
INFORMATION TO BE GIVEN ON QUIZ:
is usually described at the start of the review problems, as I did here. of the quizzes from previous years. The coverage for each quiz in recent years coverage of the upcoming quiz will not necessarily match the coverage of any

 2009. The relevant problems from those quizzes have mostly been incorporated actual quizzes that were given in 1994, 1996, 1998, 2000, 2002, 2004, 2007, and In addition to this set of problems, you will find on the course web page the - in all such cases it is based on 100 points for the full quiz. In some cases the number of points assigned to the problem on the quiz is listed
 PURPOSE: These review problems are not to be handed in, but are being made review most carefully: Problems $2,4,6,7,8,10,11$, and 12.

 Physics@MIT article. One of the problems on the quiz will be taken text may help you understand the material in the lecture notes and in the There will be no questions based specifically on Ryden's Chapter 11, but her
 Precision Cosmology, the Very Early Universe); Alan Guth, Inflation and the New Era of Highto Cosmology, Chapters 8 (Dark Matter), 9 (The Cosmic Microwave BackThree Minutes, Chapter 6, 7, 8, and Afterword; Barbara Ryden, Introduction

:NOILОTO^田 TVDIDOTOLSOP

$$
\begin{aligned}
& \text { A-NOSLAGGOZ } \\
& :(0>y) \text { uәdo }
\end{aligned}
$$

EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

$\frac{\varepsilon(\supset \chi)}{\varepsilon^{2} L^{\eta} y} \frac{\varsigma \eta}{z^{\nu Z}} B=s$
$p=\frac{1}{3} u$
$\frac{\varepsilon(\supset \underline{q})}{\tilde{\sigma}^{(}\left(L^{y}\right)} \frac{0 \varepsilon}{z^{\perp}} b=n$
$\rho=u / c^{2}$
(Кұ!ฺธиәр Кдодұиә)
(Кұ!ฺธиәр ләqunu)
(pressure, mass density)
8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2011

: LNVLSNOD TVOIĐOTONSOD
:NOIL』TO
where

$d z^{\prime}$

generalzed cosmological evolutiont

Look-back time:

 oL $_{\text {L }}$ әләч

 to be a relic of an early, hot, dense, and opaque state of the universe.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean perature averaging over the sky is $\langle T\rangle=2.725 \mathrm{~K}$.
(i) After the dipole distortion of the CMB is subtracted away, the mean temcorrect:
(a) (CMB basic facts) Which one of the following statements about CMB is not points.
The following problem was Problem 1, Quiz 3, in 2007. Each part was worth 5

8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2011

of neutrinos，as described in part（d）？
©
 ¿аses s！̣ч

 and（b）？If so，how would they change？

tons at temperature T ，what is the average energy per photon？

The following problem was Problem 4，Quiz 3， 1998.
NOILEIGVY KGOG－צOVTG нO SGILYGdOYd ：ォ NGTGOYd＊
忍
density of thermal neutrinos left over from the big bang？

GROUND RADIATION
－yOVG OINSOO GHL NI SGILISNGG צGgNON ：\＆NGTGO甘d
could be in the form of MACHO dark matter in galactic halos，but

имочs әлеч suо！ұел．әsqo ．ภu！suәт
energy density of dark matter． T or F ？

${ }_{I}$

 （sturod 0ヶ）
＊PROBLEM 6：A NEW THEORY OF THE WEAK INTERACTIONS perature of the cosmic background radiation photons．） （Here T_{ν} denotes the temperature of the neutrinos，and T_{γ} denotes the tem－ 8.286 ions are included，what does one predict for the value of T_{ν} / T_{γ} today？

d）（ 5 points）When nucleosynthesis calculations are modified to include the effect $k T$ ，in MeV ，at $t=.01 \mathrm{sec}$ ？
c）（ 5 points）Under the same assumptions as in（b），what would be the value of pairs．Express your answer in the units of $\mathrm{g} / \mathrm{cm}^{3}$

 value of the mass density at $t=.01 \mathrm{sec}$ ？You may assume that $0.75 \mathrm{MeV} \ll$ accurately described by a flat，radiation－dominated model，what would be the
b）（ 5 points）Assuming（as in the standard picture）that the early universe is cubic meter，when the temperature T was given by $k T=3 \mathrm{MeV}$ ？
a）（ 5 points）What would be the number density of 8.286 ions ，in particles per
 factors included．（For example，if you were asked how many meters a light pulse in

－$\wedge^{\text {әи }}$

[^0]LIOz TTVA＇SNATGOYd MAIIAZ \＆ZIกÔ 987＇8

 What is this ratio according to NTWI?

 $2.998 \times 10^{8} \times 5 \times 60 \mathrm{~m}$.)

 ©

deal with the cosmological consequences of such a theory.
ІІ!
8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2011

ХDOTONSOP NI SGTVDS GUNL : 6 N'TGOYd

> for an arbitrary time t. Write an expression for the total mass density of the universe $\rho(t)$ in terms of $x(t)$ and the given quantities described above.

$$
\frac{\left({ }^{0} 7\right) p}{(7)^{p}} \equiv(7) x
$$

о!̣ұел әЧъ әұоиәр (7)x ұәТ (sұи!̣оd 8) (e) t_{0} in terms of these quantities. density), and $\Omega_{\mathrm{ms}, 0}$ (mysterious stuff). Our goal is to express the age of the universe constituents: $\Omega_{m, 0}$ (nonrelativistic matter), $\Omega_{r, 0}$ (radiation), $\Omega_{v, 0}$ (vacuum energy and also the present values of the contributions to $\Omega \equiv \rho / \rho_{c}$ from each of the Suppose that you are given the present value of the Hubble parameter H_{0}, off as $1 / a^{3 / 2}(t)$
 Since the mass density of mysterious stuff falls off as $1 / \sqrt{V}$, where V is the volume, ergy, and the same mysterious stuff that was introduced in the previous problem.

8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2011
 following questions, you may consider the answer to any previous part - whether

 billion light-years.

 years old.

(a) that the age of the universe is 13.9 billion years. $\Omega_{\Lambda}=0.65$, they claimed Billion Years Old?" Using a model with $H_{0}=65 \mathrm{~km}-\mathrm{s}^{-1}-\mathrm{Mpc}^{-1}, \Omega_{m}=0.35$, and Object We See Today be 27 Billion Light Years Away If the Universe is only 14 their website an article by Michael Turner and Craig Wiegert titled "How Can An To explain to the public how this object fits into the universe, the SDSS posted on what was then the most distant object known in the universe: a quasar at $z=5.82$.

The following problem was Problem 4, Quiz 3, 2004
$\boldsymbol{z 8} \cdot \underline{\mathfrak{g}}=\boldsymbol{z}$ ג田
specified form of matter
In each part, you may assume that the universe was always dominated by the worth 3 points.) derive the power. (Stating the right power without a derivation will again be same quantity will grow like a different power of t. Show that this is true, and
 the right power without a derivation will be worth 3 points.)

LI
-sə!̣!̨̣uenb

$\partial+d \longleftrightarrow u+{ }^{2} n$

mainly by the following reactions The equilibrium between protons and neutrons in the early universe is sustained $\mu_{n} \neq \mu_{p}$.
(a) (10 points) Give the correct version of Eq. (1), allowing for the possibility that

 LY/日 $\nabla^{2}{ }^{\partial}=\frac{{ }^{d} u}{{ }^{u_{u}}}$

(d) (5 points) Write an expression for the physical distance $\ell_{\text {phys,e }}$ between us and
the quasar at the time that the light was emitted.
(e) (5 points) Write an expression for the present speed of the quasar, defined as
the rate at which the distance between us and the quasar is increasing. - resenb
(c) (10 points) Write an expression for the present physical distance $\ell_{\text {phys }, 0}$ to the

ә.ппъ.ләdшәғ gND Nonrelativistic mass density
Vacuum mass density Hubble expansion rate $\quad H_{0}=73.5 \mathrm{~km}$ $T_{\gamma, 0}=2.725 \mathrm{~K}$
 9 , the model universe that we consider will be described by the WMAP 3 -year best
fit parameters: dominated era and the onset of the dark-energy-dominated era. As in Problem Set problem. We will need to use methods, therefore, that allow for both the matterevolution of the universe between $t_{H 2}(\lambda)$ and the present will also be relevant to the universe. However, since λ is defined as the present value of the wavelength, the interest, the universe can be described very simply: it is a radiation-dominated flat is also growing. At the time of the second Hubble crossing for the wavelengths of the growing Hubble length $\mathrm{cH}^{-1}(t)$ catches up to the physical wavelength, which we will calculate the time $t_{H 2}(\lambda)$ of the second Hubble crossing, the time at which a mode specified by its (physical) wavelength λ at the present time. In this problem In Problem Set 9 we calculated the time $t_{H 1}(\lambda)$ of the first Hubble crossing for рдтрппวро lations, so the problem would be fair if it described in more detail what needs to be

the formula for the number density n_{i} (of particles of type i) becomes
 The black-body radiation formulas at the beginning of the quiz did not allow for the

