2π are identified.
Given this metric, consider the sphere whose outer boundary is defined by r = r0.

(a) Find the physical radius a of the sphere. (By “radius”, I mean the physical
length of a radial line which extends from the center to the boundary of the
sphere.)

(b) Find the physical area of the surface of the sphere.

(c) Find an explicit expression for the volume of the sphere. Be sure to include
the limits of integration for any integrals which occur in your answer.

(d) Suppose a new radial coordinate σ is introduced, where σ is related to r by

σ = r2 .

Express the metric in terms of this new variable.

PROBLEM 9: VOLUMES IN A ROBERTSON-WALKER UNIVERSE
(20 points)

The following problem was Problem 1, Quiz 3, 1990:

The metric for a Robertson-Walker universe is given by

ds2 = a2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Calculate the volume V (rmax) of the sphere described by

r ≤ rmax .

You should carry out any angular integrations that may be necessary, but you may
leave your answer in the form of a radial integral which is not carried out. Be sure,
however, to clearly indicate the limits of integration.

∗PROBLEM 10: THE SCHWARZSCHILD METRIC (25 points)

The follow problem was Problem 4, Quiz 3, 1992:

The space outside a spherically symmetric mass M is described by the
Schwarzschild metric, given at the front of the exam. Two observers, designated A
and B, are located along the same radial line, with values of the coordinate r given
by rA and rB, respectively, with rA < rB. You should assume that both observers
lie outside the Schwarzschild horizon.
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a) (5 points) Write down the expression for the Schwarzschild horizon radius RS,
expressed in terms of M and fundamental constants.

b) (5 points) What is the proper distance between A and B? It is okay to leave
the answer to this part in the form of an integral that you do not evaluate—
but be sure to clearly indicate the limits of integration.

c) (5 points) Observer A has a clock that emits an evenly spaced sequence of ticks,
with proper time separation ∆τA. What will be the coordinate time separation
∆tA between these ticks?

d) (5 points) At each tick of A’s clock, a light pulse is transmitted. Observer B
receives these pulses, and measures the time separation on his own clock. What
is the time interval ∆τB measured by B.

e) (5 points) Suppose that the object creating the gravitational field is a static
black hole, so the Schwarzschild metric is valid for all r. Now suppose that
one considers the case in which observer A lies on the Schwarzschild horizon,
so rA ≡ RS. Is the proper distance between A and B finite for this case? Does
the time interval of the pulses received by B, ∆τB, diverge in this case?

PROBLEM 11: GEODESICS (20 points)

The following problem was Problem 4, Quiz 2, 1986:

Ordinary Euclidean two-dimensional space can be described in polar coordi-
nates by the metric

ds2 = dr2 + r2 dθ2 .

(a) Suppose that r(λ) and θ(λ) describe a geodesic in this space, where the param-
eter λ is the arc length measured along the curve. Use the general formula on
the front of the exam to obtain explicit differential equations which r(λ) and
θ(λ) must obey.

(b) Now introduce the usual Cartesian coordinates, defined by

x = r cos θ ,

y = r sin θ .

Use your answer to (a) to show that the line y = 1 is a geodesic curve.
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PROBLEM 12: GEODESICS ON THE SURFACE OF A SPHERE

In this problem we will test the geodesic equation by computing the geodesic
curves on the surface of a sphere. We will describe the sphere as in Lecture Notes
5, with metric given by

ds2 = a2
(
dθ2 + sin2 θ dφ2

)
.

(a) Clearly one geodesic on the sphere is the equator, which can be parametrized
by θ = π/2 and φ = ψ, where ψ is a parameter which runs from 0 to 2π.
Show that if the equator is rotated by an angle α about the x-axis, then the
equations become:

cos θ = sinψ sinα

tanφ = tanψ cosα .

(b) Using the generic form of the geodesic equation on the front of the exam, derive
the differential equation which describes geodesics in this space.

(c) Show that the expressions in (a) satisfy the differential equation for the
geodesic. Hint: The algebra on this can be messy, but I found things were
reasonably simple if I wrote the derivatives in the following way:

dθ

dψ
= − cosψ sinα√

1− sin2 ψ sin2 α
,

dφ

dψ
=

cosα
1− sin2 ψ sin2 α

.

∗PROBLEM 13: GEODESICS IN A CLOSED UNIVERSE

The following problem was Problem 3, Quiz 3, 2000, where it was worth 40 points
plus 5 points extra credit.

Consider the case of closed Robertson-Walker universe. Taking k = 1, the
spacetime metric can be written in the form

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{

dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

We will assume that this metric is given, and that a(t) has been specified. While
galaxies are approximately stationary in the comoving coordinate system described
by this metric, we can still consider an object that moves in this system. In particu-
lar, in this problem we will consider an object that is moving in the radial direction
(r-direction), under the influence of no forces other than gravity. Hence the object
will travel on a geodesic.

(a) (7 points) Express dτ/dt in terms of dr/dt.
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(b) (3 points) Express dt/dτ in terms of dr/dt.

(c) (10 points) If the object travels on a trajectory given by the function rp(t)
between some time t1 and some later time t2, write an integral which gives the
total amount of time that a clock attached to the object would record for this
journey.

(d) (10 points) During a time interval dt, the object will move a coordinate distance

dr =
dr

dt
dt .

Let d
 denote the physical distance that the object moves during this time. By
“physical distance,” I mean the distance that would be measured by a comoving
observer (an observer stationary with respect to the coordinate system) who is
located at the same point. The quantity d
/dt can be regarded as the physical
speed vphys of the object, since it is the speed that would be measured by a
comoving observer. Write an expression for vphys as a function of dr/dt and r.

(e) (10 points) Using the formulas at the front of the exam, derive the geodesic
equation of motion for the coordinate r of the object. Specifically, you should
derive an equation of the form

d

dτ

[
A
dr

dτ

]
= B

(
dt

dτ

)2

+ C

(
dr

dτ

)2

+D

(
dθ

dτ

)2

+ E

(
dφ

dτ

)2

,

where A, B, C, D, and E are functions of the coordinates, some of which might
be zero.

(f) (5 points EXTRA CREDIT) On Problem 3 of Problem Set 5 we learned that
in a flat Robertson-Walker metric, the relativistically defined momentum of a
particle,

p =
mvphys√
1− v2phys

c2

,

falls off as 1/a(t). Use the geodesic equation derived in part (e) to show that
the same is true in a closed universe.
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∗PROBLEM 14: A TWO-DIMENSIONAL CURVED SPACE (40
points)

The following problem was Problem 3, Quiz 2, 2002.

Consider a two-dimensional curved space described by
polar coordinates u and θ, where 0 ≤ u ≤ a and 0 ≤ θ ≤ 2π,
and θ = 2π is as usual identified with θ = 0. The metric is
given by

ds2 =
a du2

4u(a− u)
+ u dθ2 .

A diagram of the space is shown at the right, but you should
of course keep in mind that the diagram does not accurately
reflect the distances defined by the metric.

(a) (6 points) Find the radius R of the space, defined as
the length of a radial (i.e., θ = constant) line. You
may express your answer as a definite integral, which
you need not evaluate. Be sure, however, to specify the
limits of integration.

(b) (6 points) Find the circumference S of the space, de-
fined as the length of the boundary of the space at
u = a.

(c) (7 points) Consider an annular region as shown, con-
sisting of all points with a u-coordinate in the range
u0 ≤ u ≤ u0 + du. Find the physical area dA of this
region, to first order in du.
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(d) (3 points) Using your answer to part (c), write an expression for the total area
of the space.

(e) (10 points) Consider a geodesic curve in this space, described by the functions
u(s) and θ(s), where the parameter s is chosen to be the arc length along the
curve. Find the geodesic equation for u(s), which should have the form

d
ds

[
F (u, θ)

du
ds

]
= . . . ,

where F (u, θ) is a function that you will find. (Note that by writing F as a
function of u and θ, we are saying that it could depend on either or both of
them, but we are not saying that it necessarily depends on them.) You need
not simplify the left-hand side of the equation.

(f) (8 points) Similarly, find the geodesic equation for θ(s), which should have the
form

d
ds

[
G(u, θ)

dθ
ds

]
= . . . ,

where G(u, θ) is a function that you will find. Again, you need not simplify the
left-hand side of the equation.

∗PROBLEM 15: ROTATING FRAMES OF REFERENCE (35 points)

The following problem was Problem 3, Quiz 2, 2004.

In this problem we will use the formalism of general relativity and geodesics to
derive the relativistic description of a rotating frame of reference.

