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O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(20
points) †

(a)
(8

points)

(i)
(4

points)
W
e
w
ill

use
the

notation
X
A

to
indicate

a
nucleus,*

w
here

X
is

the
sym

bol
for

the
elem

ent
w
hich

indicates
the

num
ber

of
protons,

w
hile

A
is
the

m
ass

num
ber,nam

ely
the

totalnum
ber

ofprotons
and

neu-
trons.

W
ith

this
notation

H
1,

H
2,

H
3,

H
e
3
and

H
e
4
stand

for
hydrogen,

deuterium
,
tritium

,
helium

-3
and

helium
-4

nuclei,
respectively.

Steven
W
einberg,

in
T
he

F
irst

T
hree

M
inutes,

chapter
V
,
page

108,
describes

tw
o
chains

of
reactions

that
produce

helium
,
starting

from
protons

and
neutrons.

T
hey

can
be

w
ritten

as:

p
+

n
→

H
2
+

γ
H

2
+

n
→

H
3
+

γ
H

3
+

p→
H

e
4
+

γ
,

p
+

n
→

H
2
+

γ
H

2
+

p→
H

e
3
+

γ
H

e
3
+

n
→

H
e
4
+

γ
.

T
hese

are
the

tw
o
exam

ples
given

by
W
einberg.

H
ow

ever,different
chains

of
tw

o
particle

reactions
can

take
place

(in
general

w
ith

different
proba-

bilities).
For

exam
ple:

p
+

n
→

H
2
+

γ
H

2
+

H
2→

H
e
4
+

γ
,

p
+

n
→

H
2
+

γ
H

2
+

n
→

H
3
+

γ
H

3
+

H
2→

H
e
4
+

n
,

p
+

n
→

H
2
+

γ
H

2
+

p→
H

e
3
+

γ
H

e
3
+

H
2→

H
e
4
+

p
,

...

Students
w
ho

described
chains

different
from

those
of

W
einberg,

but
that

can
stilltake

place,
got

fullcredit
for

this
part.

A
lso,notice

that
photons

in
the

reactions
above

carry
the

additionalenergy
released.

H
ow

ever,since

*
N
otice

that
som

e
students

talked
about

atom
s,

w
hile

w
e
are

talking
about

nuclei
form

ation.
D
uring

nucleosynthesis
the

tem
perature

is
w
ay

too
high

to
allow

electrons
and

nuclei
to

bind
together

to
form

atom
s.

T
his

happens
m
uch

later,
in

the
process

called
recom

bination.
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the
m
ain

point
w
as

to
describe

the
nuclear

reactions,students
w
ho

didn’t
include

the
photons

stillreceived
full

credit.

(ii)
(4

points)
T
he

deuterium
bottleneck

is
discussed

by
W
einberg

in
T
he

F
irst

T
hree

M
inutes,

chapter
V
,
pages

109-110.
T
he

key
point

is
that

from
part

(i)
it

should
be

clear
that

deuterium
(H

2)
plays

a
crucial

role
in

nucleosynthesis,
since

it
is

the
starting

point
for

all
the

chains.
H
ow

ever,
the

deuterium
nucleus

is
extrem

ely
loosely

bound
com

pared
to

H
3,

H
e
3,

or
especially

H
e
4.

So,
there

w
ill

be
a
range

of
tem

peratures
w
hich

are
low

enough
for

H
3,

H
e
3,

and
H

e
4
nuclei

to
be

bound,
but

too
high

to
allow

the
deuterium

nucleus
to

be
stable.

T
his

is
the

tem
perature

range
w
here

the
deuterium

bottleneck
is

in
action:

even
if

H
3,

H
e
3,

and
H

e
4

nucleicould
in

principle
be

stable
at

those
tem

peratures,they
do

not
form

because
deuterium

,w
hich

is
the

starting
point

for
their

form
ation,cannot

be
form

ed
yet.

