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PROBLEM 1: DID YOU DO THE READING? (25 points)†

(a) (10 points) To determine the distance of the galaxies he was observing Hubble
used so called standard candles. Standard candles are astronomical objects
whose intrinsic luminosity is known and whose distance is inferred by measuring
their apparent luminosity. First, he used as standard candles variable stars,
whose intrinsic luminosity can be related to the period of variation. Quoting
Weinberg’s The First Three Minutes, chapter 2, pages 19-20:

In 1923 Edwin Hubble was for the first time able to resolve the Andromeda
Nebula into separate stars. He found that its spiral arms included a few bright
variable stars, with the same sort of periodic variation of luminosity as was
already familiar for a class of stars in our galaxy known as Cepheid variables.
The reason this was so important was that in the preceding decade the work of
Henrietta Swan Leavitt and Harlow Shapley of the Harvard College Observa-
tory had provided a tight relation between the observed periods of variation of
the Cepheids and their absolute luminosities. (Absolute luminosity is the total
radiant power emitted by an astronomical object in all directions. Apparent
luminosity is the radiant power received by us in each square centimeter of our
telescope mirror. It is the apparent rather than the absolute luminosity that de-
termines the subjective degree of brightness of astronomical objects. Of course,
the apparent luminosity depends not only on the absolute luminosity, but also
on the distance; thus, knowing both the absolute and the apparent luminosities
of an astronomical body, we can infer its distance.) Hubble, observing the ap-
parent luminosity of the Cepheids in the Andromeda Nebula, and estimating
their absolute luminosity from their periods, could immediately calculate their
distance, and hence the distance of the Andromeda Nebula, using the simple
rule that apparent luminosity is proportional to the absolute luminosity and
inversely proportional to the square of the distance.

He also used particularly bright stars as standard candles, as we deduce from
page 25:

Returning now to 1929: Hubble estimated the distance to 18 galaxies from
the apparent luminosity of their brighest stars, and compared these distances
with the galaxies’ respective velocities, determined spectroscopically from their
Doppler shifts.

Note: since from reading just the first part of Weinberg’s discussion one could
be induced to think that Hubble used just Cepheids as standard candles, stu-
dents who mentioned only Cepheids got 9 points out of 10. In fact, however,
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Hubble was able to identify Cepheid variables in only a few galaxies. The
Cepheids were crucial, because they served as a calibration for the larger dis-
tances, but they were not in themselves sufficient.

(b) (5 points) Quoting Weinberg’s The First Three Minutes, chapter 2, page 21:

We would expect intuitively that at any given time the universe ought to look
the same to observers in all typical galaxies, and in whatever directions they
look. (Here, and below, I will use the label “typical” to indicate galaxies that do
not have any large peculiar motion of their own, but are simply carried along
with the general cosmic flow of galaxies.) This hypothesis is so natural (at
least since Copernicus) that it has been called the Cosmological Principle by
the English astrophysicist Edward Arthur Milne.

So the Cosmological principle basically states that the universe appears as ho-
mogeneous and isotropic (on scales of distance large enough) to any typical ob-
server, where typical is referred to observers with small local motion compared
to the expansion flow. Ryden gives a more general definition of Cosmological
Principle, which is valid as well. Quoting Ryden’s Introduction to Cosmology,
chapter 2, page 11 or 14 (depending on which version):

However, modern cosmologists have adopted the cosmological principle,
which states: There is nothing special about our location in the universe. The
cosmological principle holds true only on large scales (of 100 Mpc or more).

(c) (10 points) Quoting again Ryden’s Introduction to Cosmology, chapter 2, page
9 or 11:

Saying that the universe is isotropic means that there are no preferred direc-
tions in the universe; it looks the same no matter which way you point your
telescope. Saying that the universe is homogeneous means that there are no
preferred locations in the universe; it looks the same no matter where you set
up your telescope.

(i) False. If the universe is isotropic around one point it does not need to be
homogeneous. A counter-example is a distribution of matter with spherical
symmetry, that is, with a density which is only a function of the radius
but does not depend on the direction: ρ(r, θ, φ) ≡ ρ(r). In this case for an
observer at the center of the distribution the universe looks isotropic but
it is not homogeneous.

(ii) True. For the case of Euclidean geometry isotropy around two or more
distinct points does imply homogeneity. Weinberg shows this in chapter
2, page 24. Consider two observers, and two arbitrary points A and B
which we would like to prove equivalent. Consider a circle through point
A, centered on observer 1, and another circle through point B, centered
on observer 2. If C is a point on the intersection of the two circles, then
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isotropy about the two observers implies that A = C and B = C, and
hence A = B. (This argument was good enough for Weinberg and hence
good enough to deserve full credit, but it is actually incomplete: one can
find points A and B for which the two circles will not intersect. On your
next problem set you will have a chance to invent a better proof.)

