




 Weinberg used the diagram above to explain an important property of the
 -әлем suoi te \#o sIfef uoţe!̣ех Кроq ภıəə black-body radiation at 3.0 K , as right shows the Planck spectrum for
(b)
 length." In one or a few sentences,


 points) The diagram on the


 (c) (5 points) The label CN on the dia-
(squiod g\%) ¿ĐNIGVG甘 GHL OG תOX GIG :I NGTGOYd
ELOZ TTVA 'I ZIกÔ 987.8
B
assume that at the initial time $t_{i}$, the initial density of the cylinder is $\rho_{i}$, and the
initial velocity of a particle at position $\vec{r}$ is given by the Hubble relation where $\hat{\imath}, \hat{\jmath}$, and $\hat{k}$ are the usual unit vectors along the $x, y$, and $z$ axes. We will $\vec{r}=x \hat{\imath}+y \hat{\jmath} ; \quad \hat{r}=\frac{\vec{r}}{r}$,

$$
\because \overbrace{\bullet}^{\imath} H=?
$$



We will use cylindrical coordinates, so

3D Perspective the $z$-axis of the coordinate system:

 construct a model of a cylindrical universe, one which is expanding in the $x$ and $y$ that was based on a uniform, expanding, sphere of matter. In this problem we will The lecture notes showed a construction of a Newtonian model of the universe

8.286 QUIZ 1, FALL 2013
$g \cdot d$

What is $V(a)$ ? Will this universe expand forever, or will it collapse?
(e) (5 points) Find an expression for a conserved quantity of the form

 (b) (5 points) As in the lecture notes, we let $r\left(r_{i}, t\right)$ denote the trajectory of a

where $A$ is a constant and $\mu$ is the total mass per length contained within the



$\frac{l}{n V}-\underline{\square}$


| $\begin{aligned} & \text { H } \\ & 0 \\ & \underset{y y}{c} \end{aligned}$ | $\stackrel{ }{-}$ | $\omega$ | s | $\checkmark$ | 0 0 0 0 0 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 兑 | N | N | $\stackrel{\sim}{\circ}$ | N | 疾 |
|  |  |  |  |  | W 0 0 0 0 |

8.286 QUIZ 1, FALL 2013
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

$$
\begin{aligned}
& \text { COSMOLOGICAL REDSHIFT: } \\
& \qquad 1+z \equiv \frac{\lambda_{\text {observed }}}{\lambda_{\text {emitted }}}=\frac{a\left(t_{\text {observed }}\right)}{a\left(t_{\text {emitted }}\right)} \\
& \text { SPECIAL RELATIVITY: } \\
& \text { Time Dilation Factor: } \\
& \qquad \equiv \frac{1}{\sqrt{1-\beta^{2}}}, \quad \beta \equiv v / c \\
& \text { Lorentz-Fitzgerald Contraction Factor: } \quad \gamma \\
& \text { Relativity of Simultaneity: } \\
& \text { Trailing clock reads later by an amount } \beta \ell_{0} / c \\
& \text { EVOLUTION OF A MATTER-DOMINATED } \\
& \text { UNIVERSE: } \\
& \qquad \begin{array}{l}
H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} G \rho-\frac{k c^{2}}{a^{2}}, \quad \ddot{a}=-\frac{4 \pi}{3} G \rho a, \\
\qquad \rho(t)=\frac{a^{3}\left(t_{i}\right)}{a^{3}(t)} \rho\left(t_{i}\right) \\
\\
\qquad \equiv \rho / \rho_{c}, \quad \text { where } \rho_{c}=\frac{3 H^{2}}{8 \pi G} \\
\text { Flat }(k=0): \\
a(t) \propto t^{2 / 3}, \\
\Omega=1 .
\end{array}
\end{aligned}
$$

