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PROBLEM 1: DID YOU DO THE READING? (20 points)

(a) (4 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predict-
ing a cosmic microwave background with a temperature of 5 K. The paper was
based on a cosmological model that they had developed with George Gamow,
in which the early universe was assumed to have been filled with hot neutrons.
As the universe expanded and cooled the neutrons underwent beta decay into
protons, electrons, and antineutrinos, until at some point the universe cooled
enough for light elements to be synthesized. Alpher and Herman found that to
account for the observed present abundances of light elements, the ratio of pho-
tons to nuclear particles must have been about 109. Although the predicted
temperature was very close to the actual value of 2.7 K, the theory differed
from our present theory in two ways. Circle the two correct statements in the
following list. (2 points for each right answer; circle at most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but
now the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of
protons and neutrons, not all neutrons as Gamow, Alpher, and Herman
assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not
all neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha
particle is the nucleus of a helium atom, composed of two protons and two
neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice
versa) took place mainly through collisions with electrons, positrons, neu-
trinos, and antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now be-
lieved to have been about 103, not 109 as Alpher and Herman concluded.

Comment: The printed quiz erroneously said that you would receive 3 points for
each right answer, but the problem is only worth 4 points total. It was intended
to be 2 points for each right answer.

Explanation of incorrect answers: (i) The neutron decays to a proton, electron,
and an anti-electron-neutrino, with a mean life of 881.5± 1.5 s (about 15 min-
utes), according to the Particle Data Group, http://pdg.lbl.gov/. Alpher and
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Herman knew about this decay, although at that time the lifetime was believed
to be somewhat longer than the presently accepted value. (ii) In the current the-
ory, alpha particles do not form in significant numbers until about 3 34 minutes
after the big bang. When the quarks first combine, they form a gas of nearly
equal numbers of protons and neutrons. (v) The ratio of photons to nuclear
particles (baryons) in the universe is still believed to be about 109. This num-
ber is valid from a time much less than a second, when baryogenesis took place,
up to the present day.

(b) (6 points) Consider a star in a circular orbit of radius r in a galaxy. What is the
velocity of the star, in terms of the total mass M(r) contained within a sphere
of radius r? (For simplicity, assume that the mass distribution is spherical.)

Answer: The gravitational acceleration due to the galaxy must provide the
centripetal acceleration required to keep the star moving in a circular orbit.
Thus, assuming a spherical distribution of matter,

v2

r
=
GM(r)
r2

,

where M(r) is the total mass of the galaxy contained within a sphere of radius
r. Solving for v gives

v(r) =

√
GM(r)
r

.

(c) (2 points) Observations of galaxies show that the surface brightness of spiral
galaxies is highly concentrated near the center of the spiral galaxy disk. There-
fore, for r > 5 kpc or so, the density of stars is approximately zero. What does
your answer for v(r) above predict for the dependence of v(r) on r at large
radii, if all of the mass in the galaxy is due to stars?

Answer: For r > 5 kpc or so, we can approximate the density of stars to
be zero, and therefore for such radii M∗(r) � const., where M∗(r) is the total
mass of stars within a sphere of radius r. From the answer to part (b), then,

v(r) ∝ r−1/2

if all of the mass in the galaxy is due to stars.

(d) (3 points) How do observed galactic rotation curves v(r) actually behave for
large r?
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Answer: Observed galactic rotation curves plateau for large radii, as observed
in M31, or even increase slightly, as observed in our own galaxy. In particular,
they do not fall off appreciably with radius, as they would have to if stars were
the only gravitationally interacting matter present.

(e) (5 points) Which one of the following statements about CMB is not correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean tem-
perature averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean

square temperature fluctuation is
〈(

δT
T

)2〉1/2
= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of
the observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measure-
ment of an excess temperature of about 3.5 K that was isotropic, unpolar-
ized, and free from seasonal variations. In a companion paper written by
Dicke, Peebles, Roll and Wilkinson, the authors interpreted the radiation
to be a relic of an early, hot, dense, and opaque state of the universe.