N
ucleosynthesis

cannot
proceed

at
a
significant

rate
until

the
tem

perature
is
low

enough
so

that
deuterium

nucleiare
stable;at

this
point

the
deuterium

bottleneck
has

been
passed.

(b)
(12

points)

(i)
(3

points)
If

w
e
take

a(t)
=

bt
1
/
2,

for
som

e
constant

b,
w
e
get

for
the

H
ubble

expansion
rate:

H
=

ȧa
=

12
t

=⇒
t
=

12
H

.

(ii)
(6

points)
B
y
using

the
Friedm

ann
equation

w
ith

k
=

0
and

ρ
=

ρ
r
=

α
T

4,
w
e
find:H

2
=

8
π3
G
ρ
r
=

8
π3
G
α
T

4
=⇒

H
=

T
2 √

8
π3
G
α

.

If
w
e
substitute

the
given

num
ericalvalues

G
�

6
.67×

10 −
1
1
N
·m

2·kg −
2

and
α
�

4
.52×

10 −
3
2
kg·m

−
3·K

−
4
w
e
get:

H
�

T
2×

5
.03×

10 −
2
1s −

1·K
−

2
.

N
otice

that
the

units
correctly

com
bine

to
give

H
in

units
of

s −
1
if

the
tem

perature
is

expressed
in

degrees
K
elvin

(K
).

In
detail,w

e
see:

[G
α
] 1
/
2
=

(N
·m

2·kg −
2·kg·m

−
3·K

−
4)

1
/
2
=

s −
1·K

−
2
,
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w
here

w
e
used

the
fact

that
1
N

=
1
kg·m

·s −
2.

A
t
T

=
T

n
u
c
l �

0
.9×

10
9K

w
e
get:

H
�

4
.07×

10 −
3s −

1.

(iii)
(3

points)
U
sing

the
results

in
parts

(i)
and

(ii),w
e
get

t
=

12
H

� (
9
.95×

10
1
9

T
2

)
s·K

2
.

T
o
good

accuracy,
the

num
erator

in
the

expression
above

can
be

rounded
to

10
2
0.

T
he

above
equation

agrees
w
ith

W
einberg’s

claim
that,

for
a

radiation
dom

inated
universe,

tim
e
is

proportional
to

the
inverse

square
of

the
tem

perature.
In

particular
for

T
=

T
n
u
c
l
w
e
get:

t
n
u
c
l �

123
s≈

2
m
in

.

P
R

O
B

L
E
M

2:
T

R
A

C
IN

G
L
IG

H
T

R
A

Y
S

IN
A

C
L
O

S
E
D

,
M

A
T

T
E
R

-
D

O
M

IN
A

T
E
D

U
N

IV
E
R

S
E

(30
points) ∗

(a)
(7

points)
Since

θ
=

φ
=

constant,
d
θ
=

d
φ
=

0,
and

for
light

rays
one

alw
ays

has
d
τ
=

0.
T
he

line
elem

ent
therefore

reduces
to

0
=

−
c
2
d
t
2
+

a
2(t)d

ψ
2
.

R
earranging

gives
(

d
ψd
t )

2

=
c
2

a
2(t)

,

w
hich

im
plies

that

d
ψd
t
=

±
c

a(t)
.

T
he

plus
sign

describes
outw

ard
radialm

otion,w
hile

the
m
inus

sign
describes

inw
ard

m
otion.

(b)
(8

points)
T
he

m
axim

um
value

ofthe
ψ
coordinate

that
can

be
reached

by
tim

e
t
is

found
by

integrating
its

rate
of

change:

ψ
h
o
r
= ∫

t

0

c

a(t ′)
d
t ′

.
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T
he

physicalhorizon
distance

is
the

proper
length

ofthe
shortest

line
draw

n
at

the
tim

e
t
from

the
origin

to
ψ
=

ψ
h
o
r ,
w
hich

according
to

the
m
etric

is
given

by

�
p
h
y
s (t)

= ∫
ψ

=
ψ

h
o
r

ψ
=

0

d
s
= ∫

ψ
h
o
r

0

a(t)
d
ψ
=

a(t) ∫
t

0

c

a(t ′)
d
t ′

.

