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(25
points) †

(a)
(10

points)
T
o
determ

ine
the

distance
of

the
galaxies

he
w
as

observing
H
ubble

used
so

called
standard

candles.
Standard

candles
are

astronom
ical

ob
jects

w
hose

intrinsic
lum

inosity
is
know

n
and

w
hose

distance
is
inferred

by
m
easuring

their
apparent

lum
inosity.

F
irst,

he
used

as
standard

candles
variable

stars,
w
hose

intrinsic
lum

inosity
can

be
related

to
the

period
of

variation.
Q
uoting

W
einberg’s

T
he

F
irst

T
hree

M
inutes,

chapter
2,pages

19-20:

In
1923

E
dw

in
H

ubble
w
as

for
the

first
tim

e
able

to
resolve

the
A
ndrom

eda
N

ebula
into

separate
stars.

H
e

found
that

its
spiralarm

s
included

a
few

bright
variable

stars,
w
ith

the
sam

e
sort

of
periodic

variation
of

lum
inosity

as
w
as

already
fam

iliar
for

a
class

of
stars

in
our

galaxy
know

n
as

C
epheid

variables.
T
he

reason
this

w
as

so
im

portant
w
as

that
in

the
preceding

decade
the

w
ork

of
H

enrietta
Sw

an
Leavitt

and
H

arlow
Shapley

of
the

H
arvard

C
ollege

O
bserva-

tory
had

provided
a

tight
relation

betw
een

the
observed

periods
of

variation
of

the
C
epheids

and
their

absolute
lum

inosities.
(A

bsolute
lum

inosity
is

the
total

radiant
pow

er
em

itted
by

an
astronom

ical
object

in
all

directions.
A

pparent
lum

inosity
is

the
radiant

pow
er

received
by

us
in

each
square

centim
eter

of
our

telescope
m

irror.
It

is
the

apparent
rather

than
the

absolute
lum

inosity
that

de-
term

ines
the

subjective
degree

of
brightness

of
astronom

icalobjects.
O

f
course,

the
apparent

lum
inosity

depends
not

only
on

the
absolute

lum
inosity,

but
also

on
the

distance;
thus,

know
ing

both
the

absolute
and

the
apparent

lum
inosities

of
an

astronom
ical

body,
w
e

can
infer

its
distance.)

H
ubble,

observing
the

ap-
parent

lum
inosity

of
the

C
epheids

in
the

A
ndrom

eda
N

ebula,
and

estim
ating

their
absolute

lum
inosity

from
their

periods,
could

im
m

ediately
calculate

their
distance,

and
hence

the
distance

of
the

A
ndrom

eda
N

ebula,
using

the
sim

ple
rule

that
apparent

lum
inosity

is
proportional

to
the

absolute
lum

inosity
and

inversely
proportionalto

the
square

of
the

distance.

H
e
also

used
particularly

bright
stars

as
standard

candles,
as

w
e
deduce

from
page

25:

R
eturning

now
to

1929:
H

ubble
estim

ated
the

distance
to

18
galaxies

from
the

apparent
lum

inosity
of

their
brighest

stars,
and

com
pared

these
distances

w
ith

the
galaxies’

respective
velocities,

determ
ined

spectroscopically
from

their
D

oppler
shifts.

N
ote:

since
from

reading
just

the
first

part
of

W
einberg’s

discussion
one

could
be

induced
to

think
that

H
ubble

used
just

C
epheids

as
standard

candles,
stu-

dents
w
ho

m
entioned

only
C
epheids

got
9
points

out
of

10.
In

fact,
how

ever,
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H
ubble

w
as

able
to

identify
C
epheid

variables
in

only
a
few

galaxies.
T
he

C
epheids

w
ere

crucial,
because

they
served

as
a
calibration

for
the

larger
dis-

tances,
but

they
w
ere

not
in

them
selves

suffi
cient.

(b)
(5

points)
Q
uoting

W
einberg’s

T
he

F
irst

T
hree

M
inutes,

chapter
2,

page
21:

W
e

w
ould

expect
intuitively

that
at

any
given

tim
e

the
universe

ought
to

look
the

sam
e

to
observers

in
all

typical
galaxies,

and
in

w
hatever

directions
they

look.
(H

ere,
and

below
,
I
w
illuse

the
label“typical”

to
indicate

galaxies
that

do
not

have
any

large
peculiar

m
otion

of
their

ow
n,

but
are

sim
ply

carried
along

w
ith

the
general

cosm
ic

flow
of

galaxies.)
T
his

hypothesis
is

so
natural

(at
least

since
C

opernicus)
that

it
has

been
called

th
e

C
osm

ological
P
rinciple

by
the

E
nglish

astrophysicist
E
dw

ard
A
rthur

M
ilne.

