
 Note: since from reading just the first part of Weinberg's discussion one could Doppler shifts. with the galaxies' respective velocities, determined spectroscopically from their
 Returning now to 1929: Hubble estimated the distance to 18 galaxies from page 25

He also used particularly bright stars as standard candles, as we deduce from inversely proportional to the square of the distance.


 parent luminosity of the Cepheids in the Andromeda Nebula, and estimating


 termines the subjective degree of brightness of astronomical objects. Of course,










 Weinberg's The First Three Minutes, chapter 2, pages 19-20:



 (2)


## SNOilntos i zinô


Prof. Alan Guth


ХゆОTONHOGL HO GLOLILSNI SLLASSOHOVSSVN

(ii) True. For the case of Euclidean geometry isotropy around two or more
distinct points does imply homogeneity. Weinberg shows this in chapter
2, page 24. Consider two observers, and two arbitrary points $A$ and $B$
which we would like to prove equivalent. Consider a circle through point
$A$, centered on observer 1 , and another circle through point $B$, centered
on observer 2. If $C$ is a point on the intersection of the two circles, then (ii) True. For the case of Euclidean geometry isotropy around two or more
distinct points does imply homogeneity. Weinberg shows this in chapter
2, page 24. Consider two observers, and two arbitrary points $A$ and $B$
which we would like to prove equivalent. Consider a circle through point
$A$, centered on observer 1, and another circle through point $B$, centered (ii) True. For the case of Euclidean geometry isotropy around two or more
distinct points does imply homogeneity. Weinberg shows this in chapter
2, page 24. Consider two observers, and two arbitrary points $A$ and $B$
which we would like to prove equivalent. Consider a circle through point
$A$, centered on observer 1, and another circle through point $B$, centered (ii) True. For the case of Euclidean geometry isotropy around two or more
distinct points does imply homogeneity. Weinberg shows this in chapter
2, page 24. Consider two observers, and two arbitrary points $A$ and $B$
which we would like to prove equivalent. Consider a circle through point
$A$, centered on observer 1, and another circle through point $B$, centered (ii) True. For the case of Euclidean geometry isotropy around two or more
distinct points does imply homogeneity. Weinberg shows this in chapter
2, page 24. Consider two observers, and two arbitrary points $A$ and $B$
which we would like to prove equivalent. Consider a circle through point
$A$, centered on observer 1, and another circle through point $B$, centered -snoəшә.ठошоч 子ou s! 7 !



(10 points) Quoting acain Ryden's Introduction to Cosmology chapter 2 , page which states: There is nothing special about our location in the universe. The
 to the expansion flow. Ryden gives a more general definition of Cosmological mogeneous and isotropic (on scales of distance large enough) to any typical ob-
 least since Copernicus) that it has been called the Cosmological Principle by with the general cosmic flow of galaxies.) This hypothesis is so natural (at

 bob look ( 5 points) Quoting Weinberg's The First Three Minutes, chapter 2, page 21: tances, but they were not in themselves sufficient
 I



$\frac{\ddot{r}}{r_{i}}=-\frac{4 \pi}{3} \frac{G r_{i}^{2} \rho_{i}}{r^{2}}+\gamma \frac{r^{n}}{r_{i}}$
Dividing both sides of the equation by $r_{i}$, one has
$\cdot{ }_{u} \mu+\frac{z^{l}}{? d_{\dot{\&}}^{l}\lfloor\emptyset} \frac{\varepsilon}{\mu \nabla}-=!$
equation for $r$, also given on the quiz, one finds:
(a) Substituting the equation for $M\left(r_{i}\right)$, given on the quiz, into the differential
equation for $r$, also given on the quiz, one finds:


 Чдı.
 face. Imagine latitude and longitude lines to give coordinates to the surface,







 hence $A=B$. (This argument was good enough for Weinberg and hence isotropy about the two observers implies that $A=C$ and $B=C$, and
$\varepsilon \cdot d$


$$
{ }_{\mathrm{I}+b} p g \frac{\mathrm{I}+b}{\mathrm{I}}+\frac{\mathrm{⿺}-d}{V} \frac{\mathrm{I}-d}{\mathrm{I}}-{ }_{z} p \frac{Z}{\mathrm{~L}}=\mathscr{G}
$$ constant $\Lambda$ by

can see that the mass density of the vacuum is related to Einstein's cosmological manifestation of the mass density of the vacuum. From the above equation, we to the mass density. Modern physicists interpret the cosmological constant as a which shows that the cosmological constant contributes like a constant addition
The differential equation can be rewritten as
build a static model of the universe. The cosmological constant $\Lambda$, as defined
by Einstein, is related to $\gamma$ by constant" which was introduced by Albert Einstein in 1917 in an effort to
 where I have used $\rho(t)=\rho_{i} / a^{3}(t)$.


