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PROBLEM 1: DID YOU DO THE READING? (20 points)†

(a) (8 points)

(i) (4 points) We will use the notation XA to indicate a nucleus,* where
X is the symbol for the element which indicates the number of protons,
while A is the mass number, namely the total number of protons and neu-
trons. With this notation H1, H2, H3, He3 and He4 stand for hydrogen,
deuterium, tritium, helium-3 and helium-4 nuclei, respectively. Steven
Weinberg, in The First Three Minutes, chapter V, page 108, describes
two chains of reactions that produce helium, starting from protons and
neutrons. They can be written as:

p+ n → H2 + γ H2 + n → H3 + γ H3 + p → He4 + γ,

p+ n → H2 + γ H2 + p → He3 + γ He3 + n → He4 + γ.

These are the two examples given by Weinberg. However, different chains
of two particle reactions can take place (in general with different proba-
bilities). For example:

p+ n → H2 + γ H2 +H2 → He4 + γ,

p+ n → H2 + γ H2 + n → H3 + γ H3 +H2 → He4 + n,

p + n → H2 + γ H2 + p → He3 + γ He3 +H2 → He4 + p,

...

Students who described chains different from those of Weinberg, but that
can still take place, got full credit for this part. Also, notice that photons
in the reactions above carry the additional energy released. However, since

* Notice that some students talked about atoms, while we are talking about
nuclei formation. During nucleosynthesis the temperature is way too high to allow
electrons and nuclei to bind together to form atoms. This happens much later, in
the process called recombination.
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the main point was to describe the nuclear reactions, students who didn’t
include the photons still received full credit.

(ii) (4 points) The deuterium bottleneck is discussed by Weinberg in The First
Three Minutes, chapter V, pages 109-110. The key point is that from
part (i) it should be clear that deuterium (H2) plays a crucial role in
nucleosynthesis, since it is the starting point for all the chains. However,
the deuterium nucleus is extremely loosely bound compared to H3, He3,
or especially He4. So, there will be a range of temperatures which are
low enough for H3, He3, and He4 nuclei to be bound, but too high to
allow the deuterium nucleus to be stable. This is the temperature range
where the deuterium bottleneck is in action: even if H3, He3, and He4

nuclei could in principle be stable at those temperatures, they do not form
because deuterium, which is the starting point for their formation, cannot
be formed yet. Nucleosynthesis cannot proceed at a significant rate until
the temperature is low enough so that deuterium nuclei are stable; at this
point the deuterium bottleneck has been passed.

(b) (12 points)

(i) (3 points) If we take a(t) = bt1/2, for some constant b, we get for the
Hubble expansion rate:

H =
ȧ

a
=

1
2t

=⇒ t =
1
2H

.

(ii) (6 points) By using the Friedmann equation with k = 0 and ρ = ρr = αT 4,
we find:

H2 =
8π
3

Gρr =
8π
3

GαT 4 =⇒ H = T 2

√
8π
3

Gα .

If we substitute the given numerical values G � 6.67× 10−11 N ·m2 · kg−2

and α � 4.52× 10−32 kg ·m−3 ·K−4 we get:

H � T 2 × 5.03× 10−21 s−1 ·K−2 .

Notice that the units correctly combine to give H in units of s−1 if the
temperature is expressed in degrees Kelvin (K). In detail, we see:

[Gα]1/2 = (N ·m2 · kg−2 · kg ·m−3 ·K−4)1/2 = s−1 ·K−2 ,
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where we used the fact that 1 N = 1 kg ·m · s−2. At T = Tnucl � 0.9×109K
we get:

H � 4.07× 10−3s−1.

(iii) (3 points) Using the results in parts (i) and (ii), we get

t =
1
2H

�
(
9.95× 1019

T 2

)
s ·K2 .

To good accuracy, the numerator in the expression above can be rounded
to 1020. The above equation agrees with Weinberg’s claim that, for a
radiation dominated universe, time is proportional to the inverse square
of the temperature. In particular for T = Tnucl we get:

tnucl � 123 s ≈ 2 min.

PROBLEM 2: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE (30 points)∗

(a) (7 points) Since θ = φ = constant, dθ = dφ = 0, and for light rays one always
has dτ = 0. The line element therefore reduces to

0 = −c2 dt2 + a2(t)dψ2 .

Rearranging gives (
dψ

dt

)2

=
c2

a2(t)
,

which implies that

dψ

dt
= ± c

a(t)
.

The plus sign describes outward radial motion, while the minus sign describes
inward motion.

(b) (8 points) The maximum value of the ψ coordinate that can be reached by time
t is found by integrating its rate of change:

ψhor =
∫ t

0

c

a(t′)
dt′ .
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The physical horizon distance is the proper length of the shortest line drawn at
the time t from the origin to ψ = ψhor, which according to the metric is given
by

�phys(t) =
∫ ψ=ψhor

ψ=0

ds =
∫ ψhor

0

a(t) dψ = a(t)
∫ t

0

c

a(t′)
dt′ .

