
M
A
SSA

C
H
U
SE

T
T
S
IN

ST
IT

U
T
E

O
F
T
E
C
H
N
O
L
O
G
Y

P
hysics

D
epartm

ent
P
hysics

8.286:
T
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E
arly

U
niverse

N
ovem
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2,

2011
P
rof.

A
lan

G
uthR

E
V

IE
W

P
R

O
B

L
E
M

S
F
O

R
Q

U
IZ

2

Q
U

IZ
D

A
T

E
:
T
hursday,

N
ovem

ber
7,

2013,during
the

norm
al

class
tim

e.

C
O

V
E
R

A
G

E
:
L
ecture

N
otes

4
and

5,
and

pp.
1–10

of
L
ecture

N
otes

6;
P
rob-

lem
Sets

4,
5,

and
6;

W
einberg,

T
he

F
irst

T
hree

M
inutes,

C
hapters

4
–
7;

In
R
yden’s

Introduction
to

C
osm

ology,
w
e
have

read
C
hapters

4,
5,

and
Sec.

6.1
during

this
period.

T
hese

chapters,
how

ever,
parallel

w
hat

w
e
have

done
or

w
illbe

doing
in

lecture,
so

you
should

take
them

as
an

aid
to

learning
the

lec-
ture

m
aterial;there

w
illbe

no
questions

on
this

quiz
explicitly

based
on

these
sections

from
R
yden.

B
ut

w
e
have

also
read

C
hapters

10
(N

ucleosynthesis
and

the
E
arly

U
niverse)

and
8
(D

ark
M

atter)
in

R
yden,

and
these

w
illbe

included
on

the
quiz,except

for
Sec.10.3

(D
euterium

Synthesis).
W
e
w
illreturn

to
deu-

terium
synthesis

later
in

the
course.

R
yden’s

E
qs.

(10.11)
and

(10.12)
involve

sim
ilar

issues
from

statisticalm
echanics,so

you
should

not
w
orry

ifyou
do

not
understand

these
equations.

(In
fact,

you
should

w
orry

if
you

do
understand

them
;
as

w
e
w
ill

discuss
later,

they
are

spectacularly
incorrect.)

E
q.

(10.13),
w
hich

is
obtained

by
dividing

E
q.(10.11)

by
E
q.(10.12),is

nonetheless
correct;

for
this

course
you

need
not

w
orry

how
to

derive
this

form
ula,

but
you

should
assum

e
it

and
understand

its
consequences,

as
described

by
R
yden

and
also

by
W
einberg.

C
hapters

4
and

5
of

W
einberg’s

book
are

packed
w
ith

num
bers;

you
need

not
m
em

orize
these

num
bers,

but
you

should
be

fam
iliar

w
ith

their
orders

of
m
agnitude.

W
e
w
ill

not
take

off
for

the
spelling

of
nam

es,
as

long
as

they
are

vaguely
recognizable.

For
dates

before
1900,

it
w
ill

be
suffi

cient
for

you
to

know
w
hen

things
happened

to
w
ithin

100
years.

For
dates

after
1900,

it
w
ill

be
suffi

cient
if
you

can
place

events
w
ithin

10
years.

Y
ou

should
expect

one
problem

based
on

the
readings,and

severalcalculationalproblem
s.

O
n
e

of
th

e
p
rob

lem
s

on
th

e
q
u
iz

w
ill

b
e

taken
verb

atim
(or

at
least

a
lm

o
st

verb
atim

)
from

eith
er

th
e

h
om

ew
ork

assign
m

en
ts,

or
from

th
e

starred
p
rob

lem
s

from
th

is
set

of
R

ev
iew

P
rob

lem
s.

T
he

starred
problem

s
are

the
ones

that
I
recom

m
end

that
you

review
m
ost

carefully:
P
rob-

lem
s
4,

5,
6,

11,
13,

15,
17,

and
19.

T
here

are
only

three
reading

questions,
P
roblem

s
1,2,

and
3.

P
U

R
P

O
S
E
:
T
hese

review
problem

s
are

not
to

be
handed

in,
but

are
being

m
ade

available
to

help
you

study.
T
hey

com
e
m
ainly

from
quizzes

in
previous

years.
In

som
e
cases

the
num

ber
ofpoints

assigned
to

the
problem

on
the

quiz
is
listed

—
in

all
such

cases
it
is

based
on

100
points

for
the

full
quiz.

In
addition

to
this

set
of

problem
s,

you
w
ill

find
on

the
course

w
eb

page
the

actual
quizzes

that
w
ere

given
in

1994,
1996,

1998,
2000,

2002,
2004,

2005,
2007,

2009,
and

2011.
T
he

relevant
problem

s
from

those
quizzes

have
m
ostly
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.
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been
incorporated

into
these

review
problem

s,
but

you
still

m
ay

be
interested

in
looking

at
the

quizzes,
just

to
see

how
m
uch

m
aterial

has
been

included
in

each
quiz.

T
he

coverage
of

the
upcom

ing
quiz

w
ill

not
necessarily

m
atch

the
coverage

of
any

of
the

quizzes
from

previous
years.

T
he

coverage
for

each
quiz

in
recent

years
is
usually

described
at

the
start

ofthe
review

problem
s,as

I
did

here.

R
E
V

IE
W

S
E
S
S
IO

N
A

N
D

O
F
F
IC

E
H

O
U

R
S
:T

o
help

you
study

for
the

quiz,
T
ingtao

Z
hou

w
ill

hold
a
review

session
on

M
onday,

N
ovem

ber
4,

at
7:30

pm
,

in
our

regular
lecture

room
,
R
oom

34-101.
I
w
ill

have
m
y
usual

offi
ce

hour
on

W
ednesday

evening,
7:30

pm
,
in

R
oom

8-308.