The problem will concern the consequences of the metric

ds2 = −c2 dτ2 = −c2 dt2 +
[
dr2 + r2 (dφ+ ω dt)2 + dz2

]
, (P15.1)

which corresponds to a coordinate system rotating about the z-axis, where φ is
the azimuthal angle around the z-axis. The coordinates have the usual range for
cylindrical coordinates: −∞ < t <∞, 0 ≤ r <∞, −∞ < z <∞, and 0 ≤ φ < 2π,
where φ = 2π is identified with φ = 0.
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EXTRA INFORMATION

To work the problem, you do not need to know anything about where this
metric came from. However, it might (or might not!) help your intuition
to know that Eq. (P15.1) was obtained by starting with a Minkowski metric
in cylindrical coordinates t̄ , r̄, φ̄, and z̄,

c2 dτ2 = c2 dt̄ 2 − [
dr̄2 + r̄2 dφ̄2 + dz̄2

]
,

and then introducing new coordinates t, r, φ, and z that are related by

t̄ = t, r̄ = r, φ̄ = φ+ ωt, z̄ = z ,

so dt̄ = dt, dr̄ = dr, dφ̄ = dφ+ ω dt, and dz̄ = dz.

(a) (8 points) The metric can be written in matrix form by using the standard
definition

ds2 = −c2 dτ2 ≡ gµν dx
µ dxν ,

where x0 ≡ t, x1 ≡ r, x2 ≡ φ, and x3 ≡ z. Then, for example, g11 (which can
also be called grr) is equal to 1. Find explicit expressions to complete the list
of the nonzero entries in the matrix gµν :

g11 ≡ grr = 1

g00 ≡ gtt = ?

g20 ≡ g02 ≡ gφt ≡ gtφ = ?

g22 ≡ gφφ = ?

g33 ≡ gzz = ?

(P15.2)

If you cannot answer part (a), you can introduce unspecified functions f1(r), f2(r),
f3(r), and f4(r), with

g11 ≡ grr = 1

g00 ≡ gtt = f1(r)

g20 ≡ g02 ≡ gφt ≡ gtφ = f1(r)

g22 ≡ gφφ = f3(r)

g33 ≡ gzz = f4(r) ,

(P15.3)
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and you can then express your answers to the subsequent parts in terms of these
unspecified functions.

(b) (10 points) Using the geodesic equations from the front of the quiz,

d
dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ
dxσ

dτ
,

explicitly write the equation that results when the free index µ is equal to 1,
corresponding to the coordinate r.

(c) (7 points) Explicitly write the equation that results when the free index µ is
equal to 2, corresponding to the coordinate φ.

(d) (10 points) Use the metric to find an expression for dt/dτ in terms of dr/dt,
dφ/dt, and dz/dt. The expression may also depend on the constants c and ω.
Be sure to note that your answer should depend on the derivatives of t, φ, and
z with respect to t, not τ . (Hint: first find an expression for dτ/dt, in terms
of the quantities indicated, and then ask yourself how this result can be used to
find dt/dτ .)

∗PROBLEM 16: CIRCULAR ORBITS IN A SCHWARZSCHILD
METRIC

The Schwarzschild metric, which describes the external gravitational field of
any spherically symmetric distribution of mass, is given by

ds2 = −c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2+

(
1− 2GM

rc2

)−1

dr2+r2dθ2+r2 sin2 θ dφ2 ,

where M is the total mass of the object, 0 ≤ θ ≤ π, 0 ≤ φ < 2π, and φ =
2π is identified with φ = 0. We will be concerned only with motion outside the
Schwarzschild horizon RS = 2GM/c2, so we can take r > RS. (This restriction
allows us to avoid the complications of understanding the effects of the singularity
at r = RS.) In this problem we will use the geodesic equation to calculate the
behavior of circular orbits in this metric. We will assume a perfectly circular orbit
in the x-y plane: the radial coordinate r is fixed, θ = 90◦, and φ = ωt, for some
angular velocity ω.

(a) Use the metric to find the proper time interval dτ for a segment of the path
corresponding to a coordinate time interval dt. Note that dτ represents the
time that would actually be measured by a clock moving with the orbiting
body. Your result should show that

dτ

dt
=

√
1− 2GM

rc2
− r2ω2

c2
.
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Note that for M = 0 this reduces to the special relativistic relation dτ/dt =√
1− v2/c2, but the extra term proportional to M describes an effect that is

new with general relativity— the gravitational field causes clocks to slow down,
just as motion does.

(b) Show that the geodesic equation of motion (Eq. (5.52)) for one of the coordi-
nates takes the form

0 =
1
2
∂gφφ
∂r

(
dφ

dτ

)2

+
1
2
∂gtt
∂r

(
dt

dτ

)2

.

(c) Show that the above equation implies

r

(
dφ

dτ

)2

=
GM

r2

(
dt

dτ

)2

,

which in turn implies that

rω2 =
GM

r2
.

Thus, the relation between r and ω is exactly the same as in Newtonian me-
chanics. [Note, however, that this does not really mean that general relativity
has no effect. First, ω has been defined by dφ/dt, where t is a time coordi-
nate which is not the same as the proper time τ that would be measured by a
clock on the orbiting body. Second, r does not really have the same meaning
as in the Newtonian calculation, since it is not the measured distance from the
center of motion. Measured distances, you will recall, are calculated by inte-
grating the metric, as for example in Problem 4 of Problem Set 4, A Circle
in a Non-Euclidean Geometry. Since the angular (dθ2 and dφ2) terms in the
Schwarzschild metric are unaffected by the mass, however, it can be seen that
the circumference of the circle is equal to 2πr, as in the Newtonian calculation.]

(d) (For 3 points extra credit) Show that circular orbits around a black hole have
a minimum value of the radial coordinate r, which is larger than RS. What is
it?

PROBLEM 17: THE STABILITY OF SCHWARZSCHILD ORBITS (30
points)

This problem was Problem 4, Quiz 2 in 2007. I have modified the reference
to the homework problem to correspond to the current (2011) context, where it is
Problem 16 of these review problems. In 2007 it had been a homework problem prior
to the quiz.

This problem is an elaboration of the previous problem, Problem 16, for which
both the statement and the solution are reproduced at the end of this quiz. This
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material is reproduced for your reference, but you should be aware that the solution
to the present problem has important differences. You can copy from this material,
but to allow the grader to assess your understanding, you are expected to present
a logical, self-contained answer to this question.

In the solution to that homework problem, it was stated that further analysis
of the orbits in a Schwarzschild geometry shows that the smallest stable circular
orbit occurs for r = 3RS. Circular orbits are possible for 3

2RS < r < 3RS , but
they are not stable. In this problem we will explore the calculations behind this
statement.

We will consider a body which undergoes small oscillations about a circular
orbit at r(t) = r0, θ = π/2, where r0 is a constant. The coordinate θ will therefore
be fixed, but all the other coordinates will vary as the body follows its orbit.

(a) (12 points) The first step, since r(τ) will not be a constant in this solution, will
be to derive the equation of motion for r(τ). That is, for the Schwarzschild
metric

ds2 = −c2dτ2 = −h(r)c2dt2 + h(r)−1dr2 + r2dθ2 + r2 sin2 θ dφ2 , (P17.1)

where

h(r) ≡ 1− RS
r

,

work out the explicit form of the geodesic equation

d

dτ

[
gµν

dxν

dτ

]
=

1
2
∂gλσ
∂xµ

dxλ

dτ

dxσ

dτ
, (P17.2)

for the case µ = r. You should use this result to find an explicit expression for

d2r

dτ2
.

You may allow your answer to contain h(r), its derivative h′(r) with respect to
r, and the derivative with respect to τ of any coordinate, including dt/dτ .

(b) (6 points) It is useful to consider r and φ to be the independent variables, while
treating t as a dependent variable. Find an expression for

(
dt

dτ

)2
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in terms of r, dr/dτ , dφ/dτ , h(r), and c. Use this equation to simplify the
expression for d2r/dτ2 obtained in part (a). The goal is to obtain an expression
of the form

d2r

dτ2
= f0(r) + f1(r)

(
dφ

dτ

)2

. (P17.3)

where the functions f0(r) and f1(r) might depend on RS or c, and might be
positive, negative, or zero. Note that the intermediate steps in the calculation
involve a term proportional to (dr/dτ)2, but the net coefficient for this term
vanishes.

(c) (7 points) To understand the orbit we will also need the equation of motion for
φ. Evaluate the geodesic equation (P17.2) for µ = φ, and write the result in
terms of the quantity L, defined by

L ≡ r2 dφ

dτ
. (P17.4)

(d) (5 points) Finally, we come to the question of stability. Substituting Eq. (P17.4)
into Eq. (P17.3), the equation of motion for r can be written as

d2r

dτ2
= f0(r) + f1(r)

L2

r4
.

Now consider a small perturbation about the circular orbit at r = r0, and
write an equation that determines the stability of the orbit. (That is, if some
external force gives the orbiting body a small kick in the radial direction, how
can you determine whether the perturbation will lead to stable oscillations, or
whether it will start to grow?) You should express the stability requirement
in terms of the unspecified functions f0(r) and f1(r). You are NOT asked to
carry out the algebra of inserting the explicit forms that you have found for
these functions.
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SOLUTIONS

PROBLEM 1: DID YOU DO THE READING?

(a) This is a total trick question. Lepton number is, of course, conserved, so the
factor is just 1. See Weinberg chapter 4, pages 91-4.