Comment: The root mean squared temperature fluctuation is actually 1.1 ×
10−5.
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PROBLEM 2: THE SLOAN DIGITAL SKY SURVEY z = 5.82
QUASAR (40 points)

(a) (15 points) Since Ωm + ΩΛ = 0.35 + 0.65 = 1, the universe is flat. It therefore
obeys a simple form of the Friedmann equation,

H2 =
(
ȧ

a

)2
=

8π
3
G(ρm + ρΛ) ,

where the overdot indicates a derivative with respect to t, and the term pro-
portional to k has been dropped. Using the fact that ρm ∝ 1/a3(t) and ρΛ =
const, the energy densities on the right-hand side can be expressed in terms of
their present values ρm,0 and ρΛ ≡ ρΛ,0. Defining

x(t) ≡ a(t)
a(t0)

,

one has (
ẋ

x

)2
=

8π
3
G
(ρm,0

x3
+ ρΛ

)

=
8π
3
Gρc,0

(
Ωm,0

x3
+ΩΛ,0

)

= H2
0

(
Ωm,0

x3
+ ΩΛ,0

)
.

Here we used the facts that

Ωm,0 ≡ ρm,0

ρc,0
; ΩΛ,0 ≡ ρΛ

ρc,0
,

and
H2
0 =

8π
3
Gρc,0 .

The equation above for (ẋ/x)2 implies that

ẋ = H0 x

√
Ωm,0

x3
+ ΩΛ,0 ,

which in turn implies that

dt =
1
H0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.
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Using the fact that x changes from 0 to 1 over the life of the universe, this
relation can be integrated to give

t0 =
∫ t0

0

dt =
1
H0

∫ 1

0

dx

x
√

Ωm,0
x3 +ΩΛ,0

.

The answer can also be written as

t0 =
1
H0

∫ 1

0

x dx√
Ωm,0x+ΩΛ,0x4

or

t0 =
1
H0

∫ ∞

0

dz
(1 + z)

√
Ωm,0(1 + z)3 +ΩΛ,0

,

where in the last answer I changed the variable of integration using

x =
1

1 + z
; dx = − dz

(1 + z)2
.

Note that the minus sign in the expression for dx is canceled by the interchange
of the limits of integration: x = 0 corresponds to z = ∞, and x = 1 corresponds
to z = 0.

Your answer should look like one of the above boxed answers. You were not
expected to complete the numerical calculation, but for pedagogical purposes
I will continue. The integral can actually be carried out analytically, giving

∫ 1

0

x dx√
Ωm,0x+ΩΛ,0x4

=
2

3
√
ΩΛ,0

ln

(√
Ωm + ΩΛ,0 +

√
ΩΛ,0√

Ωm

)
.

Using
1
H0

=
9.778× 109

h0
yr ,

where H0 = 100h0 km-sec−1-Mpc−1, one finds for h0 = 0.65 that

1
H0

= 15.043× 109 yr .
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Then using Ωm = 0.35 and ΩΛ,0 = 0.65, one finds

t0 = 13.88× 109 yr .

So the SDSS people were right on target.

(b) (5 points) Having done part (a), this part is very easy. The dynamics of the
universe is of course the same, and the question is only slightly different. In
part (a) we found the amount of time that it took for x to change from 0 to 1.
The light from the quasar that we now receive was emitted when

x =
1

1 + z
,

since the cosmological redshift is given by

1 + z =
a(tobserved)
a(temitted)

.

Using the expression for dt from part (a), the amount of time that it took the
universe to expand from x = 0 to x = 1/(1 + z) is given by

te =
∫ te

0

dt =
1
H0

∫ 1/(1+z)

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.

Again one could write the answer other ways, including

te =
1
H0

∫ ∞

z

dz′

(1 + z′)
√
Ωm,0(1 + z′)3 +ΩΛ,0

.

Again you were expected to stop with an expression like the one above. Con-
tinuing, however, the integral can again be done analytically:

∫ xmax

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

=
2

3
√

ΩΛ,0

ln

(√
Ωm +ΩΛ,0x3max +

√
ΩΛ,0 x

3/2
max√

Ωm

)
.
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Using xmax = 1/(1 + 5.82) = .1466 and the other values as before, one finds

te =
0.06321
H0

= 0.9509× 109 yr .