(c)
(10

points)
From

part
(a),

d
ψd
t
=

c

a(t)
.

B
y
differentiating

the
equation

ct
=

α
(θ−

sin
θ)

stated
in

the
problem

,
one

finds
d
t

d
θ
=

αc
(1−

cos
θ)

.

T
hen

d
ψd
θ
=

d
ψd
t

d
t

d
θ
=

α
(1−

cos
θ)

a(t)
.

T
hen

using
a
=

α
(1−

cos
θ),as

stated
in

the
problem

,one
has

the
very

sim
ple

result

d
ψd
θ
=

1
.

(d)
(5

points)
T
his

part
is

very
sim

ple
if

one
know

s
that

ψ
m
ust

change
by

2
π

before
the

photon
returns

to
its

starting
point.

Since
d
ψ
/
d
θ
=

1,
this

m
eans

that
θ
m
ust

also
change

by
2
π
.

From
a
=

α
(1−

cos
θ),

one
can

see
that

a
returns

to
zero

at
θ
=

2
π
,so

this
is

exactly
the

lifetim
e
of

the
universe.

So,

T
im

e
for

photon
to

return
L
ifetim

e
of

universe
=

1
.

If
it

is
not

clear
w
hy

ψ
m
ust

change
by

2
π

for
the

photon
to

return
to

its
starting

point,
then

recall
the

construction
of

the
closed

universe
that

w
as

used
in

L
ecture

N
otes

5.
T
he

closed
universe

is
described

as
the

3-dim
ensional

surface
of

a
sphere

in
a
four-dim

ensional
E
uclidean

space
w
ith

coordinates
(x

,y
,z

,w
):

x
2
+

y
2
+

z
2
+

w
2
=

a
2
,

w
here

a
is

the
radius

of
the

sphere.
T
he

R
obertson-W

alker
coordinate

system
is

constructed
on

the
3-dim

ensional
surface

of
the

sphere,
taking

the
point
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(0
,0

,0
,1)

as
the

center
of

the
coordinate

system
.
If

w
e
define

the
w
-direction

as
“north,”

then
the

point
(0,0

,0
,1)

can
be

called
the

north
pole.

E
ach

point
(x

,y
,z

,w
)
on

the
surface

ofthe
sphere

is
assigned

a
coordinate

ψ
,defined

to
be

the
angle

betw
een

the
positive

w
axis

and
the

vector
(x

,y
,z

,w
).

T
hus

ψ
=

0
at

the
north

pole,and
ψ
=

π
for

the
antipodalpoint,(0,0

,0
,−

1),w
hich

can
be

called
the

south
pole.

In
m
aking

the
round

trip
the

photon
m
ust

travel
from

the
north

pole
to

the
south

pole
and

back,
for

a
totalrange

of
2π

.

D
iscussion:

Som
e
students

answ
ered

that
the

photon
w
ould

return
in

the
life-

tim
e
ofthe

universe,but
reached

this
conclusion

w
ithout

considering
the

details
ofthe

m
otion.

T
he

argum
ent

w
as

sim
ply

that,at
the

big
crunch

w
hen

the
scale

factor
returns

to
zero,alldistances

w
ould

return
to

zero,including
the

distance
betw

een
the

photon
and

its
starting

place.
T
his

statem
ent

is
correct,but

it
does

not
quite

answ
er

the
question.

F
irst,the

statem
ent

in
no

w
ay

rules
out

the
pos-

sibility
that

the
photon

m
ight

return
to

its
starting

point
before

the
big

crunch.
Second,

if
w
e
use

the
delicate

but
w
ell-m

otivated
definitions

that
general

rel-
ativists

use,
it

is
not

necessarily
true

that
the

photon
returns

to
its

starting
point

at
the

big
crunch.