So
the

C
osm

ologicalprinciple
basically

states
that

the
universe

appears
as

ho-
m
ogeneous

and
isotropic

(on
scales

ofdistance
large

enough)
to

any
typicalob-

server,w
here

typicalis
referred

to
observers

w
ith

sm
alllocalm

otion
com

pared
to

the
expansion

flow
.
R
yden

gives
a
m
ore

general
definition

of
C
osm

ological
P
rinciple,

w
hich

is
valid

as
w
ell.

Q
uoting

R
yden’s

Introduction
to

C
osm

ology,
chapter

2,page
11

or
14

(depending
on

w
hich

version):

H
ow

ever,
m

odern
cosm

ologists
have

adopted
the

cosm
ological

p
rin

cip
le,

w
hich

states:
T

here
is

nothing
special

about
our

location
in

the
universe.

T
he

cosm
ologicalprinciple

holds
true

only
on

large
scales

(of
100

M
pc

or
m

ore).

(c)
(10

points)
Q
uoting

again
R
yden’s

Introduction
to

C
osm

ology,chapter
2,page

9
or

11:

Saying
that

the
universe

is
isotrop

ic
m

eans
that

there
are

no
preferred

direc-
tions

in
the

universe;
it

looks
the

sam
e

no
m

atter
w
hich

w
ay

you
point

your
telescope.

Saying
that

the
universe

is
h
om

ogen
eou

s
m

eans
that

there
are

no
preferred

locations
in

the
universe;

it
looks

the
sam

e
no

m
atter

w
here

you
set

up
your

telescope.

(i)
False.

If
the

universe
is
isotropic

around
one

point
it
does

not
need

to
be

hom
ogeneous.

A
counter-exam

ple
is
a
distribution

ofm
atter

w
ith

spherical
sym

m
etry,

that
is,

w
ith

a
density

w
hich

is
only

a
function

of
the

radius
but

does
not

depend
on

the
direction:

ρ(r,θ
,φ)≡

ρ(r).
In

this
case

for
an

observer
at

the
center

of
the

distribution
the

universe
looks

isotropic
but

it
is

not
hom

ogeneous.

(ii)
T
rue.

For
the

case
of

E
uclidean

geom
etry

isotropy
around

tw
o
or

m
ore

distinct
points

does
im

ply
hom

ogeneity.
W
einberg

show
s
this

in
chapter

2,
page

24.
C
onsider

tw
o
observers,

and
tw

o
arbitrary

points
A

and
B

w
hich

w
e
w
ould

like
to

prove
equivalent.

C
onsider

a
circle

through
point

A
,
centered

on
observer

1,
and

another
circle

through
point

B
,
centered

on
observer

2.
If
C

is
a
point

on
the

intersection
of

the
tw

o
circles,

then



8.286
Q

U
IZ

1
S
O

L
U

T
IO

N
S
,
F
A

L
L

2011
p
.
3

isotropy
about

the
tw

o
observers

im
plies

that
A

=
C

and
B

=
C
,
and

hence
A

=
B
.
(T

his
argum

ent
w
as

good
enough

for
W
einberg

and
hence

good
enough

to
deserve

full
credit,

but
it

is
actually

incom
plete:

one
can

find
points

A
and

B
for

w
hich

the
tw

o
circles

w
ill

not
intersect.

O
n
your

next
problem

set
you

w
illhave

a
chance

to
invent

a
better

proof.)

(d)
(2

points
extra

credit)
False.

If
w
e
relax

the
hypothesis

of
E
uclidean

geom
e-

try,
then

isotropy
around

tw
o
points

does
not

necessarily
im

ply
hom

ogeneity.
A

counter-exam
ple

w
e
m
entioned

in
class

is
a
tw

o-dim
ensional

universe
con-

sisting
of

the
surface

of
a
sphere.

T
hink

of
the

sphere
in

three
E
uclidean

dim
ensions,

but
the

m
odel“universe”

consists
only

of
its

tw
o-dim

ensionalsur-
face.