(b) The correct answer is (i). The others are all real reasons why it’s hard to
measure, although Weinberg’s book emphasizes reason (v) a bit more than
modern astrophysicists do: astrophysicists have been looking for other ways
that deuterium might be produced, but no significant mechanism has been
found. See Weinberg chapter 5, pages 114-7.

(c) The most obvious answers would be proton, neutron, and pi meson. However,
there are many other possibilities, including many that were not mentioned by
Weinberg. See Weinberg chapter 7, pages 136-8.

(d) The correct answers were the neutrino and the antiproton. The neutrino
was first hypothesized by Wolfgang Pauli in 1932 (in order to explain the kine-
matics of beta decay), and first detected in the 1950s. After the positron was
discovered in 1932, the antiproton was thought likely to exist, and the Bevatron
in Berkeley was built to look for antiprotons. It made the first detection in the
1950s.

(e) The correct answers were (ii), (v) and (vi). The others were incorrect for the
following reasons:

(i) the earliest prediction of the CMB temperature, by Alpher and Herman
in 1948, was 5 degrees, not 0.1 degrees.

(iii) Weinberg quotes his experimental colleagues as saying that the 3◦ K radi-
ation could have been observed “long before 1965, probably in the mid-
1950s and perhaps even in the mid-1940s.” To Weinberg, however, the
historically interesting question is not when the radiation could have been
observed, but why radio astronomers did not know that they ought to try.

(iv) Weinberg argues that physicists at the time did not pay attention to either
the steady state model or the big bang model, as indicated by the sentence
in item (v) which is a direct quote from the book: “It was extraordinarily
difficult for physicists to take seriously any theory of the early universe”.



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2011 p. 25

PROBLEM 2: DID YOU DO THE READING? (24 points)

(a) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predict-
ing a cosmic microwave background with a temperature of 5 K. The paper was
based on a cosmological model that they had developed with George Gamow,
in which the early universe was assumed to have been filled with hot neutrons.
As the universe expanded and cooled the neutrons underwent beta decay into
protons, electrons, and antineutrinos, until at some point the universe cooled
enough for light elements to be synthesized. Alpher and Herman found that to
account for the observed present abundances of light elements, the ratio of pho-
tons to nuclear particles must have been about 109. Although the predicted
temperature was very close to the actual value of 2.7 K, the theory differed
from our present theory in two ways. Circle the two correct statements in the
following list. (3 points for each right answer; circle at most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but
now the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of
protons and neutrons, not all neutrons as Gamow, Alpher, and Herman
assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not
all neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha
particle is the nucleus of a helium atom, composed of two protons and two
neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice
versa) took place mainly through collisions with electrons, positrons, neu-
trinos, and antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now be-
lieved to have been about 103, not 109 as Alpher and Herman concluded.

(b) (6 points) In Weinberg’s “Recipe for a Hot Universe,” he described the primor-
dial composition of the universe in terms of three conserved quantities: electric
charge, baryon number, and lepton number. If electric charge is measured in
units of the electron charge, then all three quantities are integers for which
the number density can be compared with the number density of photons. For
each quantity, which choice most accurately describes the initial ratio of the
number density of this quantity to the number density of photons:
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Electric Charge: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1
(iv) ∼ 10−6 (v) either zero or negligible

Baryon Number: (i) ∼ 10−20 (ii) ∼ 10−9 (iii) ∼ 10−6

(iv) ∼ 1 (v) anywhere from 10−5 to 1

Lepton Number: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1
(iv) ∼ 10−6 (v) could be as high as ∼ 1, but

is assumed to be very small

(c) (12 points) The figure below comes from Weinberg’s Chapter 5, and is labeled
The Shifting Neutron-Proton Balance.

(i) (3 points) During the period labeled “thermal equilibrium,” the neutron
fraction is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into through reac-
tions such as
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antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such
as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.

(ii) (3 points) During the period labeled “neutron decay,” the neutron fraction
is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and an-
tineutrino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other
through reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such
as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2011 p. 28

(iii) (3 points) The masses of the neutron and proton are not exactly equal,
but instead

(A) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 GeV (1 GeV = 109 eV).

(B) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 MeV (1 MeV = 106 eV).

(C) The neutron is more massive than a proton with a rest energy differ-
ence of 1.293 KeV (1 KeV = 103 eV).

(D) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 GeV.

(E) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 MeV.

(F) The proton is more massive than a neutron with a rest energy differ-
ence of 1.293 KeV.

(iv) (3 points) During the period labeled “era of nucleosynthesis,” (choose one:)

(A) Essentially all the neutrons present combine with protons to form
helium nuclei, which mostly survive until the present time.

(B) Essentially all the neutrons present combine with protons to form
deuterium nuclei, which mostly survive until the present time.

(C) About half the neutrons present combine with protons to form helium
nuclei, which mostly survive until the present time, and the other half
of the neutrons remain free.

(D) About half the neutrons present combine with protons to form deu-
terium nuclei, which mostly survive until the present time, and the
other half of the neutrons remain free.

(E) Essentially all the protons present combine with neutrons to form
helium nuclei, which mostly survive until the present time.

(F) Essentially all the protons present combine with neutrons to form
deuterium nuclei, which mostly survive until the present time.
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PROBLEM 3: EVOLUTION OF AN OPEN UNIVERSE

The evolution of an open, matter-dominated universe is described by the fol-
lowing parametric equations:

ct = α(sinh θ − θ)

a√
κ
= α(cosh θ − 1) .

Evaluating the second of these equations at a/
√
κ = 2α yields a solution for θ:

2α = α(cosh θ − 1) =⇒ cosh θ = 3 =⇒ θ = cosh−1(3) .

We can use these results in the first equation to solve for t. Noting that

sinh θ =
√

cosh2 θ − 1 =
√
8 = 2

√
2 ,

we have

t =
α

c

[
2
√
2− cosh−1(3)

]
.

Numerically, t ≈ 1.06567α/c.

PROBLEM 4: ANTICIPATING A BIG CRUNCH

The critical density is given by

ρc =
3H2

0

8πG
,

so the mass density is given by

ρ = Ω0ρc = 2ρc =
3H2

0

4πG
. (S4.1)

Substituting this relation into

H2
0 =

8π
3
Gρ− kc2

a2
,

we find

H2
0 = 2H2

0 −
kc2

a2
,
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from which it follows that
a√
k
=

c

H0
. (S4.2)

Now use

α =
4π
3

Gρa3

k3/2c2
.

Substituting the values we have from Eqs. (S4.1) and (S4.2) for ρ and a/
√
k, we

have

α =
c

H0
. (S4.3)

To determine the value of the parameter θ, use

a√
k
= α(1− cos θ) ,

which when combined with Eqs. (S4.2) and (S4.3) implies that cos θ = 0. The
equation cos θ = 0 has multiple solutions, but we know that the θ-parameter for
a closed matter-dominated universe varies between 0 and π during the expansion
phase of the universe. Within this range, cos θ = 0 implies that θ = π/2. Thus, the
age of the universe at the time these measurements are made is given by

t =
α

c
(θ − sin θ)

=
1
H0

(π
2
− 1

)
.

The total lifetime of the closed universe corresponds to θ = 2π, or

tfinal =
2πα
c

=
2π
H0

,

so the time remaining before the big crunch is given by

tfinal − t =
1
H0

[
2π −

(π
2
− 1

)]
=

(
3π
2

+ 1
)

1
H0

.



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2011 p. 31

PROBLEM 5: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE

(a) Since θ = φ = constant, dθ = dφ = 0, and for light rays one always has dτ = 0.
The line element therefore reduces to

0 = −c2 dt2 + a2(t)dψ2 .

Rearranging gives (
dψ

dt

)2

=
c2

a2(t)
,

which implies that

dψ

dt
= ± c

a(t)
.

The plus sign describes outward radial motion, while the minus sign describes
inward motion.

(b) The maximum value of the ψ coordinate that can be reached by time t is found
by integrating its rate of change:

ψhor =
∫ t

0

c

a(t′)
dt′ .

The physical horizon distance is the proper length of the shortest line drawn at
the time t from the origin to ψ = ψhor, which according to the metric is given
by


phys(t) =
∫ ψ=ψhor

ψ=0

ds =
∫ ψhor

0

a(t) dψ = a(t)
∫ t

0

c

a(t′)
dt′ .

(c) From part (a),
dψ

dt
=

c

a(t)
.

By differentiating the equation ct = α(θ − sin θ) stated in the problem, one
finds

dt

dθ
=

α

c
(1− cos θ) .

Then
dψ

dθ
=

dψ

dt

dt

dθ
=

α(1− cos θ)
a(t)

.
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Then using a = α(1− cos θ), as stated in the problem, one has the very simple
result

dψ

dθ
= 1 .

(d) This part is very simple if one knows that ψ must change by 2π before the
photon returns to its starting point. Since dψ/dθ = 1, this means that θ must
also change by 2π. From a = α(1− cos θ), one can see that a returns to zero
at θ = 2π, so this is exactly the lifetime of the universe. So,

Time for photon to return
Lifetime of universe

= 1 .

