
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department
Physics 8.286: The Early Universe
Prof. Alan Guth
Reformatted to Remove Blank Pages*
November 7, 2013
A FORMULA SHEET IS AT THE END OF THE EXAM.
You may rip off and keep the formula sheet.
Please answer all questions in this stapled booklet.
(d) (7 points) At the end of Chapter 10, Ryden writes "Thus, the very strong
asymmetry between baryons and antibaryons today and the large number of
photons per baryon are both products of a tiny asymmetry between quarks
and anitquarks in the early universe." Explain in one or a few sentences how
a tiny asymmetry between quarks and anitquarks in the early universe results
in a strong asymmetry between baryons and antibaryons today.
(d) (7 points) At the end of Chapter 10, Ryden writes "Thus, the very strong :ләмsuе

[^0] expect for the behavior of $v(R)$ at large radii? Explain your answer.
(b) (5 points) What is actually found for the behavior of $v(R)$? R. If stars contributed all, or most, of the mass in a galaxy, what would we
expect for the behavior of $v(R)$ at large radii? Explain your answer. suring their rotation curves, i.e., the orbital velocity v as a function of radius

PROBLEM 1: DID YOU DO THE READING? (25 points)
8.286 QUIZ 2, FALL 2013
$\xrightarrow{\text { әuren }^{\text {mo }} \mathrm{M}}$
in a strong asymmetry between baryons and antibaryons today.

YOU DO THE READING? (2s points)
 Prof. Alan Guth
XŋOTONHOGL HO HLOLILSNI SLLASOHOVSSVIN

$\cdots\left[z \underline{z} \mathrm{p}+{ }_{z} \phi \mathrm{p}_{z^{\prime}} \underline{\iota}+{ }_{z^{\prime}} \mathrm{p}\right]-{ }_{z} \underline{\underline{1}} \mathrm{p}_{z^{0}}={ }_{z^{\prime}} \mathrm{p} z_{z}$ NOILVINYOHNI VULXZ

where $\phi=2 \pi$ is identified with $\phi=0$. cylindrical coordinates: $-\infty<t<\infty, 0 \leq r<\infty,-\infty<z<\infty$, and $0 \leq \phi<2 \pi$,

The problem will concern the consequences of the metric

 (d) (5 points) The mass density $\rho(t)$. (c) (5 points) The physical horizon distance, $\ell_{p, \text { horizon }}(t)$. (b) (5 points) The value of the Hubble parameter $H(t)$, as a function of t. $a(t)$ up to an arbitrary constant of proportionality (a) (5 points) The behavior of the scale factor, $a(t)$. You should be able to find Assuming that the model universe is flat, calculate

$$
\frac{(7)_{\mathrm{e}} p}{\mathrm{I}} \times d
$$

Suppose that a model universe is filled with a peculiar form of matter for which RIOUS STUFF (20 points)

PROBLEM 2: TIME EVOLUTION OF A UNIVERSE WITH MYSTE$\varepsilon \cdot d$

8.286 QUIZ 2, FALL 2013

The piston is then pulled outward, so that its initial volume V is increased to
$V+\Delta V$. You may consider ΔV to be infinitesimal, so ΔV^{2} can be neglected.
If the initial energy density of the imaginary stuff is $u_{0}=\rho_{0} c^{2}$, then the initial
configuration of the piston can be drawn as

 6 , a thought experiment involving a piston was used to show that $p=\frac{1}{3} \rho c^{2}$ for
 careful: it is not the same problem.

> PROBLEM 4: PRESSURE AND ENERGY DENSITY OF IMAGI-
8.286 QUIZ 2, FALL 2013

8.286 QUIZ 2, FALL 2013
$f_{3}(r)$, and $f_{4}(r)$, with

(b) (10 points) Using the geodesic equations from the front of the quiz,
 ‘($\mu)^{\mp} f={ }^{z z} \sigma \equiv \varepsilon \varepsilon 6$ $g_{22} \equiv g_{\phi \phi}=f_{3}(r)$ $g_{20} \equiv g_{02} \equiv g_{\phi t} \equiv g_{t \phi}=f_{1}(r)$

find $\mathrm{d} t / \mathrm{d} \tau$.) z with respect to t, not τ. (Hint: first find an expression for $\mathrm{d} \tau / \mathrm{d} t$, in terms Be sure to note that your answer should depend on the derivatives of t, ϕ, and $\mathrm{d} \phi / \mathrm{d} t$, and $\mathrm{d} z / \mathrm{d} t$. The expression may also depend on the constants c and ω.

(p)
,
$(\varepsilon \cdot \varepsilon d)$

H 0 O B 	$\stackrel{\rightharpoonup}{\square}$	ω	\cdots	\leftharpoondown	0 0 0 0 0 0
$\stackrel{\rightharpoonup}{8}$	N	${ }_{\sim}^{\sim}$	N	N	
					N 0 0 0 0

$p^{2} \equiv|\vec{p}|^{2}-\left(p^{0}\right)^{2}=|\vec{p}|^{2}-\frac{E^{2}}{c^{2}}=-\left(m_{0} c\right)^{2}$

$$
\begin{aligned}
& \text { COSMOLOGICAL EVOLUTION: } \\
& \qquad \begin{aligned}
H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} G \rho-\frac{k c^{2}}{a^{2}}, \quad \ddot{a}=-\frac{4 \pi}{3} G\left(\rho+\frac{3 p}{c^{2}}\right) a, \\
\rho_{m}(t)=\frac{a^{3}\left(t_{i}\right)}{a^{3}(t)} \rho_{m}\left(t_{i}\right)(\text { matter }), \quad \rho_{r}(t)=\frac{a^{4}\left(t_{i}\right)}{a^{4}(t)} \rho_{r}\left(t_{i}\right) \text { (radiation). } \\
\dot{\rho}=-3 \frac{\dot{a}}{a}\left(\rho+\frac{p}{c^{2}}\right), \quad \Omega \equiv \rho / \rho_{c}, \quad \text { where } \rho_{c}=\frac{3 H^{2}}{8 \pi G} . \\
\text { EVOLUTION OF A MATTER-DOMINATED UNIVERSE: } \\
\text { Flat }(k=0): \quad a(t) \propto t^{2 / 3} \\
\quad \Omega=1 . \\
\text { Closed }(k>0): \quad c t=\alpha(\theta-\sin \theta), \quad \frac{a}{\sqrt{k}}=\alpha(1-\cos \theta), \\
\quad \Omega=\frac{2}{1+\cos \theta}>1, \\
\text { where } \alpha \equiv \frac{4 \pi}{3} \frac{G \rho}{c^{2}}\left(\frac{a}{\sqrt{k})^{3}} .\right. \\
\text { Open }(k<0): \alpha(\sinh \theta-\theta), \quad \frac{a}{\sqrt{\kappa}}=\alpha(\cosh \theta-1), \\
\quad \Omega=\frac{2}{1+\cosh \theta}<1, \\
\quad \text { where } \alpha \equiv \frac{4 \pi}{3} \frac{G \rho}{c^{2}}\left(\frac{a}{\sqrt{\kappa}}\right)^{3}, \\
\quad \kappa \equiv-k>0 .
\end{aligned}
\end{aligned}
$$

[^0]: (c) (7 points) An important tool for estimating the mass in a galaxy is the steady-