So again the SDSS people were right.

(c) (10 points) To find the physical distance to the quasar, we need to figure out
how far light can travel from z = 5.82 to the present. Since we want the present
distance, we multiply the coordinate distance by a(t0). For the flat metric

ds2 = −c2 dτ2 = −c2dt2 + a2(t){dr2 + r2(dθ2 + sin2 θ dφ2)
}
,

the coordinate velocity of light (in the radial direction) is found by setting
ds2 = 0, giving

dr
dt

=
c

a(t)
.

So the total coordinate distance that light can travel from te to t0 is

�c =
∫ t0

te

c

a(t)
dt .

This is not the final answer, however, because we don’t explicitly know a(t).
We can, however, change variables of integration from t to x, using

dt =
dt
dx

dx =
dx
ẋ
.

So

�c =
c

a(t0)

∫ 1

xe

dx
x ẋ

,

where xe is the value of x at the time of emission, so xe = 1/(1+ z). Using the
equation for ẋ from part (a), this integral can be rewritten as

�c =
c

H0a(t0)

∫ 1

1/(1+z)

dx

x2
√

Ωm,0
x3 + ΩΛ,0

.

Finally, then

�phys,0 = a(t0) �c =
c

H0

∫ 1

1/(1+z)

dx

x2
√

Ωm,0
x3 +ΩΛ,0

.
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Alternatively, this result can be written as

�phys,0 =
c

H0

∫ 1

1/(1+z)

dx√
Ωm,0 x+ΩΛ,0 x4

,

or by changing variables of integration to obtain

�phys,0 =
c

H0

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Continuing for pedagogical purposes, this time the integral has no analytic
form, so far as I know. Integrating numerically,∫ 5.82

0

dz′√
0.35 (1 + z′)3 + 0.65

= 1.8099 ,

and then using the value of 1/H0 from part (a),

�phys,0 = 27.23 light-yr .

Right again.

(d) (5 points) �phys,e = a(te)�c, so

�phys,e =
a(te)
a(t0)

�phys,0 =
�phys,0
1 + z

.

Numerically this gives

�phys,e = 3.992× 109 light-yr .

The SDSS announcement is still okay.

(e) (5 points) The speed defined in this way obeys the Hubble law exactly, so

v = H0 �phys,0 ,
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where �phys,0 is the answer to part (c). The answer can also be written by using
this answer, so

v = c
∫ 1

1/(1+z)

dx√
Ωm,0 x+ΩΛ,0 x4

or

v = c
∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Numerically, we have already found that this integral has the value

v = 1.8099 c .

The SDSS people get an A.

PROBLEM 3: NUCLEOSYNTHESIS AFTER THE DEUTERIUM
BOTTLENECK (30 points)

(a) (5 points) We are given nb the number density of baryons, and we are also
given the fraction f which are neutrons. If all the neutrons become bound into
He4, then the number density of He4 nuclei is

nHe4 =
1
2
fnb ,

since the total (free plus bound) number density of neutrons is fnb, and it
takes two neutrons to make a He4 nucleus. Since each He4 nucleus has the
same number of protons and neutrons, the density of bound protons will be
fnb, while the total number density of protons is (1− f)nb. Thus the number
density of free protons will be

np = (1− f)nb − fnb = (1− 2f)nb .

Numerically,

nHe4 =
1
2
(0.14)× 5.54× 1024 m−3 = 3.88× 1023 m−3 ,

np = (1− 2f)nb = 0.72× 5.54× 1024 m−3 = 3.99× 1024 m−3 .
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(b) (5 points) The sums of the chemical potentials on the two sides of the reaction
must be equal, so

µHe4 = 2(µp + µn) .