If it is not clear why ψ must change by 2π for the photon to return to
its starting point, then recall the construction of the closed universe that was
used in Lecture Notes 5. The closed universe is described as the 3-dimensional
surface of a sphere in a four-dimensional Euclidean space with coordinates
(x, y, z, w):

x2 + y2 + z2 + w2 = a2 ,

where a is the radius of the sphere. The Robertson-Walker coordinate system
is constructed on the 3-dimensional surface of the sphere, taking the point
(0, 0, 0, 1) as the center of the coordinate system. If we define the w-direction
as “north,” then the point (0, 0, 0, 1) can be called the north pole. Each point
(x, y, z, w) on the surface of the sphere is assigned a coordinate ψ, defined to be
the angle between the positive w axis and the vector (x, y, z, w). Thus ψ = 0
at the north pole, and ψ = π for the antipodal point, (0, 0, 0,−1), which can be
called the south pole. In making the round trip the photon must travel from
the north pole to the south pole and back, for a total range of 2π.

Discussion: Some students answered that the photon would return in the life-
time of the universe, but reached this conclusion without considering the details
of the motion. The argument was simply that, at the big crunch when the scale
factor returns to zero, all distances would return to zero, including the distance
between the photon and its starting place. This statement is correct, but it does
not quite answer the question. First, the statement in no way rules out the pos-
sibility that the photon might return to its starting point before the big crunch.
Second, if we use the delicate but well-motivated definitions that general rel-
ativists use, it is not necessarily true that the photon returns to its starting
point at the big crunch. To be concrete, let me consider a radiation-dominated
closed universe—a hypothetical universe for which the only “matter” present
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consists of massless particles such as photons or neutrinos. In that case (you
can check my calculations) a photon that leaves the north pole at t = 0 just
reaches the south pole at the big crunch. It might seem that reaching the south
pole at the big crunch is not any different from completing the round trip back
to the north pole, since the distance between the north pole and the south pole
is zero at t = tCrunch, the time of the big crunch. However, suppose we adopt
the principle that the instant of the initial singularity and the instant of the
final crunch are both too singular to be considered part of the spacetime. We
will allow ourselves to mathematically consider times ranging from t = ε to
t = tCrunch − ε, where ε is arbitrarily small, but we will not try to describe
what happens exactly at t = 0 or t = tCrunch. Thus, we now consider a photon
that starts its journey at t = ε, and we follow it until t = tCrunch − ε. For the
case of the matter-dominated closed universe, such a photon would traverse
a fraction of the full circle that would be almost 1, and would approach 1 as
ε → 0. By contrast, for the radiation-dominated closed universe, the photon
would traverse a fraction of the full circle that is almost 1/2, and it would
approach 1/2 as ε→ 0. Thus, from this point of view the two cases look very
different. In the radiation-dominated case, one would say that the photon has
come only half-way back to its starting point.

PROBLEM 6: LENGTHS AND AREAS IN A TWO-DIMEN-
SIONAL METRIC

a) Along the first segment dθ = 0, so ds2 = (1 + ar)2 dr2, or ds = (1 + ar) dr.
Integrating, the length of the first segment is found to be

S1 =
∫ r0

0

(1 + ar) dr = r0 +
1
2
ar2

0 .

Along the second segment dr = 0, so ds = r(1 + br) dθ, where r = r0. So the
length of the second segment is

S2 =
∫ π/2

0

r0(1 + br0) dθ =
π

2
r0(1 + br0) .

Finally, the third segment is identical to the first, so S3 = S1. The total length
is then

S = 2S1 + S2 = 2
(
r0 +

1
2
ar2

0

)
+

π

2
r0(1 + br0)

=
(
2 +

π

2

)
r0 +

1
2
(2a+ πb)r2

0 .
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b) To find the area, it is best to divide the region into concentric strips as shown:

Note that the strip has a coordinate width of dr, but the distance across the
width of the strip is determined by the metric to be

dh = (1 + ar) dr .

The length of the strip is calculated the same way as S2 in part (a):

s(r) =
π

2
r(1 + br) .

The area is then
dA = s(r) dh ,

so

A =
∫ r0

0

s(r) dh

=
∫ r0

0

π

2
r(1 + br)(1 + ar) dr

=
π

2

∫ r0

0

[r + (a+ b)r2 + abr3] dr

=
π

2

[
1
2
r2
0 +

1
3
(a+ b)r3

0 +
1
4
abr4

0

]
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PROBLEM 7: GEOMETRY IN A CLOSED UNIVERSE

(a) As one moves along a line from the origin to (h, 0, 0), there is no variation in θ
or φ. So dθ = dφ = 0, and

ds =
a dr√
1− r2

.

So


p =
∫ h

0

a dr√
1− r2

= a sin−1 h .

(b) In this case it is only θ that varies, so dr = dφ = 0. So

ds = ar dθ ,

so

sp = ah∆θ .

(c) From part (a), one has
h = sin(
p/a) .

Inserting this expression into the answer to (b), and then solving for ∆θ, one
has

∆θ =
sp

a sin(
p/a)
.

Note that as a→∞, this approaches the Euclidean result, ∆θ = sp/
p.

PROBLEM 8: THE GENERAL SPHERICALLY SYMMETRIC MET-
RIC

(a) The metric is given by

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
.

The radius a is defined as the physical length of a radial line which extends
from the center to the boundary of the sphere. The length of a path is just the
integral of ds, so

a =
∫
radial path from
origin to r0

ds .
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The radial path is at a constant value of θ and φ, so dθ = dφ = 0, and then
ds = dr. So

a =
∫ r0

0

dr = r0 .

(b) On the surface r = r0, so dr ≡ 0. Then

ds2 = ρ2(r0)
[
dθ2 + sin2 θ dφ2

]
.

To find the area element, consider first a path obtained by varying only θ.
Then ds = ρ(r0) dθ. Similarly, a path obtained by varying only φ has length
ds = ρ(r0) sin θ dφ. Furthermore, these two paths are perpendicular to each
other, a fact that is incorporated into the metric by the absence of a dr dθ
term. Thus, the area of a small rectangle constructed from these two paths is
given by the product of their lengths, so

dA = ρ2(r0) sin θ dθ dφ .

The area is then obtained by integrating over the range of the coordinate
variables:

A = ρ2(r0)
∫ 2π

0

dφ

∫ π

0

sin θ dθ

= ρ2(r0)(2π)
(
− cos θ

∣∣∣π
0

)

=⇒ A = 4πρ2(r0) .

As a check, notice that if ρ(r) = r, then the metric becomes the metric of
Euclidean space, in spherical polar coordinates. In this case the answer above
becomes the well-known formula for the area of a Euclidean sphere, 4πr2.

(c) As in Problem 5 of Problem Set 4, we can imagine breaking up the volume into
spherical shells of infinitesimal thickness, with a given shell extending from r to
r+ dr. By the previous calculation, the area of such a shell is A(r) = 4πρ2(r).
(In the previous part we considered only the case r = r0, but the same argument
applies for any value of r.) The thickness of the shell is just the path length ds
of a radial path corresponding to the coordinate interval dr. For radial paths
the metric reduces to ds2 = dr2, so the thickness of the shell is ds = dr. The
volume of the shell is then

dV = 4πρ2(r) dr .
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The total volume is then obtained by integration:

V = 4π
∫ r0

0

ρ2(r) dr .

Checking the answer for the Euclidean case, ρ(r) = r, one sees that it gives
V = (4π/3)r3

0, as expected.

(d) If r is replaced by a new coordinate σ ≡ r2, then the infinitesimal variations of
the two coordinates are related by

dσ

dr
= 2r = 2

√
σ ,

so

dr2 =
dσ2

4σ
.

The function ρ(r) can then be written as ρ(
√
σ ), so

ds2 =
dσ2

4σ
+ ρ2(

√
σ )

[
dθ2 + sin2 θ dφ2

]
.

PROBLEM 9: VOLUMES IN A ROBERTSON-WALKER UNIVERSE

The product of differential length elements corresponding to infinitesimal
changes in the coordinates r, θ and φ equals the differential volume element dV .
Therefore

dV = a(t)
dr√

1− kr2
× a(t)rdθ × a(t)r sin θdφ

The total volume is then

V =
∫

dV = a3(t)
∫ rmax

0

dr

∫ π

0

dθ

∫ 2π

0

dφ
r2 sin θ√
1− kr2

We can do the angular integrations immediately:

V = 4πa3(t)
∫ rmax

0

r2dr√
1− kr2

.
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[Pedagogical Note: If you don’t see through the solutions above, then note that the
volume of the sphere can be determined by integration, after first breaking the
volume into infinitesimal cells. A generic cell is shown in the diagram below:

The cell includes the volume lying between r and r+dr, between θ and θ+dθ,
and between φ and φ + dφ. In the limit as dr, dθ, and dφ all approach zero,
the cell approaches a rectangular solid with sides of length:

ds1 = a(t)
dr√

1− kr2

ds2 = a(t)r dθ

ds3 = a(t)r sin θ dθ .