T
o
be

concrete,let
m
e
consider

a
radiation-dom

inated
closed

universe—
a
hypothetical

universe
for

w
hich

the
only

“m
atter”

present
consists

of
m
assless

particles
such

as
photons

or
neutrinos.

In
that

case
(you

can
check

m
y
calculations)

a
photon

that
leaves

the
north

pole
at

t
=

0
just

reaches
the

south
pole

at
the

big
crunch.

It
m
ight

seem
that

reaching
the

south
pole

at
the

big
crunch

is
not

any
different

from
com

pleting
the

round
trip

back
to

the
north

pole,since
the

distance
betw

een
the

north
pole

and
the

south
pole

is
zero

at
t
=

t
C

ru
n
ch ,

the
tim

e
of

the
big

crunch.
H
ow

ever,
suppose

w
e
adopt

the
principle

that
the

instant
of

the
initial

singularity
and

the
instant

of
the

final
crunch

are
both

too
singular

to
be

considered
part

of
the

spacetim
e.

W
e

w
ill

allow
ourselves

to
m
athem

atically
consider

tim
es

ranging
from

t
=

ε
to

t
=

t
C

ru
n
ch −

ε,
w
here

ε
is

arbitrarily
sm

all,
but

w
e
w
ill

not
try

to
describe

w
hat

happens
exactly

at
t
=

0
or

t
=

t
C

ru
n
ch .

T
hus,w

e
now

consider
a
photon

that
starts

its
journey

at
t
=

ε,
and

w
e
follow

it
until

t
=

t
C

ru
n
ch −

ε.
For

the
case

of
the

m
atter-dom

inated
closed

universe,
such

a
photon

w
ould

traverse
a
fraction

of
the

full
circle

that
w
ould

be
alm

ost
1,

and
w
ould

approach
1
as

ε→
0.

B
y
contrast,

for
the

radiation-dom
inated

closed
universe,

the
photon

w
ould

traverse
a
fraction

of
the

full
circle

that
is

alm
ost

1/2,
and

it
w
ould

approach
1/2

as
ε→

0.
T
hus,

from
this

point
of

view
the

tw
o
cases

look
very

different.
In

the
radiation-dom

inated
case,

one
w
ould

say
that

the
photon

has
com

e
only

half-w
ay

back
to

its
starting

point.

P
R

O
B

L
E
M

3:
A

N
E
X

E
R

C
IS

E
IN

T
W

O
-D

IM
E
N

S
IO

N
A

L
M

E
T

R
IC

S
(30

points) ∗

(a)
Since

r(θ)
=

(1
+

εcos
2
θ)

r
0
,
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as
the

angular
coordinate

θ
changes

by
d
θ,

r
changes

by

d
r
=

d
r

d
θ
d
θ
=

−
2
εr

0
cos

θ
sin

θ
d
θ

.

d
s
2
is

then
given

by

d
s
2
=

d
r
2
+

r
2d

θ
2

=
4
ε
2r

20
cos

2
θ
sin

2
θ
d
θ
2
+
(1

+
εcos

2
θ)

2
r
20
d
θ
2

= [4
ε
2
cos

2
θ
sin

2
θ
+
(1

+
εcos

2
θ)

2 ]
r
20
d
θ
2
,

so
d
s
=

r
0 √

4
ε
2
cos

2
θ
sin

2
θ
+

(1
+

εcos
2
θ)

2d
θ

.

Since
θ
runs

from
θ
1
to

θ
2
as

the
curve

is
sw

ept
out,

S
=

r
0 ∫

θ
2

θ
1 √

4
ε
2
cos

2
θ
sin

2
θ
+

(1
+

εcos
2
θ)

2
d
θ

.

(b)
Since

θ
does

not
vary

along
this

path,

d
s
= √

1
+

ra
d
r

,

and
so

R
= ∫

r
0

0 √
1
+

ra
d
r

.