(c) (10 points) From part (a),
dψ

dt
=

c

a(t)
.

By differentiating the equation ct = α(θ − sin θ) stated in the problem, one
finds

dt

dθ
=

α

c
(1− cos θ) .

Then
dψ

dθ
=

dψ

dt

dt

dθ
=

α(1− cos θ)
a(t)

.

Then using a = α(1− cos θ), as stated in the problem, one has the very simple
result

dψ

dθ
= 1 .

(d) (5 points) This part is very simple if one knows that ψ must change by 2π
before the photon returns to its starting point. Since dψ/dθ = 1, this means
that θ must also change by 2π. From a = α(1 − cos θ), one can see that a
returns to zero at θ = 2π, so this is exactly the lifetime of the universe. So,

Time for photon to return
Lifetime of universe

= 1 .

If it is not clear why ψ must change by 2π for the photon to return to
its starting point, then recall the construction of the closed universe that was
used in Lecture Notes 5. The closed universe is described as the 3-dimensional
surface of a sphere in a four-dimensional Euclidean space with coordinates
(x, y, z, w):

x2 + y2 + z2 + w2 = a2 ,

where a is the radius of the sphere. The Robertson-Walker coordinate system
is constructed on the 3-dimensional surface of the sphere, taking the point
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(0, 0, 0, 1) as the center of the coordinate system. If we define the w-direction
as “north,” then the point (0, 0, 0, 1) can be called the north pole. Each point
(x, y, z, w) on the surface of the sphere is assigned a coordinate ψ, defined to be
the angle between the positive w axis and the vector (x, y, z, w). Thus ψ = 0
at the north pole, and ψ = π for the antipodal point, (0, 0, 0,−1), which can be
called the south pole. In making the round trip the photon must travel from
the north pole to the south pole and back, for a total range of 2π.

Discussion: Some students answered that the photon would return in the life-
time of the universe, but reached this conclusion without considering the details
of the motion. The argument was simply that, at the big crunch when the scale
factor returns to zero, all distances would return to zero, including the distance
between the photon and its starting place. This statement is correct, but it does
not quite answer the question. First, the statement in no way rules out the pos-
sibility that the photon might return to its starting point before the big crunch.
Second, if we use the delicate but well-motivated definitions that general rel-
ativists use, it is not necessarily true that the photon returns to its starting
point at the big crunch. To be concrete, let me consider a radiation-dominated
closed universe—a hypothetical universe for which the only “matter” present
consists of massless particles such as photons or neutrinos. In that case (you
can check my calculations) a photon that leaves the north pole at t = 0 just
reaches the south pole at the big crunch. It might seem that reaching the south
pole at the big crunch is not any different from completing the round trip back
to the north pole, since the distance between the north pole and the south pole
is zero at t = tCrunch, the time of the big crunch. However, suppose we adopt
the principle that the instant of the initial singularity and the instant of the
final crunch are both too singular to be considered part of the spacetime. We
will allow ourselves to mathematically consider times ranging from t = ε to
t = tCrunch − ε, where ε is arbitrarily small, but we will not try to describe
what happens exactly at t = 0 or t = tCrunch. Thus, we now consider a photon
that starts its journey at t = ε, and we follow it until t = tCrunch − ε. For the
case of the matter-dominated closed universe, such a photon would traverse
a fraction of the full circle that would be almost 1, and would approach 1 as
ε → 0. By contrast, for the radiation-dominated closed universe, the photon
would traverse a fraction of the full circle that is almost 1/2, and it would
approach 1/2 as ε → 0. Thus, from this point of view the two cases look very
different. In the radiation-dominated case, one would say that the photon has
come only half-way back to its starting point.

PROBLEM 3: AN EXERCISE IN TWO-DIMENSIONAL METRICS
(30 points)∗

(a) Since
r(θ) = (1 + ε cos2 θ) r0 ,
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as the angular coordinate θ changes by dθ, r changes by

dr =
dr
dθ

dθ = −2εr0 cos θ sin θ dθ .

ds2 is then given by

ds2 = dr2 + r2dθ2

= 4ε2r2
0 cos

2 θ sin2 θ dθ2 + (1 + ε cos2 θ)2 r2
0 dθ

2

=
[
4ε2 cos2 θ sin2 θ + (1 + ε cos2 θ)2

]
r2
0 dθ

2 ,

so
ds = r0

√
4ε2 cos2 θ sin2 θ + (1 + ε cos2 θ)2 dθ .

Since θ runs from θ1 to θ2 as the curve is swept out,

S = r0

∫ θ2

θ1

√
4ε2 cos2 θ sin2 θ + (1 + ε cos2 θ)2 dθ .

(b) Since θ does not vary along this path,

ds =
√

1 +
r

a
dr ,

and so

R =
∫ r0

0

√
1 +

r

a
dr .