Here each ds is calculated by using the metric to find ds2, in each case allowing
only one of the quantities dr, dθ, or dφ to be nonzero. The infinitesimal volume
element is then dV = ds1ds2ds3, resulting in the answer above. The derivation
relies on the orthogonality of the dr, dθ, and dφ directions; the orthogonality
is implied by the metric, which otherwise would contain cross terms such as
dr dθ.]

[Extension: The integral can in fact be carried out, using the substitution√
k r = sinψ (if k > 0)

√−k r = sinhψ (if k > 0).
The answer is

V =




2πa3(t)


sin−1

(√
k rmax

)
k3/2

−
√

1− kr2
max

k


 (if k > 0)

2πa3(t)

[√
1− kr2

max

(−k) − sinh−1
(√−k rmax

)
(−k)3/2

]
(if k < 0) .]
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PROBLEM 10: THE SCHWARZSCHILD METRIC

a) The Schwarzschild horizon is the value of r for which the metric becomes sin-
gular. Since the metric contains the factor(

1− 2GM
rc2

)
,

it becomes singular at

RS =
2GM
c2

.

b) The separation between A and B is purely in the radial direction, so the proper
length of a segment along the path joining them is given by

ds2 =
(
1− 2GM

rc2

)−1

dr2 ,

so
ds =

dr√
1− 2GM

rc2

.

The proper distance from A to B is obtained by adding the proper lengths of
all the segments along the path, so

sAB =
∫ rB

rA

dr√
1− 2GM

rc2

.

EXTENSION: The integration can be carried out explicitly. First use the
expression for the Schwarzschild radius to rewrite the expression for sAB as

sAB =
∫ rB

rA

√
r dr√

r −RS
.

Then introduce the hyperbolic trigonometric substitution

r = RS cosh2 u .

One then has √
r −RS =

√
RS sinhu
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dr = 2RS cosh u sinhu du ,

and the indefinite integral becomes∫ √
r dr√

r −RS
= 2RS

∫
cosh2 u du

= RS

∫
(1 + cosh 2u)du

= RS

(
u+

1
2
sinh 2u

)

= RS(u+ sinh u coshu)

= RS sinh−1

(√
r

RS
− 1

)
+
√
r(r −RS) .

Thus,

sAB = RS

[
sinh−1

(√
rB
RS
− 1

)
− sinh−1

(√
rA
RS
− 1

)]

+
√
rB(rB −RS)−

√
rA(rA −RS) .

c) A tick of the clock and the following tick are two events that differ only in their
time coordinates. Thus, the metric reduces to

−c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2 ,

so

dτ =

√
1− 2GM

rc2
dt .

The reading on the observer’s clock corresponds to the proper time interval dτ ,
so the corresponding interval of the coordinate t is given by

∆tA =
∆τA√
1− 2GM

rAc2

.

d) Since the Schwarzschild metric does not change with time, each pulse leaving
A will take the same length of time to reach B. Thus, the pulses emitted by A
will arrive at B with a time coordinate spacing

∆tB = ∆tA =
∆τA√
1− 2GM

rAc2

.
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The clock at B, however, will read the proper time and not the coordinate
time. Thus,

∆τB =
√
1− 2GM

rBc2
∆tB

=

√√√√1− 2GM
rBc2

1− 2GM
rAc2

∆τA .

e) From parts (a) and (b), the proper distance between A and B can be rewritten
as

sAB =
∫ rB

RS

√
rdr√

r −RS
.

The potentially divergent part of the integral comes from the range of inte-
gration in the immediate vicinity of r = RS, say RS < r < RS + ε. For this
range the quantity

√
r in the numerator can be approximated by

√
RS, so the

contribution has the form

√
RS

∫ RS+ε

RS

dr√
r −RS

.

Changing the integration variable to u ≡ r−RS , the contribution can be easily
evaluated:

√
RS

∫ RS+ε

RS

dr√
r −RS

=
√
RS

∫ ε

0

du√
u
= 2

√
RSε <∞ .

So, although the integrand is infinite at r = RS, the integral is still finite.

The proper distance between A and B does not diverge.

Looking at the answer to part (d), however, one can see that when rA = RS,

The time interval ∆τB diverges.
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PROBLEM 11: GEODESICS

The geodesic equation for a curve xi(λ), where the parameter λ is the arc
length along the curve, can be written as

d

dλ

{
gij

dxj

dλ

}
=

1
2
(∂igk�)

dxk

dλ

dx�

dλ
.

Here the indices j, k, and 
 are summed from 1 to the dimension of the space, so
there is one equation for each value of i.

(a) The metric is given by

ds2 = gijdx
idxj = dr2 + r2 dθ2 ,

so
grr = 1, gθθ = r2 , grθ = gθr = 0 .

First taking i = r, the nonvanishing terms in the geodesic equation become

d

dλ

{
grr

dr

dλ

}
=

1
2
(∂rgθθ)

dθ

dλ

dθ

dλ
,

which can be written explicitly as

d

dλ

{
dr

dλ

}
=

1
2
(
∂rr

2
)( dθ

dλ

)2

,

or

d2r

dλ2
= r

(
dθ

dλ

)2

.

For i = θ, one has the simplification that gij is independent of θ for all (i, j).
So

d

dλ

{
r2 dθ

dλ

}
= 0 .

(b) The first step is to parameterize the curve, which means to imagine moving
along the curve, and expressing the coordinates as a function of the distance
traveled. (I am calling the locus y = 1 a curve rather than a line, since the
techniques that are used here are usually applied to curves. Since a line is a
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special case of a curve, there is nothing wrong with treating the line as a curve.)
In Cartesian coordinates, the curve y = 1 can be parameterized as

x(λ) = λ , y(λ) = 1 .

(The parameterization is not unique, because one can choose λ = 0 to represent
any point along the curve.) Converting to the desired polar coordinates,

r(λ) =
√
x2(λ) + y2(λ) =

√
λ2 + 1 ,

θ(λ) = tan−1 y(λ)
x(λ)

= tan−1(1/λ) .

Calculating the needed derivatives,*

dr

dλ
=

λ√
λ2 + 1

d2r

dλ2
=

1√
λ2 + 1

− λ2

(λ2 + 1)3/2
=

1

(λ2 + 1)3/2
=

1
r3

dθ

dλ
= − 1

1 +
(

1
λ

)2 1
λ2

= − 1
r2

.

Then, substituting into the geodesic equation for i = r,

d2r

dλ2
= r

(
dθ

dλ

)2

⇐⇒ 1
r3

= r

(
− 1
r2

)2

,

which checks. Substituting into the geodesic equation for i = θ,

d

dλ

{
r2 dθ

dλ

}
= 0⇐⇒ d

dλ

{
r2

(
− 1
r2

)}
= 0 ,

which also checks.

* If you do not remember how to differentiate φ = tan−1(z), then you should
know how to derive it. Write z = tanφ = sinφ/ cosφ, so

dz =
(
cosφ
cosφ

+
sin2 φ

cos2 φ

)
dφ = (1 + tan2 φ)dφ .

Then
dφ

dz
=

1
1 + tan2 φ

=
1

1 + z2
.
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PROBLEM 12: GEODESICS ON THE SURFACE OF A SPHERE

(a) Rotations are easy to understand in Cartesian coordinates. The relationship
between the polar and Cartesian coordinates is given by

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ .

The equator is then described by θ = π/2, and φ = ψ, where ψ is a parameter
running from 0 to 2π. Thus, the equator is described by the curve xi(ψ), where

x1 = x = r cosψ

x2 = y = r sinψ

x3 = z = 0 .

Now introduce a primed coordinate system that is related to the original system
by a rotation in the y-z plane by an angle α:

x = x′

y = y′ cosα− z′ sinα

z = z′ cosα+ y′ sinα .
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The rotated equator, which we seek to describe, is just the standard equator
in the primed coordinates:

x′ = r cosψ , y′ = r sinψ , z′ = 0 .

Using the relation between the two coordinate systems given above,

x = r cosψ

y = r sinψ cosα

z = r sinψ sinα .

Using again the relations between polar and Cartesian coordinates,

cos θ =
z

r
= sinψ sinα

tanφ =
y

x
= tanψ cosα .

(b) A segment of the equator corresponding to an interval dψ has length a dψ, so
the parameter ψ is proportional to the arc length. Expressed in terms of the
metric, this relationship becomes

ds2 = gij
dxi

dψ

dxj

dψ
dψ2 = a2dψ2 .

Thus the quantity

A ≡ gij
dxi

dψ

dxj

dψ

is equal to a2, so the geodesic equation (5.50) reduces to the simpler form of
Eq. (5.52). (Note that we are following the notation of Lecture Notes 5, except
that the variable used to parameterize the path is called ψ, rather than λ or s.
Although A is not equal to 1 as we assumed in Lecture Notes 5, it is easily seen
that Eq. (5.52) follows from (5.50) provided only that A = constant.) Thus,

d

dψ

{
gij

dxj

dψ

}
=

1
2
(∂igk�)

dxk

dψ

dx�

dψ
.

