

 （•suo．apnəu

－WVX＇ت＇
NOILVINYOANI TดH直S HO XYVININSS V
sə．ภед צиеІЯ әлошәу оұ рәұұешлодәу \＆ZIの® Prof．Alan Guth

（a）（4 points）In 1948 Ralph A．Alpher and Robert Herman wrote a paper predict－ based on a cosmological model that they had developed with George Gamow in which the early universe was assumed to have been filled with hot neutrons． As the universe expanded and cooled the neutrons underwent beta decay into protons，electrons，and antineutrinos，until at some point the universe cooled account for the observed present abundances of light elements，the ratio of pho－
 temperature was very close to the actual value of 2.7 K ，the theory differed
from our present theory in two ways．Circle the two correct statements in the
following list．（ 2 points for each right answer；circle at most 2. ） temperature was very close to the actual value of 2.7 K ，the theory differed
from our present theory in two ways．Circle the two correct statements in the
following list．（ 2 points for each right answer；circle at most 2 ．）
7nq ‘Кеэәр р now the neutron is thought to be absolutely stable．
（ii）In the current theory，the universe started with nearly equal densities of
protons and neutrons，not all neutrons as Gamow，Alpher，and Herman

（iii）In the current theory，the universe started with mainly alpha particles，not
all neutrons as Gamow，Alpher，and Herman assumed．（Note：an alpha
In the current theory，the universe started with mainly alpha particles，not
all neutrons as Gamow，Alpher，and Herman assumed．（Note：an alpha assumed． following list．（2 points for each right answer；circle at most 2．）
 ing a cosmic microwave background with a temperature of 5 K ．The paper was
（a）
 ${ }^{u}{ }_{n}$ pue ${ }^{d}{ }^{\prime}$ 'suoxznau pue suozo.s dof

$$
{ }_{\downarrow}{ }^{\partial} \mathrm{H} \longleftrightarrow u+u+d+d
$$

terms of symbols, and then evaluate it numerically.

 compared to the processes discussed in this problem.)

 $n_{b}=5.54 \times 10^{24} \mathrm{~m}^{-3}$.
At this time, the total baryon number density of the universe would have been $\psi \Perp Z$ $\left(\frac{z^{\Psi} \Perp Z}{a_{L} Y^{d} w}\right) \quad$ рие
where I will use the subscript " D " for deuterium. It will also be useful to know that ' H $_{8} 0 \mathrm{I} \times \not \subset 9.2=a_{L}$
half of the neutrons would be bound into deuterium at a temperature of
 ($\mathrm{I} \cdot \mathrm{E}$)

 BOTTLENECK (30 points) NคI母'Я there was also another species of electron-like and positron-like particles. Suppose

 order of magnitude numerically. Note: $e^{B_{\mathrm{Li}} / k T_{D}} \approx 4 \times 10^{258}$, spin states. Again, give an answer in terms of symbols, and then evaluate its T_{D}, and fundamental constants. Li^{7} has spin $s=3 / 2$, so there are $2 s+1=4$
 'um!̣q!!!
 (e) (7 points) Finally, we might wonder whether significant amounts of lithium will know that $e^{B_{\mathrm{He}^{4}} / k T_{D}} \approx 3 \times 10^{186}$.

 Eq. (3.5) will not allow it. What will be the number density n_{n} of neutrons neutrons will become bound in He^{4}, since the equilibrium for the reaction of the deuterium bottleneck breaks. In that case it will never be the case that all (d) (6 points) Assume that the universe rapidly reaches thermal equilibrium after may approximate $m_{p}=m_{n}=\frac{1}{4} m_{\mathrm{He}^{4}}$

Problem 3, continued

LLOZ TIVA ‘ $\mathcal{Z I \cap O ̂} 98 z^{\circ} 8$

