
 pattern, centered on themselves. top line, then observers on Galaxies B and C would also see a Hubble expansion that if observers on Galaxy A see a Hubble expansion pattern, as shown on the since all distant galaxies are receding from us. The diagram shows, however,

SNOILOTOS L ZInƠ

	qany uelv ford

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(6.7)	- $7 \nabla(z+\mathrm{L})={ }^{\text {sqo }} 7 \nabla$

(ə)

$\left(G^{\circ} 7\right)$	
	$\frac{\partial}{d_{\gamma \chi}}-\mathrm{I}={ }_{\left({ }^{\imath} \neq-z_{\chi}\right)} \chi{ }_{-}{ }^{\partial}$
$(7 \cdot 7)$	$\left.\cdot\left[\left(\mathrm{I}_{\chi}-z_{\chi}\right) \chi \chi^{2}-\mathrm{T}\right] \frac{\chi}{\partial}={ }^{\circ} \gamma\left({ }^{\mathrm{q}}\right) \mathrm{f}\right) p=d_{\gamma}$

$\varepsilon \cdot d$

$$
P_{D}=\frac{P}{(1+z)^{2}} \frac{A_{D}}{4 \pi \ell_{p}^{2}},
$$

where A_{D} is the area of the detector. The radiation energy flux J is then
$J=\frac{P_{D}}{A_{D}}=\frac{P}{4 \pi \ell_{p}^{2}(1+z)^{2}}$.
both areas in current physical units, then the power P_{D} hitting the detector is is just equal to the fraction of the area subtended by the detector. If we measure value measured by the source. The fraction of this power received by the detector a type of frequency, so the value measured by the observer is $1 /(1+z)$ times the The second power of $(1+z)$ is caused by the arrival rate of photons, which is also an Here one power of $(1+z)$ is caused by the redshifting of photons, as each photon has

$$
\frac{z(z+\mathrm{L})}{d}=, d
$$

sphere. The total power P^{\prime} arriving at the sphere today is given by galaxy at the center, and our detector on the surface of the sphere. The power
P that was emitted by the galaxy at the time of emission is now arriving at this As shown in the diagram, it is useful to think about a sphere with the source

$\Omega=1$

:xilailvtey tviogds

Physics 8.286: The Early Universe October 3, 2013
Prof. Alan Guth
ХЮОTONHOAL HO ЯLユLILSNI SLLASOHOVSSVIN
DOPPLER SHIFT (For motion along a line):山aghs vinweoa t zino̊