[^0]\[

$$
\begin{aligned}
& \text { by Einstein, is related to } \gamma \text { by } \\
& \qquad \gamma=\frac{1}{3} \Lambda c^{2} \\
& \text { The differential equation can be rewritten as }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { constant } \Lambda \text { by } \\
& \qquad \rho_{\mathrm{vac}}=\frac{\Lambda c^{2}}{8 \pi G} \\
& \text { Alternative Question: } \\
& \text { Some of you answered the alternative question, seeking an integral of the equa- } \\
& \text { tion } \\
& \qquad \ddot{a}+\frac{A}{a^{p}}+B a^{q}=0 . \\
& \text { The technique is the same as above. One must first multiply the equation by } \\
& \dot{a} \text {, and then it becomes integrable: } \\
& \qquad 0=\dot{a}\left(\ddot{a}+\frac{A}{a^{p}}+B a^{q}\right)=\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\frac{1}{2} \dot{a}^{2}-\frac{1}{p-1} \frac{A}{a^{p-1}}+\frac{1}{q+1} B a^{q+1}\right\} \\
& \text { Since the time derivative of the quantity in curly brackets is zero, the quantity } \\
& \text { must be a constant, which we can call } E:
\end{aligned}
$$

$-{ }^{\circ} \gamma(\gamma) b=(\neq)^{d} \gamma$
(c) (5 points) At any time the physical distance can be written as:

We want to evaluate the physical distance in light years (ly). Notice that:


$\cdot \frac{x \Lambda_{I}}{\kappa_{I} I}=0$

| $\left.\cdot{ }^{\circ} \gamma(7) p=(\not)\right)^{d} \gamma$ <br>  |  |
| :---: | :---: |
|  | $\varepsilon L)^{d} \gamma$ |
| $\cdot \frac{\Delta K_{\mathrm{L}}}{\kappa_{\mathrm{I} I}}=0$ <br>  |  |
|  |  |

$\cdot 7 \varepsilon 698600 \cdot 0 \approx z$
PROBLEM 3: COSMOLOGICAL VS. SPECIAL RELATIVISTIC RED-


This is exactly Hubble's law. To obtain the current velocity we need the current
$v_{p}(t)=\frac{d \ell_{p}(t)}{d t}=\dot{a}(t) \ell_{c}=\frac{\dot{a}(t)}{a(t)} a(t) \ell_{c} \equiv H(t) \ell_{p}(t)$
of time, so that:
For objects moving with Hubble's flow the coordinate distance $\ell_{c}$ is independent
p. 7

(c) The photon starts at $x=x_{0}$ at $t=0$, and then travels in the negative $x$ -
direction at speed $c / a(t)$. Thus, it's position at time $t$ is given by

Thus, if we are at the origin, at $t=0$ the photon must have been at

$t=0$ and $t=t_{0}$ is given by
(b) As stated in part (a), the coordinate distance that light can travel between


復

## Evaluating,

The corresponding physical distance is the horizon distance:

$\int_{c}^{t_{0}} c \mathrm{~d} t$
so the coordinate distance (in notches) that light can travel between $t=0$ and
now $\left(t=t_{0}\right)$ is given by
$\frac{(7) p}{\partial}=\frac{7 \mathrm{p}}{x \mathrm{p}}$
(a) They key idea is that the coordinate speed of light is given by PROBLEM 4: THE TRAJECTORY OF A PHOTON ORIGINATING
*(squịd g\%) NOZIYOH GHL LV
8.286 QUIZ 1 SOLUTIONS, FALL 2011
PROBLEM 4: THE TRAJEC
AT THE HORIZON (25

$\dagger$ Solution written by Daniele Bertolini.
${ }^{*}$ Solution written by Alan Guth.



[^0]:    One can then rewrite the equation in the more standard form

