

 cosmic time t as a function of the Hubble expansion rate H.

 universe: the following statement regarding the radiation-dominated phase of the early (b) (12 points) In Chapter 4 of The First Three Minutes, Steven Weinberg makes

[^0] scribe at least one of these two chains.

 trons through a series of two particle reactions.
(a) (8 points) During nucleosynthesis, heavier nuclei form from protons and neu-

8.286 QUIZ 2, FALL 2011

auren $_{\mathrm{N}}$ mod

	$00 \pm$	TVLOL
	02	\dagger
	08	ε
	08	${ }^{6}$
	02	I
${ }^{\text {a.os }}$	unumixen	

- чounso stiq of surq sṭq woxf
\qquad
 (p)

 иәsoчァ
 $\cdot \frac{\tau^{\jmath}}{\varepsilon^{n d} \eta} \frac{\varepsilon}{\nu \mp} \equiv 0$ -
$(\theta \operatorname{soo}-\mathrm{L}) x=p$ ' $(\theta \mathrm{u} ̣ \mathrm{~s}-\theta) \boldsymbol{o}=\nsupseteq$ parametric equations

 where I have taken $k=1$. To discuss motion in the radial direction, it is more

 The spacetime metric for a homogeneous, isotropic, closed universe is given by it was from Quiz 2, 1998.)

You should carry out any angular integrations that may be necessary, but you may $r \leq r_{\max }$.

Calculate the volume $V\left(r_{\max }\right)$ of the sphere described by

The metric for a Robertson-Walker universe is given by
The following problem was Problem 1, Quiz 3, 1990:
(20 points)
PROBLEM 4: VOLUMES IN A ROBERTSON-WALKER UNIVERSE
p. 5
8.286 QUIZ 2, FALL 2011
Flat $(k=0)$:
Closed $(k>0):$
Open $(k<0)$

[^0]:

