the process called recombination.

 $u+{ }_{z} H \leftarrow u+d$

$\urcorner+{ }_{\tau}{ }^{2} H \leftarrow{ }_{z} H+{ }_{z} H \quad \imath+{ }_{z} H$

$-u+d$

$\iota+{ }_{\varepsilon{ } \mathrm{F}} \mathrm{H} \leftarrow d+{ }_{z} H$
 bilities). For example:

$\cdots+{ }_{\tau}{ }^{2} H \leftarrow u+{ }_{8}{ }^{2} H$	$\chi+{ }_{8}{ }^{2} H \leftarrow d+{ }_{z} H$	$u+{ }_{z} \mathrm{H} \leftarrow u+d$

| $\cdots+{ }_{\downarrow}{ }^{2} H \leftarrow d+{ }_{¢} H$ | $u+{ }_{8} \mathrm{H} \leftarrow u+{ }_{\text {z }} \mathrm{H}$ | $u+{ }_{z} H \leftarrow u+d$ |
| :---: | :---: | :---: | neutrons. They can be written as: two chains of reactions that produce helium, starting from protons and

 while A is the mass number, namely the total number of protons and neuX is the symbol for the element which indicates the number of protons,

(e)
PROBLEM 1: DID YOU DO THE READING? (20 points) ${ }^{\dagger}$

Prof. Alan Guth

(ii) (6 points) By using the Friedmann equation with $k=0$ and $\rho=\rho_{r}=\alpha T^{4}$,
we find:

 allow the deuterium nucleus to be stable. This is the temperature range low enough for $H^{3}, H e^{3}$, and $H e^{4}$ nuclei to be bound, but too high to or especially $H e^{4}$. So, there will be a range of temperatures which are the deuterium nucleus is extremely loosely bound compared to H^{3}, He^{3}, nucleosynthesis, since it is the starting point for all the chains. However,
 Three Minutes, chapter V, pages 109-110. The key point is that from
 include the photons still received full credit.

\square
 nward motion

$0=-c^{2} d t^{2}+a^{2}(t) d \psi^{2}$
(a) (7 points) Since $\theta=\phi=$ constant, $d \theta=d \phi=0$, and for light rays one always
has $d \tau=0$. The line element therefore reduces to

(iii) (3 points) Using the results in parts (i) and (ii), we get

we get:
where we used the fact that $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2} . \operatorname{At} T=T_{\text {nucl }} \simeq 0.9 \times 10^{9} \mathrm{~K}$
p. 3

 $:\left(m^{‘} z^{‘} h^{‘} x\right)$

 (d) (5 points) This part is very simple if one knows that ψ must change by 2π before the photon returns to its starting point. Since $d \psi / d \theta=1$, this means

'(e) q.ied moxt (squiod 0I) (ऽ)

LIOZ TIVG ‘SNOILATOS Z ZInƠ 98z'8

$\frac{(7) p}{\partial}=\frac{\not p}{\lambda p}$

 can check my calculations) a photon that leaves the north pole at $t=0$ just

 ativists use, it is not necessarily true that the photon returns to its starting

 not quite answer the question. First, the statement in no way rules out the pos-
 әәшеұs!̣ әчұ ภu!̣
 time of the universe, but reached this conclusion without considering the details
 the north pole to the south pole and back, for a total range of 2π.

 the angle between the positive w axis and the vector (x, y, z, w). Thus $\psi=0$

Since θ runs from θ_{1} to θ_{2} as the curve is swept out, $\mathrm{d} s=r_{0} \sqrt{4 \epsilon^{2} \cos ^{2} \theta \sin ^{2} \theta+\left(1+\epsilon \cos ^{2} \theta\right)^{2}} \mathrm{~d} \theta$ so

[Pedagogical Note: If you don't see through the solutions above, then note that the
volume of the sphere can be determined by integration, after first breaking the
volume into infinitesimal cells. A generic cell is shown in the diagram below:

zıy - I八

 $0=\frac{s \mathrm{p}}{\theta \mathrm{p}} \frac{s \mathrm{p}}{\iota \mathrm{p}} \iota z+\frac{z^{s} \mathrm{p}}{\theta_{z} \mathrm{p}} z^{\iota}$

$L \cdot d$
\dagger Solution written by Daniele Bertolini.
*Solution written by Alan Guth.

 only one of the quantities $d r, d \theta$, or $d \phi$ to be nonzero. The infinitesimal volume Here each $d s$ is calculated by using the metric to find $d s^{2}$, in each case allowing $\theta p \theta$ uss $\iota(7) p=\varepsilon_{s p}$ $d s_{2}=a(t) r d \theta$

and between ϕ and $\phi+d \phi$. In the limit as $d r, d \theta$, and $d \phi$ all approach zero,