8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2011
${ }_{6 I} \cdot d$ g_{1}, and/or $T_{\gamma}(t)$ in your answer. able to answer some of the previous parts, you may leave the symbols $\ell_{H}(t)$,

 temperature $T_{\gamma}(t)$ as a function of t ? (10 points) For times in the range described in part (b), what is the photon

 can be written as $(4 / 11)^{1 / 3} T_{\gamma}$. The total energy density of the photons and neutrinos together

$30 \mathrm{sec} \ll t \ll 50,000$ years,
(b) (10 points) The second Hubble crossing will occur during the interval $\ell_{H}(t) \equiv c H^{-1}(t)$ as a function of time t ?
(a) (5 points) For a radiation-dominated flat universe, what is the Hubble length

 answers, with a lower bound of zero.)
Answers:

 171 GeV) (Dark matter candidates) Which one of the following is not a candidate of baryon fluid.
 contributions from baryons alone would not show such peaks.

 ләдәеш улер э!̣иоКлеqиои

energy density, and hence the gravitational potential, of the universe.
(ii) At the time of last scattering, the nonbaryonic dark matter dominated the

s^{s} amsu $_{V}$

(iii) matter made of top quarks (a type of quarks with heavy mass of about suoṭxe (!!!) き. nonbaryonic dark matter?

(d) (10 points) For each of the following statements, say whether it is true or false:

Photons from fluid which had a velocity toward us along the line of sight appear redder because of the Doppler effect
 distance c / H at the surface of last scattering. This answer must be within (v) The angular size θ_{H}, in degrees, corresponding to what was the Hubble
(b) (3 points) Because photons outnumber baryons by so much, the exponential
tail of the photon blackbody distribution is important in ionizing hydrogen
well after $k T_{\gamma}$ falls below $Q_{H}=13.6 \mathrm{eV}$. What is the ratio $k T_{\gamma} / Q_{H}$ when the
ionization fraction of the universe is $1 / 2$?
$\begin{array}{llll}\text { (i) } 1 / 5 & \text { (ii) } 1 / 50 & \text { (iii) } 10^{-3} & \text { (iv) } 10^{-4} \\ \text { This is not a number one has to commit to memory if one can remember } 10^{-5}\end{array}$
the temperature of (re) combination in eV , or if only in K along with the
conversion factor $\left(k \approx 10^{-4} \mathrm{eV} \mathrm{K}^{-1}\right)$. One can then calculate that near
recombination, $k T_{\gamma} / Q_{H} \approx\left(10^{-4} \mathrm{eV} \mathrm{K}^{-1}\right)(3000 \mathrm{~K}) /(13.6 \mathrm{eV}) \approx 1 / 45$.
$\left.\begin{array}{l}\text { (b) (3 points) Because photons outnumber baryons by so much, the exponential } \\ \text { tail of the photon blackbody distribution is important in ionizing hydrogen } \\ \text { well after } k T_{\gamma} \text { falls below } Q_{H}=13.6 \mathrm{eV} \text {. What is the ratio } k T_{\gamma} / Q_{H} \text { when the } \\ \text { ionization fraction of the universe is } 1 / 2 \text { ? } \\ \begin{array}{llll}\text { (i) } 1 / 5 & \text { (ii) } 1 / 50 & \text { (iii) } 10^{-3} & \text { (iv) } 10^{-4} \\ \text { This is not a number one has to commit to memory if one can remember } 10^{-5}\end{array} \\ \text { the temperature of (re) combination in } \mathrm{eV} \text {, or if only in } \mathrm{K} \text { along with the } \\ \text { conversion factor }\left(k \approx 10^{-4} \mathrm{eV} \mathrm{K}^{-1}\right) \text { One can then calculate that near } \\ \text { recombination, } k T_{\gamma} / Q_{H} \approx\left(10^{-4} \mathrm{eV} \mathrm{K}\right.\end{array} \mathrm{K}^{-1}\right)(3000 \mathrm{~K}) /(13.6 \mathrm{eV}) \approx 1 / 45.0$.
(b) (3 points) Because photons outnumber baryons by so much, the exponential
tail of the photon blackbody distribution is important in ionizing hydrogen
well after $k T_{\gamma}$ falls below $Q_{H}=13.6 \mathrm{eV}$. What is the ratio $k T_{\gamma} / Q_{H}$ when the
ionization fraction of the universe is $1 / 2$?
$\begin{array}{llll}\text { (i) } 1 / 5 & \text { (ii) } 1 / 50 & \text { (iii) } 10^{-3} & \text { (iv) } 10^{-4} \\ \text { This is not a number one has to commit to memory if one can remember } 10^{-5}\end{array}$
the temperature of $(r e)$ combination in eV , or if only in K along with the
conversion factor $\left(k \approx 10^{-4} \mathrm{eV} \mathrm{K}^{-1}\right)$ One can then calculate that near
recombination, $k T_{\gamma} / Q_{H} \approx\left(10^{-4} \mathrm{eV} \mathrm{K} \mathrm{K}^{-1}\right)(3000 \mathrm{~K}) /(13.6 \mathrm{eV}) \approx 1 / 45$. $\begin{aligned} & \text { (c) (2 points) Which of the following describes the Sachs-Wolfe effect? }\end{aligned}$
(b) (3 points) Because photons outnumber baryons by so much, the exponential
tail of the photon blackbody distribution is important in ionizing hydrogen
well after $k T_{\gamma}$ falls below $Q_{H}=13.6 \mathrm{eV}$. What is the ratio $k T_{\gamma} / Q_{H}$ when the
ionization fraction of the universe is $1 / 2$?
$\begin{array}{llll}\text { (i) } 1 / 5 & \text { (ii) } 1 / 50 & \text { (iii) } 10^{-3} & \text { (iv) } 10^{-4} \\ \text { This is not a number one has to commit to memory if one can remember } 10^{-5}\end{array}$
the temperature of $(r e)$ combination in eV , or if only in K along with the
conversion factor $\left(k \approx 10^{-4} \mathrm{eV} \mathrm{K}^{-1}\right)$ One can then calculate that near
recombination, $k T_{\gamma} / Q_{H} \approx\left(10^{-4} \mathrm{eV} \mathrm{K} \mathrm{K}^{-1}\right)(3000 \mathrm{~K}) /(13.6 \mathrm{eV}) \approx 1 / 45$. $\begin{aligned} & \text { (c) (2 points) Which of the following describes the Sachs-Wolfe effect? }\end{aligned}$
(b) (3 points) Because photons outnumber baryons by so much, the exponential
tail of the photon blackbody distribution is important in ionizing hydrogen
well after $k T_{\gamma}$ falls below $Q_{H}=13.6 \mathrm{eV}$. What is the ratio $k T_{\gamma} / Q_{H}$ when the
ionization fraction of the universe is $1 / 2$?
$\begin{array}{llll}\text { (i) } 1 / 5 & \text { (ii) } 1 / 50 & \text { (iii) } 10^{-3} & \text { (iv) } 10^{-4} \\ \text { This is not a number one has to commit to memory if one can remember } 10^{-5}\end{array}$
the temperature of $(r e)$ combination in eV , or if only in K along with the
conversion factor $\left(k \approx 10^{-4} \mathrm{eV} \mathrm{K}^{-1}\right)$. One can then calculate that near
recombination, $k T_{\gamma} / Q_{H} \approx\left(10^{-4} \mathrm{eV} \mathrm{K} \mathrm{K}^{-1}\right)(3000 \mathrm{~K}) /(13.6 \mathrm{eV}) \approx 1 / 45$. $\begin{aligned} & \text { (c) (2 points) Which of the following describes the Sachs-Wolfe effect? }\end{aligned}$
$\left.\begin{array}{l}\text { (b) (3 points) Because photons outnumber baryons by so much, the exponential } \\ \text { tail of the photon blackbody distribution is important in ionizing hydrogen } \\ \text { well after } k T_{\gamma} \text { falls below } Q_{H}=13.6 \mathrm{eV} \text {. What is the ratio } k T_{\gamma} / Q_{H} \text { when the } \\ \text { ionization fraction of the universe is } 1 / 2 \text { ? } \\ \begin{array}{llll}\text { (i) } 1 / 5 & \text { (ii) } 1 / 50 & \text { (iii) } 10^{-3} & \text { (iv) } 10^{-4} \\ \text { This is not a number one has to commit to memory if one can remember } 10^{-5}\end{array} \\ \text { the temperature of (re) combination in } \mathrm{eV} \text {, or if only in } \mathrm{K} \text { along with the } \\ \text { conversion factor }\left(k \approx 10^{-4} \mathrm{eV} \mathrm{K}^{-1}\right) \text { One can then calculate that near } \\ \text { recombination, } k T_{\gamma} / Q_{H} \approx\left(10^{-4} \mathrm{eV} \mathrm{K}\right.\end{array} \mathrm{K}^{-1}\right)(3000 \mathrm{~K}) /(13.6 \mathrm{eV}) \approx 1 / 45.0$.
$\left.\begin{array}{l}\text { (b) (3 points) Because photons outnumber baryons by so much, the exponential } \\ \text { tail of the photon blackbody distribution is important in ionizing hydrogen } \\ \text { well after } k T_{\gamma} \text { falls below } Q_{H}=13.6 \mathrm{eV} \text {. What is the ratio } k T_{\gamma} / Q_{H} \text { when the } \\ \text { ionization fraction of the universe is } 1 / 2 \text { ? } \\ \begin{array}{llll}\text { (i) } 1 / 5 & \text { (ii) } 1 / 50 & \text { (iii) } 10^{-3} & \text { (iv) } 10^{-4} \\ \text { This is not a number one has to commit to memory if one can remember } 10^{-5}\end{array} \\ \text { the temperature of (re) combination in } \mathrm{eV} \text {, or if only in } \mathrm{K} \text { along with the } \\ \text { conversion factor }\left(k \approx 10^{-4} \mathrm{eV} \mathrm{K}^{-1}\right) \text { One can then calculate that near } \\ \text { recombination, } k T_{\gamma} / Q_{H} \approx\left(10^{-4} \mathrm{eV} \mathrm{K}\right.\end{array} \mathrm{K}^{-1}\right)(3000 \mathrm{~K}) /(13.6 \mathrm{eV}) \approx 1 / 45.0$.

(b) (3 points) Because photons outnumber baryons by so much, the exponential
tail of the photon blackbody distribution is important in ionizing hydrogen
well after $k T_{\gamma}$ falls below $Q_{H}=13.6 \mathrm{eV}$. What is the ratio $k T_{\gamma} / Q_{H}$ when the
ionization fraction of the universe is $1 / 2$?
$\begin{array}{llll}\text { (i) } 1 / 5 & \text { (ii) } 1 / 50 & \text { (iii) } 10^{-3} & \text { (iv) } 10^{-4} \\ \text { This is not a number one has to commit to memory if one can remember } 10^{-5}\end{array}$
the temperature of $(r e)$ combination in eV , or if only in K along with the
conversion factor $\left(k \approx 10^{-4} \mathrm{eV} \mathrm{K}^{-1}\right)$ One can then calculate that near
recombination, $k T_{\gamma} / Q_{H} \approx\left(10^{-4} \mathrm{eV} \mathrm{K} \mathrm{K}^{-1}\right)(3000 \mathrm{~K}) /(13.6 \mathrm{eV}) \approx 1 / 45$. $\begin{aligned} & \text { (c) (2 points) Which of the following describes the Sachs-Wolfe effect? }\end{aligned}$
 a factor of 3 to be correct. $\sim 1^{\circ}$

 ι_{u} /रieq
(iv) The ratio of baryon number density to photon number density, $\eta=$ q-0L \times I•I 'GND әчт

 which is not due to the expansion of the universe) of $630 \pm 20 \mathrm{~km} \mathrm{~s}^{-1}$, or
 (•dnow about the galaxy, and the galaxy relative to the center of mass of the Local

 fraction v / c of the speed of light. (The speed of the Local Group is found

 these numbers, to within an order of magnitude unless otherwise stated. In all crowave background (CMB) that one should never forget. State the values of

Ryden in Chapters 8 and 9.
There are other possible answers as well, but these are the ones discussed by 0.04 , and dark matter contributes $\Omega_{\text {dark matter }} \approx 0.26$.)
 fluctuations as a function of multipole number shows that $\Omega_{\mathrm{tot}} \approx 1$, and CMB temperature fluctuations. (I.e., the analysis of the intensity of the

 bosons can therefore collect in the lowest energy levels. In fermion systems, must obey the exclusion principle, while bosons do not. Large numbers of

 are both doubled, but their ratio is unchanged.