For this problem the metric has only two nonzero components:

gθθ = a2 , gφφ = a2 sin2 θ .
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Taking i = θ in the geodesic equation,

d

dψ

{
gθθ

dθ

dψ

}
=

1
2
∂θgφφ

dφ

dψ

dφ

dψ
=⇒

d2θ

dψ2
= sin θ cos θ

(
dφ

dψ

)2

.

Taking i = φ,
d

dψ

{
a2 sin2 θ

dφ

dψ

}
= 0 =⇒

d

dψ

{
sin2 θ

dφ

dψ

}
= 0 .

(c) This part is mainly algebra. Taking the derivative of

cos θ = sinψ sinα

implies
− sin θ dθ = cosψ sinαdψ .

Then, using the trigonometric identity sin θ =
√
1− cos2 θ, one finds

sin θ =
√

1− sin2 ψ sin2 α ,

so
dθ

dψ
= − cosψ sinα√

1− sin2 ψ sin2 α
.

Similarly

tanφ = tanψ cosα =⇒ sec2 φdφ = sec2 ψ dψ cosα .

Then
sec2 φ = tan2 φ+ 1 = tan2 ψ cos2 α+ 1

=
1

cos2 ψ
[sin2 ψ cos2 α+ cos2 ψ]

= sec2 ψ[sin2 ψ(1− sin2 α) + cos2 ψ]

= sec2 ψ[1− sin2 ψ sin2 α] ,
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So
dφ

dψ
=

cosα
1− sin2 ψ sin2 α

.

To verify the geodesic equations of part (b), it is easiest to check the second
one first:

sin2 θ
dφ

dψ
= (1− sin2 ψ sin2 α)

cosα
1− sin2 ψ sin2 α

= cosα ,

so clearly
d

dψ

{
sin2 θ

dφ

dψ

}
=

d

dψ
(cosα) = 0 .

To verify the first geodesic equation from part (b), first calculate the left-hand
side, d2θ/dψ2, using our result for dθ/dψ:

d2θ

dψ2
=

d

dψ

(
dθ

dψ

)
=

d

dψ

{
− cosψ sinα√

1− sin2 ψ sin2 α

}
.

After some straightforward algebra, one finds

d2θ

dψ2
=

sinψ sinα cos2 α[
1− sin2 ψ sin2 α

]3/2 .

The right-hand side of the first geodesic equation can be evaluated using the
expression found above for dφ/dψ, giving

sin θ cos θ
(
dφ

dψ

)2

=
√

1− sin2 ψ sin2 α sinψ sinα
cos2 α[

1− sin2 ψ sin2 α
]2

=
sinψ sinα cos2 α[

1− sin2 ψ sin2 α
]3/2 .

So the left- and right-hand sides are equal.

PROBLEM 13: GEODESICS IN A CLOSED UNIVERSE

(a) (7 points) For purely radial motion, dθ = dφ = 0, so the line element reduces
do

−c2 dτ2 = −c2 dt2 + a2(t)
{

dr2

1− r2

}
.
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Dividing by dt2,

−c2
(
dτ

dt

)2

= −c2 + a2(t)
1− r2

(
dr

dt

)2

.

Rearranging,

dτ

dt
=

√
1− a2(t)

c2(1− r2)

(
dr

dt

)2

.

(b) (3 points)

dt

dτ
=

1
dτ

dt

=
1√

1− a2(t)
c2(1− r2)

(
dr

dt

)2
.

(c) (10 points) During any interval of clock time dt, the proper time that would
be measured by a clock moving with the object is given by dτ , as given by the
metric. Using the answer from part (a),

dτ =
dτ

dt
dt =

√
1− a2(t)

c2(1− r2
p)

(
drp
dt

)2

dt .

Integrating to find the total proper time,

τ =
∫ t2

t1

√
1− a2(t)

c2(1− r2
p)

(
drp
dt

)2

dt .

(d) (10 points) The physical distance d
 that the object moves during a given time
interval is related to the coordinate distance dr by the spatial part of the metric:

d
2 = ds2 = a2(t)
{

dr2

1− r2

}
=⇒ d
 =

a(t)√
1− r2

dr .

Thus

vphys =
d


dt
=

a(t)√
1− r2

dr

dt
.
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Discussion: A common mistake was to include −c2 dt2 in the expression for
d
2. To understand why this is not correct, we should think about how an
observer would measure d
, the distance to be used in calculating the velocity
of a passing object. The observer would place a meter stick along the path of the
object, and she would mark off the position of the object at the beginning and
end of a time interval dtmeas. Then she would read the distance by subtracting
the two readings on the meter stick. This subtraction is equal to the physical
distance between the two marks, measured at the same time t. Thus, when
we compute the distance between the two marks, we set dt = 0. To compute
the speed she would then divide the distance by dtmeas, which is nonzero.

(e) (10 points) We start with the standard formula for a geodesic, as written on
the front of the exam:

d

dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
.

This formula is true for each possible value of µ, while the Einstein summation
convention implies that the indices ν, λ, and σ are summed. We are trying to
derive the equation for r, so we set µ = r. Since the metric is diagonal, the
only contribution on the left-hand side will be ν = r. On the right-hand side,
the diagonal nature of the metric implies that nonzero contributions arise only
when λ = σ. The term will vanish unless dxλ/dτ is nonzero, so λ must be
either r or t (i.e., there is no motion in the θ or φ directions). However, the
right-hand side is proportional to

∂gλσ
∂r

.

Since gtt = −c2, the derivative with respect to r will vanish. Thus, the only
nonzero contribution on the right-hand side arises from λ = σ = r. Using

grr =
a2(t)
1− r2

,

the geodesic equation becomes

d

dτ

{
grr

dr

dτ

}
=

1
2
(∂rgrr)

dr

dτ

dr

dτ
,

or
d

dτ

{
a2

1− r2

dr

dτ

}
=

1
2

[
∂r

(
a2

1− r2

)]
dr

dτ

dr

dτ
,
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or finally

d

dτ

{
a2

1− r2

dr

dτ

}
= a2 r

(1− r2)2

(
dr

dτ

)2

.

This matches the form shown in the question, with

A =
a2

1− r2
, and C = a2 r

(1− r2)2
,

with B = D = E = 0.

(f) (5 points EXTRA CREDIT) The algebra here can get messy, but it is not too
bad if one does the calculation in an efficient way. One good way to start is to
simplify the expression for p. Using the answer from (d),

p =
mvphys√
1− v2phys

c2

=
m a(t)√

1−r2
dr
dt√

1− a2

c2(1−r2)
(
dr
dt

)2 .

Using the answer from (b), this simplifies to

p = m
a(t)√
1− r2

dr

dt

dt

dτ
= m

a(t)√
1− r2

dr

dτ
.

Multiply the geodesic equation by m, and then use the above result to rewrite
it as

d

dτ

{
ap√
1− r2

}
= ma2 r

(1− r2)2

(
dr

dτ

)2

.

Expanding the left-hand side,

LHS =
d

dτ

{
ap√
1− r2

}
=

1√
1− r2

d

dτ
{ap}+ ap

r

(1− r2)3/2
dr

dτ

=
1√

1− r2

d

dτ
{ap}+ma2 r

(1− r2)2

(
dr

dτ

)2

.

Inserting this expression back into left-hand side of the original equation, one
sees that the second term cancels the expression on the right-hand side, leaving

1√
1− r2

d

dτ
{ap} = 0 .

Multiplying by
√
1− r2, one has the desired result:

d

dτ
{ap} = 0 =⇒ p ∝ 1

a(t)
.
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PROBLEM 14: A TWO-DIMENSIONAL CURVED SPACE (40 points)

(a) For θ = constant, the expression for the metric reduces
to

ds2 =
a du2

4u(a− u)
=⇒

ds =
1
2

√
a

u(a− u)
du .

To find the length of the radial line shown,
one must integrate this expression from the value
of u at the center, which is 0, to the value of u at the outer edge, which is a.
So

R =
1
2

∫ a

0

√
a

u(a− u)
du .

You were not expected to do it, but the integral can be carried out, giving
R = (π/2)

√
a.

(b) For u = constant, the expression for the metric reduces
to

ds2 = u dθ2 =⇒ ds =
√
udθ .

Since θ runs from 0 to 2π, and u = a for the circumfer-
ence of the space,

S =
∫ 2π

0

√
a dθ = 2π

√
a .
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(c) To evaluate the answer to first order in du means to
neglect any terms that would be proportional to du2

or higher powers. This means that we can treat the
annulus as if it were arbitrarily thin, in which case
we can imagine bending it into a rectangle without
changing its area. The area is then equal to the cir-
cumference times the width. Both the circumference
and the width must be calculated by using the metric:

dA = circumference × width

= [2π
√
u0 ]×

[
1
2

√
a

u0(a− u0)
du
]

= π

√
a

(a− u0)
du .

(d) We can find the total area by imagining that it is broken up into annuluses,
where a single annulus starts at radial coordinate u and extends to u + du.
As in part (a), this expression must be integrated from the value of u at the
center, which is 0, to the value of u at the outer edge, which is a.