(c) Since the metric does not contain a term in dr dθ, the r and θ directions are
orthogonal. Thus, if one considers a small region in which r is in the interval r′

to r′+dr′, and θ is in the interval θ′ to θ′+dθ′, then the region can be treated
as a rectangle. The side along which r varies has length dsr =

√
1 + (r′/a) dr′,

while the side along which θ varies has length dsθ = r′ dθ′. The area is then

dA = dsr dsθ = r′
√

1 + (r′/a) dr′ dθ′ .

To cover the area for which r < r0, r′ must be integrated from 0 to r0, and θ′

must be integrated from 0 to 2π:

A =
∫ r0

0

dr′
∫ 2π

0

dθ′ r′
√

1 + (r′/a) .
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But ∫ 2π

0

dθ′ = 2π ,

so

A = 2π
∫ r0

0

dr′ r′
√

1 + (r′/a) .

You were not asked to carry out the integration, but it can be done by using
the substitution u = 1 + (r′/a), so du = (1/a) dr′, and r′ = a(u − 1). The
result is

A =
4πa2

15

[
2 +

(
3r2

0

a2
+

r0

a
− 2

) √
1 +

r0

a

]
.

(d) The nonzero metric coefficients are given by

grr = 1 +
r

a
, gθθ = r2 ,

so the metric is diagonal. For i = 1 = r, the geodesic equation becomes

d
ds

{
grr

dr
ds

}
=

1
2
∂grr
∂r

dr
ds

dr
ds

+
1
2
∂gθθ
∂r

dθ
ds

dθ
ds

,

so if we substitute the values from above, we have

d
ds

{(
1 +

r

a

) dr
ds

}
=

1
2

∂

∂r

(
1 +

r

a

)(
dr
ds

)2

+
1
2
∂r2

∂r

(
dθ
ds

)2

.

Simplifying slightly,

d
ds

{(
1 +

r

a

) dr
ds

}
=

1
2a

(
dr
ds

)2

+ r

(
dθ
ds

)2

.

The answer above is perfectly acceptable, but one might want to expand the
left-hand side:

d
ds

{(
1 +

r

a

) dr
ds

}
=

1
a

(
dr
ds

)2

+
(
1 +

r

a

) d2r

ds2
.

Inserting this expansion into the boxed equation above, the first term can be
brought to the right-hand side, giving

(
1 +

r

a

) d2r

ds2
= − 1

2a

(
dr
ds

)2

+ r

(
dθ
ds

)2

.
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The i = 2 = θ equation is simpler, because none of the gij coefficients depend
on θ, so the right-hand side of the geodesic equation vanishes. One has simply

d
ds

{
r2dθ

ds

}
= 0 .

For most purposes this is the best way to write the equation, since it leads im-
mediately to r2(dθ/ds) = const. However, it is possible to expand the deriva-
tive, giving the alternative form

r2 d
2θ

ds2
+ 2r

dr
ds

dθ
ds

= 0 .

PROBLEM 4: VOLUMES IN A ROBERTSON-WALKER UNIVERSE
(20 points)∗

The absence of off-diagonal terms in the metric means that the three directions
found by varying r, θ, and φ, one at a time, are mutually orthogonal. Thus the
region defined by varying r by dr, θ by dθ, and φ by dφ is an infinitesimal rectangular
solid, the volume of which is the product of the lengths of the three sides. Thus,

dV = a(t)
dr√

1− kr2
× a(t)rdθ × a(t)r sin θdφ

The total volume is then

V =
∫

dV = a3(t)
∫ rmax

0

dr

∫ π

0

dθ

∫ 2π

0

dφ
r2 sin θ√
1− kr2

We can do the angular integrations immediately:

V = 4πa3(t)
∫ rmax

0

r2dr√
1− kr2

.

[Pedagogical Note: If you don’t see through the solutions above, then note that the
volume of the sphere can be determined by integration, after first breaking the
volume into infinitesimal cells. A generic cell is shown in the diagram below:
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The cell includes the volume lying between r and r+dr, between θ and θ+dθ,
and between φ and φ + dφ. In the limit as dr, dθ, and dφ all approach zero,
the cell approaches a rectangular solid with sides of length:

ds1 = a(t)
dr√

1− kr2

ds2 = a(t)r dθ

ds3 = a(t)r sin θ dθ .

Here each ds is calculated by using the metric to find ds2, in each case allowing
only one of the quantities dr, dθ, or dφ to be nonzero. The infinitesimal volume
element is then dV = ds1ds2ds3, resulting in the answer above. The derivation
relies on the orthogonality of the dr, dθ, and dφ directions; the orthogonality
is implied by the metric, which otherwise would contain cross terms such as
dr dθ.]

[Extension: The integral can in fact be carried out, using the substitution√
k r = sinψ (if k > 0)

√−k r = sinhψ (if k > 0).
The answer is

V =




2πa3(t)


sin−1

(√
k rmax

)
k3/2

−
√

1− kr2
max

k


 (if k > 0)

2πa3(t)

[√
1− kr2

max

(−k)
− sinh−1

(√−k rmax

)
(−k)3/2

]
(if k < 0) .]

†Solution written by Daniele Bertolini.
∗Solution written by Alan Guth.