(d) (2 points extra credit) False. If we relax the hypothesis of Euclidean geome-
try, then isotropy around two points does not necessarily imply homogeneity.
A counter-example we mentioned in class is a two-dimensional universe con-
sisting of the surface of a sphere. Think of the sphere in three Euclidean
dimensions, but the model “universe” consists only of its two-dimensional sur-
face. Imagine latitude and longitude lines to give coordinates to the surface,
and imagine a matter distribution that depends only on latitude. This would
not be homogeneous, but it would look isotropic to observers at both the north
and south poles. While this example describes a two-dimensional universe,
which therefore cannot be our universe, we will learn shortly how to construct
a three-dimensional non-Euclidean universe with these same properties.

PROBLEM 2: A POSSIBLE MODIFICATION OF NEWTON’S LAW
OF GRAVITY (30 points)∗

(a) Substituting the equation for M(ri), given on the quiz, into the differential
equation for r, also given on the quiz, one finds:

r̈ = −4π
3
Gr3

i ρi

r2
+ γrn .

Dividing both sides of the equation by ri, one has

r̈

ri
= −4π

3
Gr2

i ρi

r2
+ γ

rn

ri
.

Substituting u = r/ri, this becomes

ü = −4π
3
Gρi

u2
+ γunrn−1

i .

(b) The only dependence on ri occurs in the last term, which is proportional to
rn−1
i . This dependence disappears if n = 1 , since the zeroth power of any
positive number is 1.

(c) This is exactly the same as the case discussed in the lecture notes, since the
initial conditions do not depend on the differential equation. At t = 0,
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r(ri, 0) = ri (definition of ri)

ṙ(ri, 0) = Hiri (since �vi = Hi�r).

Dividing these equations by ri one has the intial conditions

u = 1

u̇ = Hi .

(d) a(t) should obey the differential equation obtained in part (a) for u, for the
value of n that was obtained in part (b): n = 1. So,

ä = −4π
3
Gρi

a2
+ γa .

Multiplying the equation by ȧ ≡ da/dt, one finds

d2a

dt2
da

dt
=

{
−4π

3
Gρi

a2
+ γa

}
da

dt
,

which can be rewritten as

d

dt

{
1
2

(
da

dt

)2

− 4π
3
Gρi

a
− 1

2
γa2

}
= 0 .

Thus the quantity inside the curly brackets must be constant. Following the
lecture notes, I will call this constant E:

1
2

(
da

dt

)2

− 4π
3
Gρi

a
− 1

2
γa2 = E .

Or one can use the conventionally defined quantity

k = −2E
c2

,

in which case the equation can be written{
1
2

(
da

dt

)2

− 4π
3
Gρi

a
− 1

2
γa2

}
= −kc2

2
.
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One can then rewrite the equation in the more standard form

 ȧ

a

2

=
8π
3
Gρ+ γ − kc2

a2
,

where I have used ρ(t) = ρi/a
3(t).

Additional Note: Historically, the constant γ corresponds to the “cosmological
constant” which was introduced by Albert Einstein in 1917 in an effort to
build a static model of the universe. The cosmological constant Λ, as defined
by Einstein, is related to γ by

γ =
1
3
Λc2 .

The differential equation can be rewritten as ȧ

a

2

=
8π
3
G

(
ρ+

Λc2

8πG

)
− kc2

a2
,

which shows that the cosmological constant contributes like a constant addition
to the mass density. Modern physicists interpret the cosmological constant as a
manifestation of the mass density of the vacuum. From the above equation, we
can see that the mass density of the vacuum is related to Einstein’s cosmological
constant Λ by

ρvac =
Λc2

8πG
.

Alternative Question:

Some of you answered the alternative question, seeking an integral of the equa-
tion

ä+
A

ap
+Baq = 0 .

The technique is the same as above. One must first multiply the equation by
ȧ, and then it becomes integrable:

0 = ȧ

(
ä+

A

ap
+Baq

)
=

d
dt

{
1
2
ȧ2 − 1

p− 1
A

ap−1
+

1
q + 1

Baq+1

}
.

Since the time derivative of the quantity in curly brackets is zero, the quantity
must be a constant, which we can call E:

E =
1
2
ȧ2 − 1

p− 1
A

ap−1
+

1
q + 1

Baq+1 .
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PROBLEM 3: COSMOLOGICAL VS. SPECIAL RELATIVISTIC RED-
SHIFT (20 points)†

(a) (5 points) Using the expression for the cosmological redshift we get:

z =
a(t0)
a(te)

− 1 =
(
t0
te

)2/3

− 1 .