A = π

∫ a

0

√
a

(a− u)
du .

You did not need to carry out this integration, but the answer would be A =
2πa.

(e) From the list at the front of the exam, the general formula for a geodesic is
written as

d
ds

[
gij

dxj

ds

]
=

1
2
∂gk�
∂xi

dxk

ds
dx�

ds
.

The metric components gij are related to ds2 by

ds2 = gij dxi dxj ,



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2011 p. 53

where the Einstein summation convention (sum over repeated indices) is as-
sumed. In this case

g11 ≡ guu =
a

4u(a− u)

g22 ≡ gθθ = u

g12 = g21 = 0 ,

where I have chosen x1 = u and x2 = θ. The equation with du/ds on the left-
hand side is found by looking at the geodesic equations for i = 1. Of course j,
k, and 
 must all be summed, but the only nonzero contributions arise when
j = 1, and k and 
 are either both equal to 1 or both equal to 2:

d
ds

[
guu

du
ds

]
=

1
2
∂guu
∂u

(
du
ds

)2

+
1
2
∂gθθ
∂u

(
dθ
ds

)2

.

d
ds

[
a

4u(a− u)
du
ds

]
=

1
2

[
d
du

(
a

4u(a− u)

)](
du
ds

)2

+
1
2

[
d
du

(u)
](

dθ
ds

)2

=
1
2

[
a

4u(a− u)2
− a

4u2(a− u)

](
du
ds

)2

+
1
2

(
dθ
ds

)2

=
1
8
a(2u− a)
u2(a− u)2

(
du
ds

)2

+
1
2

(
dθ
ds

)2

.

(f) This part is solved by the same method, but it is simpler. Here we consider the
geodesic equation with i = 2. The only term that contributes on the left-hand
side is j = 2. On the right-hand side one finds nontrivial expressions when k
and 
 are either both equal to 1 or both equal to 2. However, the terms on
the right-hand side both involve the derivative of the metric with respect to
x2 = θ, and these derivatives all vanish. So

d
ds

[
gθθ

dθ
ds

]
=

1
2
∂guu
∂θ

(
du
ds

)2

+
1
2
∂gθθ
∂θ

(
dθ
ds

)2

,

which reduces to

d
ds

[
u
dθ
ds

]
= 0 .
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PROBLEM 15: ROTATING FRAMES OF REFERENCE (35 points)

(a) The metric was given as

−c2 dτ2 = −c2 dt2 +
[
dr2 + r2 (dφ+ ω dt)2 + dz2

]
,

and the metric coefficients are then just read off from this expression:

g11 ≡ grr = 1

g00 ≡ gtt = coefficient of dt2 = −c2 + r2ω2

g20 ≡ g02 ≡ gφt ≡ gtφ =
1
2
× coefficient of dφdt = r2ω2

g22 ≡ gφφ = coefficient of dφ2 = r2

g33 ≡ gzz = coefficient of dz2 = 1 .

Note that the off-diagonal term gφt must be multiplied by 1/2, because the
expression

3∑
µ=0

3∑
ν=0

gµν dx
µ dxν

includes the two equal terms g20 dφdt+ g02 dt dφ, where g20 ≡ g02.

(b) Starting with the general expression

d
dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ
dxσ

dτ
,

we set µ = r:
d
dτ

{
grν

dxν

dτ

}
=

1
2
(∂rgλσ)

dxλ

dτ
dxσ

dτ
.

When we sum over ν on the left-hand side, the only value for which grν �= 0 is
ν = 1 ≡ r. Thus, the left-hand side is simply

LHS =
d
dτ

(
grr

dx1

dτ

)
=

d
dτ

(
dr
dτ

)
=

d2r

dτ2
.

The RHS includes every combination of λ and σ for which gλσ depends on r,
so that ∂r gλσ �= 0. This means gtt, gφφ, and gφt. So,

RHS =
1
2
∂r(−c2 + r2ω2)

(
dt
dτ

)2

+
1
2
∂r(r2)

(
dφ
dτ

)2

+ ∂r(r2ω)
dφ
dτ

dt
dτ

= rω2

(
dt
dτ

)2

+ r

(
dφ
dτ

)2

+ 2rω
dφ
dτ

dt
dτ

= r

(
dφ
dτ

+ ω
dt
dτ

)2

.
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Note that the final term in the first line is really the sum of the contributions
from gφt and gtφ, where the two terms were combined to cancel the factor of
1/2 in the general expression. Finally,

d2r

dτ2
= r

(
dφ
dτ

+ ω
dt
dτ

)2

.

If one expands the RHS as

d2r

dτ2
= r

(
dφ
dτ

)2

+ rω2

(
dt
dτ

)2

+ 2rω
dφ
dτ

dt
dτ

,

then one can identify the term proportional to ω2 as the centrifugal force, and
the term proportional to ω as the Coriolis force.

(c) Substituting µ = φ,

d
dτ

{
gφν

dxν

dτ

}
=

1
2
(∂φgλσ)

dxλ

dτ
dxσ

dτ
.

But none of the metric coefficients depend on φ, so the right-hand side is zero.
The left-hand side receives contributions from ν = φ and ν = t:

d
dτ

(
gφφ

dφ
dτ

+ gφt
dt
dτ

)
=

d
dτ

(
r2 dφ

dτ
+ r2ω

dt
dτ

)
= 0 ,

so

d
dτ

(
r2 dφ

dτ
+ r2ω

dt
dτ

)
= 0 .

Note that one cannot “factor out” r2, since r can depend on τ . If this equation
is expanded to give an equation for d2φ/dτ2, the term proportional to ω would
be identified as the Coriolis force. There is no term proportional to ω2, since
the centrifugal force has no component in the φ direction.

(d) If Eq. (P15.1) of the problem is divided by c2dt2, one obtains

(
dτ
dt

)2

= 1− 1
c2

[(
dr
dt

)2

+ r2

(
dφ
dt

+ ω

)2

+
(
dz
dt

)2
]

.

Then using
dt
dτ

=
1(
dτ
dt

) ,
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one has

dt
dτ

=
1√√√√1− 1

c2

[(
dr
dt

)2

+ r2

(
dφ
dt

+ ω

)2

+
(
dz
dt

)2
] .

Note that this equation is really just

dt
dτ

=
1√

1− v2/c2
,

adapted to the rotating cylindrical coordinate system.

PROBLEM 16: CIRCULAR ORBITS IN A SCHWARSZCHILD MET-
RIC

(a) Along a perfectly circular orbit in the x-y plane, the expression for dτ2 simplifies
greatly. Note that

r = fixed =⇒ dr = 0 ;

θ = π/2 =⇒ dθ = 0, sin θ = 1 ;

φ = ωt =⇒ dφ = ωdt .

The expression for dτ2 then reduces to

ds2 = −c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2 + r2ω2dt2

= −
(
1− 2GM

rc2
− r2ω2

c2

)
c2dt2 .

Therefore we find

dτ

dt
=

√
1− 2GM

rc2
− r2ω2

c2
(S16.1)

as hoped.

(b) The geodesic equation (5.65) was written in the notes as

d

dτ

[
gµν

dxν

dτ

]
=

1
2
∂gλσ
∂xµ

dxλ

dτ

dxσ

dτ
, (5.65)
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We will define gµν by

ds2 = −c2 dτ2 = gµν dx
µ dxν ,

but you should be aware that there are different conventions in use. Some
textbooks would use dτ2 = gµν dx

µ dxν , or c2dτ2 = gµν dx
µ dxν . The geodesic

equation above is valid for any of these definitions of gµν , since one definition
is related to another by multiplying gµν by a constant factor. The geodesic
equation is not changed if gµν is replaced by constant×gµν , since the constant
would multiply both sides of the equation and would cancel out.

The nonzero components of gµν for this case are

gtt = −
(
1− 2GM

rc2

)
c2 , grr =

(
1− 2GM

rc2

)−1

,

gθθ = r2 , gφφ = r2 ,

where sin θ = 1 was used to simplify gφφ. For µ = r the left-hand side of the
geodesic equation becomes

d

dτ

[
grr

dr

dτ

]
,

which is equal to zero for this problem, since dr = 0. The right-hand side of the
geodesic equation is expanded by explicitly summing over λ and σ, recognizing
that for this metric the only nonzero terms arise when λ = σ. The geodesic
equation then becomes

0 =
1
2
∂gtt
∂r

(
dt

dτ

)2

+
1
2
∂grr
∂r

(
dr

dτ

)2

+
1
2
∂gθθ
∂r

(
dθ

dτ

)2

+
1
2
∂gφφ
∂r

(
dφ

dτ

)2

.

Since dθ = dr = 0 this reduces to

0 =
1
2
∂gtt
∂r

(
dt

dτ

)2

+
1
2
∂gφφ
∂r

(
dφ

dτ

)2

.

(c) Take the derivatives
∂

∂r
gtt = −2GM

r2

and
∂

∂r
gφφ = 2r .
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Substituting these into the result of part (b) gives

r

(
dφ

dτ

)2

=
GM

r2

(
dt

dτ

)2

.