Numerically, $E=3.1514 k T$

-» јо әпןел әцұ ләquәшәл от Кұ!!!qе тпоК ұәәше

(d) For a fermion, g is $7 / 8$ times the number of spin states, and g^{*} is $3 / 4$ times the

 Numerically, this gives $3.602 k$, where k is the Boltzmann constant
8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2011

Then
 because the particles are fermions. So for the particles and 2 for the antiparticles, giving 4, and then a factor of $3 / 4$
 a) The number density is given by the formula at the start of the exam,

NOLdGT HO SGIDGdS MAN V : G NGTGOYd

 $\frac{\varepsilon(L Y)(\varepsilon) \sum^{*}}{\varepsilon(\partial Y)}=S$ $\frac{\varepsilon(J q)}{\varepsilon L_{\nabla} Y} \frac{\unlhd \nabla}{z^{\Perp} \zeta} B$

(7) ${ }_{\varepsilon} p(7)_{\varepsilon} L^{\text {fsəx }} \hbar>S$

 perature at which these rates can no longer keep pace with the universe will

 tional particle increases the energy density. Since $H \propto \rho^{1 / 2}$, the increased

Using the result for ρ from part (b) as well as the list of fundamental constants
from the cover sheet of the exam gives ${ }_{\square / \mathrm{I}}\left[d_{g^{\partial}} \varepsilon_{\varepsilon} \frac{{ }^{707} \hbar}{\mathrm{I}} \frac{z^{\downarrow}}{0 \varepsilon}\right]=L^{Y}$

Solving for $k T$ in terms of ρ gives
$\frac{D}{I} D I={ }^{\circ} 7 \%$
Solving for $k T$ in terms of ρ gives.-
${ }_{\varepsilon}{ }_{\varepsilon}$ Uว /̊ ${ }_{\text {qL }} 0 L \times 0 L \cdot \square=d$

So, in this case the final answer would be

You were not expected to evaluate this, but with a calculator one would find
әq p[nom ләмsue [euy әч7 'os

In the NTWI, we have in addition the contribution to the mass density from units to measure a mass density

 Note: A common mistake was to leave out the conversion factor
which agrees with the answer above.
8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2011

 the neutrons and protons can be bound into He nuclei, with no protons left

әәзиерйqе әН рәұэ!рәлд ләчэ!ч implies a become bound into He nuclei, the higher neutron abundance of the NTWI

$-\partial+d \leftrightarrow{ }^{2} n+u$
 ${ }^{2} \underline{n}+d \leftrightarrow+{ }^{2}+u \quad$ pue

 neutrino interactions when the ratio is about 1 . When $k T$ falls below 200 MeV in the NTWI, the ratio freezes out at the high temperature corresponding to $k T=200 \mathrm{MeV}$, In the standard theory this ratio would decrease rapidly as the universe cooled

(d) At $k T=200 \mathrm{MeV}$, the thermal equilibrium ratio of neutrons to protons is

IMLN әчł UI
p. 35

While of coure you were not expected to work out the numerics, this gives

In the standard model Ryden estimates the time of nucleosynthesis as $t_{\text {nuc }}^{\mathrm{sm}} \approx$
200 s , so in the NTWI it would be longer by the factor

‘snuL
verse is given in the formula sheets as
The relation between time and temperature in a flat radiation-dominated uni

IMLN әч子 тоғ рие

$g_{\mathrm{eff}}=2+\left(\frac{21}{4}\right)\left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4}$

where
ture T_{γ} and neutrinos at a lower temperature T_{ν}. The energy density is given have disappeared, so the black-body radiation consists of photons at temperasis occurs during the radiation-dominated era, but long after the $e^{+}-e^{-}$pairs However, to be as accurate as possible, one should recognize that nucleosyntheSince this effect is rather subtle, no points will be taken off if you omitted it. reached, however, would be changed slightly by the change in the ratio T_{ν} / T_{γ}. so it would not be changed by the NTWI. The time when this temperature is
 to what Weinberg refers to as the breaking of the deuterium bottleneck. The