Im
agine

latitude
and

longitude
lines

to
give

coordinates
to

the
surface,

and
im

agine
a
m
atter

distribution
that

depends
only

on
latitude.

T
his

w
ould

not
be

hom
ogeneous,but

it
w
ould

look
isotropic

to
observers

at
both

the
north

and
south

poles.
W

hile
this

exam
ple

describes
a
tw

o-dim
ensional

universe,
w
hich

therefore
cannot

be
our

universe,
w
e
w
illlearn

shortly
how

to
construct

a
three-dim

ensional
non-E

uclidean
universe

w
ith

these
sam

e
properties.

P
R

O
B

L
E
M

2:
A

P
O

S
S
IB

L
E

M
O

D
IF

IC
A

T
IO

N
O

F
N

E
W

T
O

N
’S

L
A
W

O
F

G
R

A
V

IT
Y

(30
points) ∗

(a)
Substituting

the
equation

for
M

(r
i ),

given
on

the
quiz,

into
the

differential
equation

for
r,also

given
on

the
quiz,

one
finds:

r̈
=

−
4
π3
G
r
3i ρ

i

r
2

+
γ
r

n
.

D
ividing

both
sides

of
the

equation
by

r
i ,
one

has

r̈r
i
=

−
4
π3
G
r
2i ρ

i

r
2

+
γ
r

n

r
i
.

Substituting
u
=
r/
r
i ,
this

becom
es

ü
=

−
4
π3
G
ρ

i

u
2

+
γ
u

n
r

n−
1

i
.

(b)
T
he

only
dependence

on
r
i
occurs

in
the

last
term

,
w
hich

is
proportional

to
r

n−
1

i
.
T
his

dependence
disappears

if
n
=

1
,
since

the
zeroth

pow
er

of
any

positive
num

ber
is

1.

(c)
T
his

is
exactly

the
sam

e
as

the
case

discussed
in

the
lecture

notes,
since

the
initialconditions

do
not

depend
on

the
differential

equation.
A
t
t
=

0,
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r(r
i ,0)

=
r
i

(definition
of

r
i )

ṙ(r
i ,0)

=
H

i r
i

(since
�v

i
=
H

i �r).

D
ividing

these
equations

by
r
i
one

has
the

intialconditions

u
=

1

u̇
=
H

i
.

(d)
a(t)

should
obey

the
differential

equation
obtained

in
part

(a)
for

u,
for

the
value

of
n
that

w
as

obtained
in

part
(b):

n
=

1.
So,

ä
=

−
4
π3
G
ρ

i

a
2

+
γ
a
.

M
ultiplying

the
equation

by
ȧ≡

d
a
/
d
t,one

finds

d
2a

d
t
2

d
ad
t
= {−

4
π3
G
ρ

i

a
2

+
γ
a }

d
ad
t
,

w
hich

can
be

rew
ritten

as

dd
t {

12 (
d
ad
t )

2−
4
π3
G
ρ

i

a
−

12
γ
a
2 }

=
0
.

T
hus

the
quantity

inside
the

curly
brackets

m
ust

be
constant.

Follow
ing

the
lecture

notes,
I
w
illcallthis

constant
E
:

12 (
d
ad
t )

2−
4
π3
G
ρ

i

a
−

12
γ
a
2
=
E

.

O
r
one

can
use

the
conventionally

defined
quantity

k
=

−
2
Ec
2
,

in
w
hich

case
the

equation
can

be
w
ritten

{
12 (

d
ad
t )

2−
4
π3
G
ρ

i

a
−

12
γ
a
2 }

=
−
k
c
2

2
.
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O
ne

can
then

rew
rite

the
equation

in
the

m
ore

standard
form


ȧa 

2

=
8
π3
G
ρ
+
γ−

k
c
2

a
2

,

w
here

I
have

used
ρ(t)

=
ρ

i /
a
3(t).

A
dditionalN

ote:
H
istorically,the

constant
γ
corresponds

to
the

“cosm
ological

constant”
w
hich

w
as

introduced
by

A
lbert

E
instein

in
1917

in
an

effort
to

build
a
static

m
odel

of
the

universe.
T
he

cosm
ological

constant
Λ
,
as

defined
by

E
instein,

is
related

to
γ
by

γ
=

13
Λ
c
2
.