(c)
Since

the
m
etric

does
not

contain
a
term

in
d
r
d
θ,

the
r
and

θ
directions

are
orthogonal.

T
hus,ifone

considers
a
sm

allregion
in

w
hich

r
is
in

the
interval

r ′

to
r ′+

d
r ′,and

θ
is
in

the
interval

θ ′to
θ ′+

d
θ ′,then

the
region

can
be

treated
as

a
rectangle.

T
he

side
along

w
hich

r
varies

has
length

d
s
r
= √

1
+

(r ′/
a)d

r ′,
w
hile

the
side

along
w
hich

θ
varies

has
length

d
s
θ
=

r ′d
θ ′.

T
he

area
is

then

d
A

=
d
s
r
d
s
θ
=

r ′ √
1
+

(r ′/
a)d

r ′d
θ ′

.

T
o
cover

the
area

for
w
hich

r
<

r
0 ,

r ′
m
ust

be
integrated

from
0
to

r
0 ,

and
θ ′

m
ust

be
integrated

from
0
to

2
π
:

A
= ∫

r
0

0

d
r ′ ∫

2
π

0

d
θ ′r ′ √

1
+

(r ′/
a)

.
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B
ut

∫
2
π

0

d
θ ′=

2
π

,

so

A
=

2
π ∫

r
0

0

d
r ′r ′ √

1
+

(r ′/
a)

.

Y
ou

w
ere

not
asked

to
carry

out
the

integration,
but

it
can

be
done

by
using

the
substitution

u
=

1
+

(r ′/
a),

so
d
u
=

(1
/
a)d

r ′,
and

r ′
=

a(u−
1).

T
he

result
is

A
=

4
π
a
2

15 [2
+ (

3
r
20

a
2

+
r
0a
−
2 ) √

1
+

r
0a ]

.

(d)
T
he

nonzero
m
etric

coeffi
cients

are
given

by

g
r
r
=

1
+

ra
,

g
θ
θ
=

r
2
,

so
the

m
etric

is
diagonal.

For
i
=

1
=

r,
the

geodesic
equation

becom
es

dd
s {

g
r
r d

r

d
s }

=
12
∂
g
r
r

∂
r

d
r

d
s

d
r

d
s
+

12
∂
g
θ
θ

∂
r

d
θ

d
s

d
θ

d
s

,

so
if
w
e
substitute

the
values

from
above,

w
e
have

dd
s {(1

+
ra )

d
r

d
s }

=
12

∂∂
r (1

+
ra ) (

d
r

d
s )

2

+
12
∂
r
2

∂
r (

d
θ

d
s )

2

.

Sim
plifying

slightly,

dd
s {(1

+
ra )

d
r

d
s }

=
12
a (

d
r

d
s )

2

+
r (

d
θ

d
s )

2

.

T
he

answ
er

above
is

perfectly
acceptable,

but
one

m
ight

w
ant

to
expand

the
left-hand

side:

dd
s {(1

+
ra )

d
r

d
s }

=
1a (

d
r

d
s )

2

+ (1
+

ra )
d

2r

d
s
2

.

Inserting
this

expansion
into

the
boxed

equation
above,

the
first

term
can

be
brought

to
the

right-hand
side,

giving

(1
+

ra )
d

2r

d
s
2
=

−
12
a (

d
r

d
s )

2

+
r (

d
θ

d
s )

2

.
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T
he

i
=

2
=

θ
equation

is
sim

pler,
because

none
of

the
g
ij

coeffi
cients

depend
on

θ,so
the

right-hand
side

of
the

geodesic
equation

vanishes.
O
ne

has
sim

ply

dd
s {

r
2 d

θ

d
s }

=
0

.

For
m
ost

purposes
this

is
the

best
w
ay

to
w
rite

the
equation,since

it
leads

im
-

m
ediately

to
r
2(d

θ
/d

s)
=

con
st.