$\left(\frac{\Lambda}{\Lambda \nabla} \frac{Z}{\mathrm{I}}-\mathrm{I}\right){ }^{0} n=\frac{\frac{\Lambda}{\Lambda \nabla} \frac{Z}{\mathrm{I}}+\mathrm{I}}{0 n}=\frac{\frac{\Lambda}{\Lambda \nabla}+\mathrm{I} \Lambda}{0 n}=n$
$\frac{\Lambda \nabla+\Lambda}{\Lambda} \Lambda_{0 n}=(\Lambda \nabla+\Lambda)^{n}$

(a) If $u \propto 1 / \sqrt{V}$, then one can write

 $\cdot 9 \iota^{\circ} 0 \approx$ ұЧ๐!əм Кq әэиерипqе ән рәұэ!рәл $\mathrm{d}=\Lambda$
 NTWI is the fraction of neutrons that do not undergo decay. Thus, the prediction of bound into He , the corrected value of Y is simply deceased by multiplying by If free decay is ignored, we found $Y=1$. Since all the surviving neutrons are $\frac{n_{n}}{n_{B}} \approx \frac{1}{2} e^{-t_{\mathrm{nuc}} / \tau_{d}}$
Just before nucleosynthesis, at time $t_{\text {nuc }}$, the ratio will be period. At freeze-out, when $k T \approx 200 \mathrm{MeV}$,
 To follow the effect of this free decay, it is easiest to do it by considering the $\approx 225 \mathrm{~s}$, which is close enough. Note that Ryden gives $t_{\text {nuc }} \approx 200 s$, while Weinberg places it at $3 \frac{3}{4}$ minutes
The mass density today of any species X is then related to $\Omega_{X, 0}$ by
Thus the critical density today is given by $\frac{D^{\Perp 8}}{{ }_{2}^{0} H \varepsilon}={ }^{\circ} d$
$\frac{z^{D}}{z^{\partial y}}-d \eta \frac{\varepsilon}{\nu 8}={ }_{z} H$

$\Delta \Delta W=-p \Delta V$
(c) The agent must supply the full change in energy
$\Delta W=\Delta U=\frac{1}{2} \frac{\Delta V}{V} U_{0}$
Combining this with the expression for ΔW from
that

$$
p=-\frac{1}{2} \frac{U_{0}}{V}=-\frac{1}{2} u_{0}
$$

8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2011

$$
\rho_{X, 0}=\rho_{c} \Omega_{X, 0}=\frac{3 H_{0}^{2} \Omega_{X, 0}}{8 \pi G}
$$

coordinates of the light rays leaving the object and arriving at Earth:

where x_{e} is given by the boxed equation above.

 . $0^{〔} y ~ \mho={ }^{0} \mho-\mathrm{I}=\frac{{ }_{Z}^{0} H\left({ }^{0} \not\right)_{Z} p}{z^{0}}$
8

Here

$\cdot 7 \infty \frac{v}{\mathrm{~L}-\mho}$

(a) We start with the Friedmann equation from the formula sheet on the quiz:
8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2011
PROBLEM 10: EVOLUTION OF FLATNESS (15 points) p. 43