T
he

differential
equation

can
be

rew
ritten

as

ȧa 

2

=
8
π3
G (

ρ
+

Λ
c
2

8
π
G )

−
k
c
2

a
2
,

w
hich

show
s
that

the
cosm

ologicalconstant
contributes

like
a
constant

addition
to

the
m
ass

density.
M
odern

physicists
interpret

the
cosm

ologicalconstant
as

a
m
anifestation

ofthe
m
ass

density
ofthe

vacuum
.
From

the
above

equation,w
e

can
see

that
the

m
ass

density
ofthe

vacuum
is
related

to
E
instein’s

cosm
ological

constant
Λ

by

ρ
v
a
c
=

Λ
c
2

8
π
G

.

A
lternative

Q
uestion:

Som
e
ofyou

answ
ered

the
alternative

question,seeking
an

integralofthe
equa-

tion
ä
+

Aa
p
+
B
a

q
=

0
.

T
he

technique
is

the
sam

e
as

above.
O
ne

m
ust

first
m
ultiply

the
equation

by
ȧ,

and
then

it
becom

es
integrable:

0
=
ȧ (

ä
+

Aa
p
+
B
a

q )
=

dd
t {

12
ȧ
2−

1
p−

1
A

a
p−

1
+

1
q
+

1
B
a

q
+

1 }
.

Since
the

tim
e
derivative

of
the

quantity
in

curly
brackets

is
zero,the

quantity
m
ust

be
a
constant,

w
hich

w
e
can

call
E
:

E
=

12
ȧ
2−

1
p−

1
A

a
p−

1
+

1
q
+

1
B
a

q
+

1
.
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P
R

O
B

L
E
M

3:
C

O
S
M

O
L
O

G
IC

A
L

V
S
.S

P
E
C

IA
L

R
E
L
A

T
IV

IS
T

IC
R

E
D

-
S
H

IF
T

(20
points) †

(a)
(5

points)
U
sing

the
expression

for
the

cosm
ological

redshift
w
e
get:

z
=

a(t
0 )

a(t
e ) −

1
= (

t
0

t
e )

2
/
3−

1
.

Inserting
t
0
=

13
.7

G
yr

and
t
e
=

13
.5

G
yr

in
the

above
expression

w
e
get:

z�
0
.00985232

.

(b)
(5

points)
F
irst

w
e
need

to
find

the
coordinate

distance
to

the
galaxy

X
:

�
c
= ∫

t0

t
e

c

a(t)
d
t
=

3
cb (

t
1
/
3

0
−
t
1
/
3

e )
.

T
hen

the
current

physical
distance

is
found

by
m
ultiplying

the
coordinate

dis-
tance

by
the

present
value

of
the

scale
factor:

�
p (t

0 )
=
a(t

0 )�
c
=

3
ct

0 [1− (
t
e

t
0 )

1
/
3 ]

.

W
e
w
ant

to
evaluate

the
physical

distance
in

light
years

(ly).
N
otice

that:

c
=

1
ly

1
yr

,

so
that:

�
p (13

.7
G
yr)

=
3×

13
.7×

10
9 [1− (

13
.5

13
.7 )

1
/
3 ]

ly�
2
.00981×

10
8
ly
.

(c)
(5

points)
A
t
any

tim
e
the

physical
distance

can
be

w
ritten

as:

�
p (t)

=
a(t)�

c
.
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For
ob

jects
m
oving

w
ith

H
ubble’s

flow
the

coordinate
distance

�
c
is
independent

of
tim

e,so
that:v

p (t)
=

d
�
p (t)
d
t

=
ȧ(t)�

c
=

ȧ(t)
a(t)

a(t)�
c ≡

H
(t)�

p (t)
.

T
his

is
exactly

H
ubble’s

law
.
T
o
obtain

the
current

velocity
w
e
need

the
current

value
of

the
H
ubble’s

param
eter

H
(t

0 ):

H
(t)

=
ȧ(t)
a(t)

=
23
t

=⇒
H
(t

0 )
=

23
t
0
.

T
hen,

using
the

expression
for

�
p (t

0 )
w
e
found

in
part

(b):

v
p (t

0 )
=

2
c [1− (

t
e

t
0 )

1
/
3 ]

,

v
p (13

.7
G
yr)�

0
.00978011

c
.

N
ote:

A
com

m
on

m
istake

w
as

to
start

w
ith

the
answ

er
from

part
(b),

�
p (t

0 )
=

3
ct

0 [1−
(t

e /
t
0 )

1
/
3 ],

and
differentiate

w
ith

respect
to

t
0 .

