	00I	TVLOL
	97	7
	07	ε
	08	ζ
	¢ 9	I
- ${ }^{\text {dos }} \mathrm{S}$	unuı̣xejn	wәiquo.d $^{\text {d }}$

[^0]

 Suppose that the law of gravity is modified to contain a new，repulsive term，
producing an acceleration which grows as the nth power of the distance，with a

${ }^{?} d_{\dot{\varepsilon}}^{\imath} \cdot \frac{\mathcal{E}}{\nu T}=\left({ }^{?} \iota\right)_{W}$

where $M\left(r_{i}\right)$ denotes the total mass contained initially in the region $r<r_{i}$ ，given
by

 We denoted the radius at time t of a particle which started at radius r_{i} by the
 In Lecture Notes 3 we developed a Newtonian model of cosmology，by consid－
ering a uniform sphere of mass，centered at the origin，with initial mass density ρ_{i} The following problem was Problem 2，Quiz 2，2000．It also appeared as Problem
14 on this year＇s Quiz 1 Review Problems． MVT S،NOLM出N HO NOILVOIHIGOL 出TGISSOd V ： \boldsymbol{Z} N＇HTGOUd
$\varepsilon \cdot d$ previous paragraph．

 ＇ $0={ }_{b}$ $g G+\frac{d^{p}}{V}+?$ ио！̣甲еnbә э！̣әшә．8 әч7

 －รәл！̣ұел！．ләр

 $\left.\left(7^{〔 ?} \cdot l\right) n \equiv(\not)\right)^{p}$

[^1] a）（5 points）As done in the lecture notes，we define
Problem 2，Continued．Please start your answer on the blank page to the right．
LLOZ TTVE＇I ZİÔ 987．8

$\cdot ? \cdot \iota\left(7^{6 ?} \cdot \iota\right) \iota \equiv\left(7^{6 ?} \cdot \downarrow\right) n$

 numerical value should be expressed in light-years.
(b) (5 points) What is the current physical distance ℓ_{p} to the galaxy X. The
(a) (5 points) What is the redshift z of the light?

 for which the light that we now observe left the galaxy at $t_{e}=13.5 \mathrm{Gyr}$. For parts wr). Suppose that we observe a galaxy X, which moves with the Hubble expansion, where b is a constant. Take the age of the universe as $t_{0}=13.7 \mathrm{Gyr}\left(1 \mathrm{Gyr}=10^{9}\right.$ $\varepsilon / z^{7 q}=(7)^{n}$

Consider a flat matter-dominated universe, with a scale factor given by

two calculations for a specific numerical example calculation should be very close to each other. In this problem we will compare the such cases the special relativity redshift calculation and the cosmological redshift distances are small and the velocities are low, the effects of gravity are small. For appear through the effect that gravity has in determining $a(t)$. However, when the suggest. It is given by the equation on the formula sheet, where the effects of gravity a gravitational redshift, although it is easier to calculate than these words would The cosmological redshift is caused by a combination of a velocity redshift and
PROBLEM 3: COSMOLOGICAL VS. SPECIAL RELATIVISTIC RED-
8.286 QUIZ 1, FALL 2011
(b) (5 points) Consider a photon that is arriving now from an object that is just at
the horizon. Our goal is to trace the trajectory of this object. Suppose that we
set up a comoving coordinate system with us at the origin, and the source of
the photon along the positive x-axis. What is the coordinate x_{0} of the photon
at $t=0$?
(c) 5 points) As the photon travels from the source to us, what is its coordinate
$x(t)$ as a function of time?
(d) (5 points) What is the physical distance $\ell_{p}(t)$ between the photon and us as a
function of time?
(e) (5 points) What is the maximum physical distance $\ell_{p, \text { max }}$ between the photon
and us, and at what time $t_{\text {max }}$ does it occur?

 I

(a) (5 points) What is the current value of the physical horizon distance
$\ell_{p, \text { horizon }}\left(t_{0}\right)$? That is, what is the present distance of the most distant matter
 ${ }^{\wedge}{ }_{\varepsilon / ₹} \not{ }^{7 q}=(7)^{n}$

(e) (5 points) What is the maximum physical distance $\ell_{p, \max }$ between the photon
and us, and at what time $t_{\text {max }}$ does it occur?
(5 points) What is the physical distance $\ell_{p}(t)$ between the photon and us as a
function of time?
$(5$ points) As the photon travels from the source to us, what is its coordinate
$x(t)$ as a function of time? the photon along the positive x-axis. What is the coordinate x_{0} of the photon
at $t=0$? set up a comoving coordinate system with us at the origin, and the source of

that can be seen, limited only by the speed of light. Useful formula: -

> Consider again a flat matter-dominated universe, with a scale factor given by
$9 \cdot d$
8.286 QUIZ 1, FALL 2011

[^0]:
 sə.ภед чиеाя әлошәу оұ рәұтеилодәу
 Prof. Alan Guth
 Physics 8.286: The Early Universe October 6, 2011

[^1]: d）（14 points）If all is going well，then you have learned that for a certain value
 of n ，the function $u\left(r_{i}, t\right)$ will in fact not depend on r_{i} ，so we can define
 differential equation found in（a），uniquely determine the function u ． c）（ 6 points）Write the initial conditions for u which，when combined with the
 of u, ρ_{i} ，etc．）