(c) (7 points) In thermal equilibrium, the number densities for neutrons, protons,
and He4 are all given by the formula in the formula sheet. Using gn = gp = 1

2
,

and gHe4 = 1, the formula implies

nn = 2
(
mnkTD

2πh̄2

)3/2
e(µn−mnc2)/kTD ,

np = 2
(
mpkTD

2πh̄2

)3/2
e(µp−mpc2)/kTD ,

nHe4 =
(
mHe4kTD

2πh̄2

)3/2
e(µHe4−mHe4c2)/kTD ,

where I have used the algebraic identity

(2πmkTD)3/2

(2πh̄)3
=
(
mkTD

2πh̄2

)3/2
.

Given the answer to part (b), the chemical potentials will cancel out if
we calculate the ratio of nHe4/(n2nn

2
p). If we use the definition BHe4 =

[2(mn +mp)−mHe4 ] c2 and the approximation mp = mn = 1
4
mHe4 , the ra-

tio simplifies to

nHe4

n2nn
2
p

=
1
2

(
mpkTD

2πh̄2

)−9/2
eBHe4/kTD ,

where I used
43/2

(2 · 2)2 =
1
2
.

(d) (6 points) The approximations used to find np and nHe4 are still valid, since a
trace amount of free neutrons will not significantly affect these answers. Thus
we know the values of np and nHe4 , so we can use the answer to part (c) to
find nn. With a little algebra, one finds

n2n =
2nHe4
n2p

(
mpkTD

2πh̄2

)9/2
e−BHe4/kTD ,
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so

nn =

√
f

(1− 2f)2nb

(
mpkTD

2πh̄2

)9/4
e−

1
2 BHe4/kTD .

Numerically,

nn ≈
√

0.14
(0.72)2

1√
5.54× 1024 m−3

(
4.01× 1039 m−3)3/2 (3× 10186

)−1/2

≈ 3× 10−47 m−3 .

(e) (7 points) Again we can write a ratio of densities for which the chemical po-
tentials cancel out:

nLi7

n3pn
4
n

=
4 · 73/2

27

(
mpkTD

2πh̄2

)−9
eBLi7/kTD .

So

nLi7 =
73/2

32
n3pn

4
n

(
mpkTD

2πh̄2

)−9
eBLi7/kTD

=
73/2

32
(0.72)3(5.54× 1024 m−3)3(3× 10−47 m−3)4

× (4.01× 1039 m−3)−6(4× 10258)

≈ 3× 10−92 m−3 .

PROBLEM 4: DOUBLING OF ELECTRONS (10 points)

The entropy density of black-body radiation is given by

s = g
[
2π2

45
k4

(h̄c)3

]
T 3

= g C T 3 ,

where C is a constant. At the time when the electron-positron pairs disappear,
the neutrinos are decoupled, so their entropy is conserved. All of the entropy
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from electron-positron pairs is given to the photons, and none to the neutrinos.
The same will be true here, for both species of electron-positron pairs.

The conserved neutrino entropy can be described by Sν ≡ a3sν , which indi-
cates the entropy per cubic notch, i.e., entropy per unit comoving volume. We
introduce the notation n− and n+ for the new electron-like and positron-like
particles, and also the convention that

Primed quantities: values after e+e−n+n− annihilation

Unprimed quantities: values before e+e−n+n− annihilation.

For the neutrinos,

S′
ν = Sν =⇒ gνC (a′T ′

ν)
3 = gνC (aTν)

3 =⇒

a′T ′
ν = aTν .

For the photons, before e+e−n+n− annihilation we have

Tγ = Te+e−n+n− = Tν ; gγ = 2, ge+e− = gn+n− = 7/2 .

When the e+e− and n+n− pairs annihilate, their entropy is added to the pho-
tons:

S′
γ = Se+e− +Sn+n− +Sγ =⇒ 2C

(
a′T ′

γ

)3 = (2 + 2 · 7
2

)
C (aTγ)

3 =⇒

a′T ′
γ =

(
9
2

)1/3
aTγ ,

so aTγ increases by a factor of (9/2)1/3.

Before e+e− annihilation the neutrinos were in thermal equilibrium with the
photons, so Tγ = Tν . By considering the two boxed equations above, one has

T ′
ν =

(
2
9

)1/3
T ′

γ .

This ratio would remain unchanged until the present day.