8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2011 p. 44			
PROBLEM 11: THE SLOAN DIGITAL SKY SURVEY $z=5.82$ QUASAR (40 points)			
(a) Since $\Omega_{m}+\Omega_{\Lambda}=0.35+0.65=1$, the universe is flat. It therefore obeys a simple form of the Friedmann equation,			
$H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} G\left(\rho_{m}+\rho_{\Lambda}\right),$			
where the overdot indicates a derivative with respect to t, and the term proportional to k has been dropped. Using the fact that $\rho_{m} \propto 1 / a^{3}(t)$ and $\rho_{\Lambda}=$ const, the energy densities on the right-hand side can be expressed in terms of their present values $\rho_{m, 0}$ and $\rho_{\Lambda} \equiv \rho_{\Lambda, 0}$. Defining			
$x(t) \equiv \frac{a(t)}{a\left(t_{0}\right)}$			
one has $\left(\frac{\dot{x}}{x}\right)^{2}=\frac{8 \pi}{3} G\left(\frac{\rho_{m, 0}}{x^{3}}+\rho_{\Lambda}\right)$			
$=\frac{8 \pi}{3} G \rho_{c, 0}\left(\frac{\Omega_{m, 0}}{x^{3}}+\Omega_{\Lambda, 0}\right)$			
$=H_{0}^{2}\left(\frac{\Omega_{m, 0}}{x^{3}}+\Omega_{\Lambda, 0}\right)$			
Here we used the facts that			
$\Omega_{m, 0} \equiv \frac{\rho_{m, 0}}{\rho_{c, 0}} ; \quad \Omega_{\Lambda, 0} \equiv \frac{\rho_{\Lambda}}{\rho_{c, 0}}$			
and $H_{0}^{2}=\frac{8 \pi}{3} G \rho_{c, 0}$.			
The equation above for $(\dot{x} / x)^{2}$ implies that			
$\dot{x}=H_{0} x \sqrt{\frac{\Omega_{m, 0}}{x^{3}}+\Omega_{\Lambda, 0}}$,			
which in turn implies that			
$\mathrm{d} t=\frac{1}{H_{0}} \frac{\mathrm{~d} x}{x \sqrt{\frac{\Omega_{m, 0}}{x^{3}}+\Omega_{\Lambda, 0}}}$			

$\cdot{ }_{I K}{ }_{6} 0 \mathrm{I} \times \& \hbar 0^{\circ} \mathrm{GL}=\frac{{ }^{0} H}{\mathrm{I}}$

. 8 u ! $\mathrm{S} \cap$

 Your answer should look like one of the above boxed answers. You were not to $z=0$. of the limits of integration: $x=0$ corresponds to $z=\infty$, and $x=1$ corresponds Note that the minus sign in the expression for $\mathrm{d} x$ is canceled by the interchange

$$
x=\frac{1}{1+z} ; \quad \mathrm{d} x=-\frac{\mathrm{d} z}{(1+z)^{2}}
$$

where in the last answer I changed the variable of integration using

 relation can be integrated to give Using the fact that x changes from 0 to 1 over the life of the universe, this p. 45
8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2011

since the cosmological redshift is given by
since the cosmological redshift is given by
found the amount of time that it took for x to change from 0 to 1 . The light
from the quasar that we now receive was emitted when of course the same, and the question is only slightly different. In part (a) we
(b) Having done part (a), this part is very easy. The dynamics of the universe is
$\frac{z+\mathrm{I}}{\mathrm{I}}=x$
I

universe to expand from $x=0$ to $x=1 /(1+z)$ is given by

Again one could write the answer other ways, including

Again you were expected to stop with an expression like the one above. Con-
tinuing, however, the integral can again be done analytically:

-रечо II!? S! quәшәวunouue SSGS әपL	
	иәчд ‘КІІеш!
$\begin{equation*} \mathrm{OS}{ }^{\top} \gamma\left({ }^{2} \gamma\right) p={ }^{2} \mathrm{~s} \delta \mathrm{Y} \mathrm{~d} \gamma \tag{p} \end{equation*}$ -u!̣ese 子ч.8!̣	 $\begin{aligned} & \cdot \frac{x x}{x \mathrm{p}} \int_{\mathrm{L}}^{{ }^{2} x} \frac{\left({ }^{0} 7\right) p}{\partial}={ }^{\circ} \gamma \\ & \cdot \frac{x}{x \mathrm{p}}=x \mathrm{p} \frac{x \mathrm{p}}{\not \mathrm{p}}=7 \mathrm{p} \end{aligned}$
 	$\cdot \frac{(7) p}{\partial}=\frac{\mathrm{pp}}{\mu \mathrm{p}}$ $\text { Su!̣!. ' } 0={ }_{z} s p$
	${ }^{\text {IK }}{ }_{6} 0$ L $\times 60 ¢ 6 \cdot 0=\frac{{ }^{0} H}{\text { LZ¢90.0 }}={ }^{2} 7$

seч әио ' $I \approx{ }^{d} w /{ }^{u} u$.su!̣peutixo.лd 	

$t_{H 2}\left(2.5 \times 10^{6}\right.$ lt-yr $)=6.50 \times 10^{7} \mathrm{sec}=2.06$ year
galaxy,

‘odN I = Y rof

0
0
0

[^0]: The following problem was Problem 2，Quiz 3，1992，worth 25 points．
 NOLdAT HO SGIOGdS MAN V ： G LAGTGOZd