Use the chain rule to write
dφ

dτ
=

dφ

dt

dt

dτ

and divide both sides by (dt/dτ)2 to find

r

(
dφ

dt

)2

=
GM

r2
.

Remember dφ/dt ≡ ω so that

rω2 =
GM

r2
.

(d) From part (a) of the solution we found that

dτ

dt
=

√
1− 2GM

rc2
− r2ω2

c2
. (S16.1)

The quantity inside the square root must be positive and this will give us a
constraint on the possible circular orbits. Using our final result from part (c)
we have

r2ω2

c2
=

GM

rc2
,

so equation (S16.1) becomes

dτ

dt
=

√
1− 3GM

rc2
.

We must therefore require

1− 3GM
rc2

> 0 =⇒ r >
3GM
c2

=
3
2
RS ,

where we recalled that the Schwarzchild radius is RS = 2GM/c2. The smallest
possible circular orbit in the Schwarzchild geometry has radius 3

2
RS. At this

limiting radius dτ/dt = 0, which indicates that the orbital velocity is equal to
the speed of light. Closer orbits would require a speed greater than that of
light, which is not possible. Further analysis of orbits in this geometry shows
that the smallest stable circular orbit occurs for r = 3RS. Circular orbits are
possible for 3

2
RS < r < 3RS , but they are not stable. A small inward nudge

would cause the orbiting object to plunge inward, while a small outward nudge
will allow the object to fly outward to infinity.
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PROBLEM 17: THE STABILITY OF SCHWARZSCHILD ORBITS∗
(30 points)

From the metric:

ds2 = −c2dτ2 = −h(r) c2dt2 + h(r)−1dr2 + r2dθ2 + r2 sin2 θdφ2 , (S17.1)

and the convention ds2 = gµνdx
µdxν we read the nonvanishing metric components:

gtt = −h(r)c2 , grr =
1

h(r)
, gθθ = r2 , gφφ = r2 sin2 θ . (S17.2)

We are told that the orbit has θ = π/2, so on the orbit dθ = 0 and the relevant
metric and metric components are:

ds2 = −c2dτ2 = −h(r) c2dt2 + h(r)−1dr2 + r2dφ2 , (S17.3)

gtt = −h(r)c2 , grr =
1

h(r)
, gφφ = r2 . (S17.4)

We also know that
h(r) = 1− RS

r
. (S17.5)

(a) The geodesic equation

d

dτ

[
gµν

dxν

dτ

]
=

1
2
∂gλσ
∂xµ

dxλ

dτ

dxσ

dτ
, (S17.6)

for the index value µ = r takes the form

d

dτ

[
grr

dr

dτ

]
=

1
2
∂gλσ
∂r

dxλ

dτ

dxσ

dτ
.

Expanding out

d

dτ

[
1
h

dr

dτ

]
=

1
2
∂gtt
∂r

(
dt

dτ

)2

+
1
2
∂grr
∂r

(
dr

dτ

)2

+
1
2
∂gφφ
∂r

(
dφ

dτ

)2

.

Using the values in (S17.4) to evaluate the right-hand side and taking the derivatives
on the left-hand side:

− h′

h2

(
dr

dτ

)2

+
1
h

d2r

dτ2
= −1

2
c2h′

(
dt

dτ

)2

−1
2
h′

h2

(
dr

dτ

)2

+ r

(
dφ

dτ

)2

.

* Solution by Barton Zwiebach.
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Here h′ ≡ dh
dr and we have supressed the arguments of h and h′ to avoid clutter.

Collecting the underlined terms to the right and multiplying by h, we find

d2r

dτ2
= −1

2
h′ hc2

(
dt

dτ

)2

+
1
2
h′

h

(
dr

dτ

)2

+ rh

(
dφ

dτ

)2

. (S17.7)

(b) Dividing the expression (S17.3) for the metric by dτ2 we readily find

−c2 = −hc2
(
dt

dτ

)2

+
1
h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2

,

and rearranging,

hc2
(
dt

dτ

)2

= c2 +
1
h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2

. (S17.8)

This is the most useful form of the answer. Of course, we also have

(
dt

dτ

)2

=
1
h
+

1
h2c2

(
dr

dτ

)2

+
r2

hc2

(
dφ

dτ

)2

. (S17.9)

We use now (S17.8) to simplify (S17.7):

d2r

dτ2
= −1

2
h′

(
c2 +

1
h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2
)

+
1
2
h′

h

(
dr

dτ

)2

+ rh

(
dφ

dτ

)2

.

Expanding out, the terms with ( drdτ )
2 cancel and we find

d2r

dτ2
= −1

2
h′ c2 +

(
rh− 1

2
h′r2

) (
dφ

dτ

)2

. (S17.10)

This is an acceptable answer. One can simplify (S17.10) further by noting that
h′ = RS/r

2 and rh = r −RS:

d2r

dτ2
= −1

2
RSc

2

r2
+
(
r − 3

2
RS

) (
dφ

dτ

)2

. (S17.11)

In the notation of the problem statement, we have

f0(r) = −1
2
RSc

2

r2
, f1(r) = r − 3

2
RS . (S17.12)
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(c) The geodesic equation (S17.6) for µ = φ gives

d

dτ

[
gφφ

dφ

dτ

]
=

1
2
∂gλσ
∂φ

dxλ

dτ

dxσ

dτ
.

Since no metric component depends on φ, the right-hand side vanishes and we get:

d

dτ

[
r2 dφ

dτ

]
= 0 → d

dτ
L = 0 , where L ≡ r2 dφ

dτ
. (S17.13)

The quantity L is a constant of the motion, namely, it is a number independent of
τ .

(d) Using (S17.13) the second-order differential equation (S17.11) for r(τ) takes the
form stated in the problem:

d2r

dτ2
= f0(r) +

f1(r)
r4

L2 ≡ H(r) , (S17.14)

where we have introduced the function H(r) (recall that L is a constant!). The
differential equation then takes the form

d2r

dτ2
= H(r) . (S17.15)

Since we are told that a circular orbit with radius r0 exists, the function r(τ) = r0
must solve this equation. Being the constant function, the left-hand side vanishes
and, consequently, the right-hand side must also vanish:

H(r0) = f0(r0) +
f1(r0)
r4
0

L2 = 0 . (S17.16)

To investigate stability we consider a small perturbation δr(τ) of the orbit:

r(τ) = r0 + δr(τ) , with δr(τ)� r0 at some initial τ .

Substituting this into (S17.15) we get, to first nontrivial approximation

d2δr

dτ2
= H(r0 + δr) � H(r0) + δrH ′(r0) = δrH ′(r0) ,

where H ′(r) = dH(r)
dr and we used H(r0) = 0 from (S17.16). The resulting equation

d2δr(τ)
dτ2

= H ′(r0) δr(τ) , (S17.17)
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is familiar because H ′(r0) is just a number. The condition of stability is that this
number is negative: H ′(r0) < 0. Indeed, in this case (S17.17) is the harmonic
oscillator equation

d2x

dt2
= −ω2x , with replacements x↔ δr, t↔ τ , −ω2 ↔ H ′(r0) ,

and the solution describes bounded oscillations. So stability requires:

Stability Condition: H ′(r0) =
d

dr

[
f0(r) +

f1(r)
r4

L2

]
r=r0

< 0 . (S17.18)

This is the answer to part (d).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

For students interested in getting the famous result that orbits are stable for r >
3RS we complete this part of the analysis below. First we evaluate H ′(r0) in
(S17.18) using the values of f0 and f1 in (S17.12):

H ′(r0) =
d

dr

[
−1
2
RSc

2

r2
+
(

1
r3
− 3RS

2r4

)
L2

]
r=r0

=
RSc

2

r3
0

− 3L2

r5
0

(r0 − 2RS) .

The inequality in (S17.18) then gives us

RSc
2 − 3L2

r2
0

(r0 − 2RS) < 0 , (S17.19)

where we multiplied by r3
0 > 0. To complete the calculation we need the value of

L2 for the orbit with radius r0. This value is determined by the vanishing of H(r0):

−1
2
RSc

2

r2
0

+ (r0 − 3
2
RS)

L2

r4
0

= 0 → L2

r2
0

=
1
2

RSc
2

(r0 − 3
2RS)

.

Note, incidentally, that the equality to the right demands that for a circular orbit
r0 >

3
2RS. Substituting the above value of L2/r2

0 in (S17.19) we get:

RSc
2 − 3

2
RSc

2

(r0 − 3
2RS)

(r0 − 2RS) < 0 .

Cancelling the common factors of RSc2 we find

1− 3
2
(r0 − 2RS)
(r0 − 3

2RS)
< 0 ,

which is equivalent to
3
2
(r0 − 2RS)
(r0 − 3

2RS)
> 1 .

For r0 > 3
2
RS, we get

3(r0 − 2RS) > 2(r0 − 3
2
RS) → r0 > 3RS . (S17.20)

This is the desired condition for stable orbits in the Schwarzschild geometry.