T
he

problem
w
ith

this
m
ethod

is
that

it
holds

t
e
fixed,

instead
of

�
c .

W
e
are

interested
in

how
the

distance
to

a
specific

distant
galaxy

changes
w
ith

tim
e.

T
he

galaxy
has

a
fixed

coordinate
distance

�
c ,

but
the

light
that

w
e
see

later
w
ill

not
have

the
sam

e
tim

e
of

em
ission

t
e .

(d)
(5

points)
T
he

D
oppler

shift
w
e
w
ould

get
from

special
relativity

is
given

by:

z
s
r
= √

1
+
β

1−
β
−

1
.

U
sing

β
=

v
p (13

.7
G
yr)

c
�

0
.00978011

,

w
e
get

z
s
r �

0
.00982840

.

N
otice

that
the

difference
w
ith

the
result

found
in

part
(a)

is
less

than
1%

:

z−
z
s
r

z
�

0
.2%

.
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P
R

O
B

L
E
M

4:
T

H
E

T
R

A
JE

C
T

O
R
Y

O
F

A
P

H
O

T
O

N
O

R
IG

IN
A

T
IN

G
A

T
T

H
E

H
O

R
IZ

O
N

(25
points) ∗

(a)
T
hey

key
idea

is
that

the
coordinate

speed
of

light
is

given
by

d
xd
t
=

c

a(t)
,

so
the

coordinate
distance

(in
notches)

that
light

can
travelbetw

een
t
=

0
and

now
(t

=
t
0 )

is
given

by

�
c
= ∫

t0

0

cd
t

a(t)
.

T
he

corresponding
physical

distance
is

the
horizon

distance:

�
p
,h

o
riz

o
n (t

0 )
=
a(t

0 ) ∫
t0

0

cd
t

a(t)
.

E
valuating,�

p
,h

o
riz

o
n (t

0 )
=
bt

2
/
3

0 ∫
t0

0

cd
t

bt
2
/
3
=
t
2
/
3

0 [3
ct

1
/
3

0 ]
=

3
ct

0
.

(b)
A
s
stated

in
part

(a),
the

coordinate
distance

that
light

can
travel

betw
een

t
=

0
and

t
=
t
0
is

given
by�

c
= ∫

t0

0

cd
t

a(t)
=

3
ct

1
/
3

0b
.

T
hus,

if
w
e
are

at
the

origin,at
t
=

0
the

photon
m
ust

have
been

at

x
0
=

3
ct

1
/
3

0b
.

(c)
T
he

photon
starts

at
x

=
x

0
at

t
=

0,
and

then
travels

in
the

negative
x-

direction
at

speed
c/
a(t).

T
hus,

it’s
position

at
tim

e
t
is

given
by

x(t)
=
x

0 − ∫
t

0

cd
t ′

a(t ′)
=

3
ct

1
/
3

0b
−

3
ct

1
/
3

b
=

3
cb (

t
1
/
3

0
−
t
1
/
3 )

.
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(d)
Since

the
coordinate

distance
betw

een
us

and
the

photon
is
x(t),

m
easured

in
notches,

the
physical

distance
(in,

for
exam

ple,
m
eters)

is
just

a(t)
tim

es
x(t).

T
hus.

�
p (t)

=
a(t)x(t)

=
3
ct

2
/
3 (

t
1
/
3

0
−
t
1
/
3 )

.

(e)
T
o
find

the
m
axim

um
of

�
p (t),w

e
set

the
derivative

equal
to

zero:

d
�
p (t)
d
t

=
dd
t [3

c (
t
2
/
3t

1
/
3

0
−
t )]

=
3
c [

23 (
t
0t )

1
/
3−

1 ]
=

0
,

so
(

t
0

t
m

a
x )

1
/
3

=
32

=⇒
t
m

a
x
= (

23 )
3

t
0
=

827
t
0
.

T
he

m
axim

um
distance

is
then

�
p
,m

a
x
=
�
p (t

m
a
x )

=
3
c (

23 )
2

t
2
/
3

0 [
t
1
/
3

0
− (

23 )
t
1
/
3

0 ]
=

3
c (

23 )
2 (

13 )
t
0

=
49
ct

0
.

†Solution
w
ritten

by
D
aniele

B
ertolini.

∗Solution
w
ritten

by
A
lan

G
uth.


