

 to be 2 points for each right answer.

 (suooxqnau

 -pəumsse
 јо sә!̣! now the neutron is thought to be absolutely stable.
 following list. (2 points for each right answer; circle at most 2.)

 ©
if all of the mass in the galaxy is due to stars.

 Answer: For $r>5 \mathrm{kpc}$ or so, we can approximate the density of stars to
 your answer for $v(r)$ above predict for the dependence of $v(r)$ on r at large fore, for $r>5 \mathrm{kpc}$ or so, the density of stars is approximately zero. What does galaxies is highly concentrated near the center of the spiral galaxy disk. There-

where $M(r)$ is the total mass of the galaxy contained within a sphere of radius
r. Solving for v gives
$\frac{v^{2}}{r}$
Thus, assuming a spherical distribution of matter,

(b) (6 points) Consider a star in a circular orbit of radius r in a galaxy. What is the up to the present day.
$\frac{z^{l}}{(l) N D}=\frac{l}{z^{a}}$
(ι) UN

$\frac{z^{l}}{(\iota) W}$

 $z \cdot d$?
$z \cdot d$

,
,
 sn!puı

ұечң sұәеғ әчд pəsn әм ә．әН

one has

$\cdot \frac{\left({ }^{0} \neq p\right.}{(7) p} \equiv(\not) x$
their present values $\rho_{m, 0}$ and $\rho_{\Lambda} \equiv \rho_{\Lambda, 0}$ ．Defining const，the energy densities on the right－hand side can be expressed in terms of portional to k has been dropped．Using the fact that $\rho_{m} \propto 1 / a^{3}(t)$ and $\rho_{\Lambda}=$ where the overdot indicates a derivative with respect to t ，and the term pro－ $\left(\mathrm{V} d+{ }^{\prime} d\right) \emptyset \frac{\mathcal{\varepsilon}}{\Perp 8}=\left(\frac{D}{\eta}\right)={ }_{Z} H$
obeys a simple form of the Friedmann equation，
（a）（15 points）Since $\Omega_{m}+\Omega_{\Lambda}=0.35+0.65=1$ ，the universe is flat．It therefore （stu！̣od 0 少） $\mathbf{H V S V} \cap \mathbf{O}$ z8：g $=\boldsymbol{z}$ ג田么Y

 Answer：Observed galactic rotation curves plateau for large radii，as observed
$\varepsilon \cdot d$ toz dive＇snollat

LIOZ TTVA＇SNOILЛTOS \＆ZİÔ 98て＇8

Comment： 10^{-5} ．

 јо ио！̣ош ұәи әчұ Кq рәsneэ ‘भ！！

©

${ }^{0} y={ }^{0} \mathrm{H}$
${ }_{6} 0 \mathrm{~L} \times 8 L 2 \cdot 6$ L

. Su P S \cap

 Your answer should look like one of the above boxed answers. You were not to $z=0$. of the limits of integration: $x=0$ corresponds to $z=\infty$, and $x=1$ corresponds Note that the minus sign in the expression for $\mathrm{d} x$ is canceled by the interchange

$$
\frac{z(z+\mathrm{I})}{z \mathrm{p}}-=x \mathrm{p} \quad: \frac{z+\mathrm{I}}{\mathrm{~L}}=x
$$

where in the last answer I changed the variable of integration using
9

$$
\frac{1}{H_{0}} \int_{0}^{\infty}
$$

$z \mathrm{p}$

正

relation can be integrated to give Using the fact that x changes from 0 to 1 over the life of the universe, this
$a \cdot d$

This ratio would remain unchanged until the present day.
 Before $e^{+} e^{-}$annihilation the neutrinos were in thermal equilibrium with the

$T_{\gamma}=T_{e^{+} e^{-} n^{+} n^{-}}=T_{\nu} ; \quad g_{\gamma}=2, g_{e^{+} e^{-}}=g_{n^{+} n^{-}}=7 / 2$.
For the photons, before $e^{+} e^{-} n^{+} n^{-}$annihilation we have

For the neutrinos,

Primed quantities: values after $e^{+} e^{-} n^{+} n^{-}$annihilation
particles, and also the convention that introduce the notation n^{-}and n^{+}for the new electron-like and positron-like cates the entropy per cubic notch, i.e., entropy per unit comoving volume. We The conserved neutrino entropy can be described by $S_{\nu} \equiv a^{3} s_{\nu}$, which indiThe same will be true here, for both species of electron-positron pairs. from electron-positron pairs is given to the photons, and none to the neutrinos.