Inserting t0 = 13.7 Gyr and te = 13.5 Gyr in the above expression we get:

z � 0.00985232 .

(b) (5 points) First we need to find the coordinate distance to the galaxy X :

�c =
∫ t0

te

c

a(t)
dt =

3c
b

(
t
1/3
0 − t1/3

e

)
.

Then the current physical distance is found by multiplying the coordinate dis-
tance by the present value of the scale factor:

�p(t0) = a(t0)�c = 3ct0

[
1−

(
te
t0

)1/3
]
.

We want to evaluate the physical distance in light years (ly). Notice that:

c =
1 ly
1 yr

,

so that:

�p(13.7 Gyr) = 3× 13.7× 109

[
1−

(
13.5
13.7

)1/3
]

ly � 2.00981× 108 ly.

(c) (5 points) At any time the physical distance can be written as:

�p(t) = a(t)�c .
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For objects moving with Hubble’s flow the coordinate distance �c is independent
of time, so that:

vp(t) =
d�p(t)
dt

= ȧ(t)�c =
ȧ(t)
a(t)

a(t)�c ≡ H(t)�p(t) .

This is exactly Hubble’s law. To obtain the current velocity we need the current
value of the Hubble’s parameter H(t0):

H(t) =
ȧ(t)
a(t)

=
2
3t

=⇒ H(t0) =
2
3t0

.

Then, using the expression for �p(t0) we found in part (b):

vp(t0) = 2c

[
1−

(
te
t0

)1/3
]
,

vp(13.7 Gyr) � 0.00978011c .

Note: A common mistake was to start with the answer from part (b), �p(t0) =

3ct0
[
1− (te/t0)

1/3
]
, and differentiate with respect to t0. The problem with

this method is that it holds te fixed, instead of �c. We are interested in how
the distance to a specific distant galaxy changes with time. The galaxy has a
fixed coordinate distance �c, but the light that we see later will not have the
same time of emission te.

(d) (5 points) The Doppler shift we would get from special relativity is given by:

zsr =

√
1 + β

1− β
− 1 .

Using

β =
vp(13.7 Gyr)

c
� 0.00978011 ,

we get

zsr � 0.00982840 .

Notice that the difference with the result found in part (a) is less than 1%:

z − zsr

z
� 0.2% .
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PROBLEM 4: THE TRAJECTORY OF A PHOTON ORIGINATING
AT THE HORIZON (25 points)∗

(a) They key idea is that the coordinate speed of light is given by

dx
dt

=
c

a(t)
,

so the coordinate distance (in notches) that light can travel between t = 0 and
now (t = t0) is given by

�c =
∫ t0

0

c dt
a(t)

.

The corresponding physical distance is the horizon distance:

�p,horizon(t0) = a(t0)
∫ t0

0

c dt
a(t)

.

Evaluating,

�p,horizon(t0) = bt
2/3
0

∫ t0

0

c dt
bt2/3

= t
2/3
0

[
3ct1/3

0

]
= 3ct0 .

(b) As stated in part (a), the coordinate distance that light can travel between
t = 0 and t = t0 is given by

�c =
∫ t0

0

c dt
a(t)

=
3ct1/3

0

b
.

Thus, if we are at the origin, at t = 0 the photon must have been at

x0 =
3ct1/3

0

b
.

(c) The photon starts at x = x0 at t = 0, and then travels in the negative x-
direction at speed c/a(t). Thus, it’s position at time t is given by

x(t) = x0 −
∫ t

0

c dt′

a(t′)
=

3ct1/3
0

b
− 3ct1/3

b
=

3c
b

(
t
1/3
0 − t1/3

)
.
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(d) Since the coordinate distance between us and the photon is x(t), measured in
notches, the physical distance (in, for example, meters) is just a(t) times x(t).
Thus.

�p(t) = a(t)x(t) = 3ct2/3
(
t
1/3
0 − t1/3

)
.

(e) To find the maximum of �p(t), we set the derivative equal to zero:

d�p(t)
dt

=
d
dt

[
3c

(
t2/3t

1/3
0 − t

)]
= 3c

[
2
3

(
t0
t

)1/3

− 1

]
= 0 ,

so (
t0
tmax

)1/3

=
3
2

=⇒ tmax =
(
2
3

)3

t0 =
8
27

t0 .

The maximum distance is then

�p,max = �p(tmax) = 3c
(
2
3

)2

t
2/3
0

[
t
1/3
0 −

(
2
3

)
t
1/3
0

]
= 3c

(
2
3

)2 (
1
3

)
t0

=
4
9
ct0 .

†Solution written by Daniele Bertolini.
∗Solution written by Alan Guth.