H
ow

ever,
it

is
possible

to
expand

the
deriva-

tive,
giving

the
alternative

form

r
2 d

2θ

d
s
2
+

2
r d

r

d
s

d
θ

d
s
=

0
.

P
R

O
B

L
E
M

4:
V

O
L
U

M
E
S

IN
A

R
O

B
E
R
T

S
O

N
-W

A
L
K

E
R

U
N

IV
E
R

S
E

(20
points) ∗

T
he

absence
ofoff-diagonalterm

s
in

the
m
etric

m
eans

that
the

three
directions

found
by

varying
r,

θ,
and

φ,
one

at
a
tim

e,
are

m
utually

orthogonal.
T
hus

the
region

defined
by

varying
r
by

d
r,

θ
by

d
θ,and

φ
by

d
φ
is
an

infinitesim
alrectangular

solid,
the

volum
e
of

w
hich

is
the

product
of

the
lengths

of
the

three
sides.

T
hus,

d
V

=
a(t)

d
r

√
1−

k
r
2 ×

a(t)rd
θ×

a(t)r
sin

θ
d
φ

T
he

totalvolum
e
is

then

V
= ∫

d
V

=
a
3(t) ∫

r
m

a
x

0

d
r ∫

π

0

d
θ ∫

2
π

0

d
φ

r
2
sin

θ
√
1−

k
r
2

W
e
can

do
the

angular
integrations

im
m
ediately:

V
=

4
π
a
3(t) ∫

r
m

a
x

0

r
2d

r
√
1−

k
r
2

.

[P
edagogicalN

ote:
Ifyou

don’t
see

through
the

solutions
above,then

note
that

the
volum

e
of

the
sphere

can
be

determ
ined

by
integration,after

first
breaking

the
volum

e
into

infinitesim
al

cells.
A

generic
cell

is
show

n
in

the
diagram

below
:



8.286
Q

U
IZ

2
S
O

L
U

T
IO

N
S
,
F
A

L
L

2011
p
.
9

T
he

cellincludes
the

volum
e
lying

betw
een

r
and

r
+

d
r,betw

een
θ
and

θ
+

d
θ,

and
betw

een
φ
and

φ
+

d
φ.

In
the

lim
it

as
d
r,

d
θ,

and
d
φ
all

approach
zero,

the
cell

approaches
a
rectangular

solid
w
ith

sides
of

length:

d
s
1
=

a(t)
d
r

√
1−

k
r
2

d
s
2
=

a(t)r
d
θ

d
s
3
=

a(t)r
sin

θ
d
θ

.

H
ere

each
d
s
is
calculated

by
using

the
m
etric

to
find

d
s
2,in

each
case

allow
ing

only
one

ofthe
quantities

d
r,

d
θ,or

d
φ
to

be
nonzero.

T
he

infinitesim
alvolum

e
elem

ent
is
then

d
V

=
d
s
1 d

s
2 d

s
3 ,resulting

in
the

answ
er

above.
T
he

derivation
relies

on
the

orthogonality
of

the
d
r,

d
θ,

and
d
φ
directions;

the
orthogonality

is
im

plied
by

the
m
etric,

w
hich

otherw
ise

w
ould

contain
cross

term
s
such

as
d
r
d
θ.]

[E
xtension:

T
he

integral
can

in
fact

be
carried

out,using
the

substitution
√

k
r
=

sin
ψ

(if
k

>
0)

√−
k
r
=

sinh
ψ

(if
k

>
0).

T
he

answ
er

is

V
= 

2
π
a
3(t) 

sin −
1 (√

k
r
m

a
x )

k
3
/
2

− √
1−

k
r
2m

a
x

k


(if

k
>

0)

2
π
a
3(t) [√

1−
k
r
2m

a
x

(−
k)

−
sinh −

1 (√−
k
r
m

a
x )

(−
k)

3
/
2

]
(if

k
<

0)
.]

†Solution
w
ritten

by
D
aniele

B
ertolini.

∗Solution
w
ritten

by
A
lan

G
uth.