IN
F
O

R
M

A
T

IO
N

T
O

B
E

G
IV

E
N

O
N

Q
U

IZ
:

E
ach

quiz
in

this
course

w
ill

have
a
section

of
“useful

inform
ation”

for
your

reference.
For

the
second

quiz,
this

useful
inform

ation
w
illbe

the
follow

ing:

S
P

E
E
D

O
F

L
IG

H
T

IN
C

O
M

O
V

IN
G

C
O

O
R

D
IN

A
T

E
S
:

v
c
o
o
rd

=
c

a(t)
.

D
O

P
P

L
E
R

S
H

IF
T

(F
or

m
otion

alon
g

a
lin

e):

z
=
v
/
u

(nonrelativistic,source
m
oving)

z
=

v
/
u

1−
v
/
u

(nonrelativistic,observer
m
oving)

z
= √

1
+
β

1−
β
−

1
(special

relativity,w
ith

β
=
v
/
c)

C
O

S
M

O
L
O

G
IC

A
L

R
E
D

S
H

IF
T

:

1
+
z≡

λ
o
b
se

rv
e
d

λ
e
m

itte
d

=
a(t

o
b
se

rv
e
d )

a(t
e
m

itte
d )

S
P

E
C

IA
L

R
E
L
A

T
IV

IT
Y

:

T
im

e
D
ilation

Factor:

γ≡
1

√
1−

β
2
,

β
≡
v
/
c
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L
orentz-F

itzgerald
C
ontraction

Factor:
γ

R
elativity

of
Sim

ultaneity:
T
railing

clock
reads

later
by

an
am

ount
β


0 /
c
.

E
nergy-M

om
entum

Four-V
ector:

p
µ
= (

Ec
,�p )

,
�p
=
γ
m

0 �v
,
E

=
γ
m

0 c
2
= √

(m
0 c

2)
2
+
|�p| 2

c
2
,

p
2≡
|�p| 2− (p

0 )
2
=
|�p| 2−

E
2

c
2

=
−
(m

0 c)
2
.

C
O

S
M

O
L
O

G
IC

A
L

E
V

O
L
U

T
IO

N
:

H
2
= (

ȧa )
2

=
8
π3
G
ρ−

k
c
2

a
2
,

ä
=
−
4
π3
G (

ρ
+

3
pc
2 )

a
,

ρ
m
(t)

=
a
3(t

i )
a
3(t)

ρ
m
(t
i )

(m
atter),

ρ
r (t)

=
a
4(t

i )
a
4(t)

ρ
r (t

i )
(radiation).

ρ̇
=
−
3
ȧa (

ρ
+

pc
2 )

,
Ω
≡
ρ
/
ρ
c
,

w
here

ρ
c
=

3
H

2

8
π
G

.

F
lat

(k
=

0):
a(t)∝

t
2
/
3

Ω
=

1
.

E
V

O
L
U

T
IO

N
O

F
A

M
A

T
T

E
R

-D
O

M
IN

A
T

E
D

U
N

IV
E
R

S
E
:

C
losed

(k
>

0):
ct

=
α
(θ−

sin
θ)

,
a√k

=
α
(1−

cos
θ)

,

Ω
=

2
1
+

cos
θ
>

1
,

w
here

α
≡

4
π3
G
ρ

c
2 (

a√k )
3

.

O
pen

(k
<

0):
ct

=
α
(sinh

θ−
θ)

,
a√κ

=
α
(cosh

θ−
1)

,

Ω
=

2
1
+

cosh
θ
<

1
,

w
here

α
≡

4
π3
G
ρ

c
2 (

a√κ )
3

,

κ≡
−
k
>

0
.
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R
O

B
E
R
T

S
O

N
-W

A
L
K

E
R

M
E
T

R
IC

:

d
s
2
=
−
c
2
d
τ

2
=
−
c
2
d
t
2+

a
2(t) {

d
r
2

1−
k
r
2
+
r
2 (d

θ
2
+
sin

2
θ
d
φ

2 ) }
.

A
lternatively,for

k
>

0,
w
e
can

define
r
=

sin
ψ

√
k

,
and

then

d
s
2
=
−
c
2
d
τ

2
=
−
c
2
d
t
2+

ã
2(t) {

d
ψ

2
+
sin

2
ψ (d

θ
2
+
sin

2
θ
d
φ

2 )}
,

w
here

ã(t)
=
a(t)/ √

k.
For

k
<

0
w
e
can

define
r
=

sinh
ψ

√−
k
,
and

then

d
s
2
=
−
c
2
d
τ

2
=
−
c
2
d
t
2+

ã
2(t) {

d
ψ

2
+
sinh

2
ψ (d

θ
2
+

sin
2
θ
d
φ

2 )}
,

w
here

ã(t)
=
a(t)/ √−

k.
N
ote

that
ã
can

be
called

a
if
there

is
no

need
to

relate
it
to

the
a(t)

that
appears

in
the

first
equation

above.

H
O

R
IZ

O
N

D
IS

T
A

N
C

E
:



p
,h

o
riz

o
n (t)

=
a(t) ∫

t

0

c

a(t ′)
d
t ′

=
3
ct

(flat,m
atter-dom

inated).

S
C

H
W

A
R

Z
S
C

H
IL

D
M

E
T

R
IC

:

d
s
2
=
−
c
2d
τ

2
=
− (

1−
2
G
M

rc
2 )

c
2d
t
2
+ (

1−
2
G
M

rc
2 )

−
1

d
r
2

+
r
2d
θ
2
+
r
2
sin

2
θ
d
φ

2
,

G
E
O

D
E
S
IC

E
Q

U
A

T
IO

N
:

dd
s {

g
ij
d
x
j

d
s }

=
12
(∂
i g
k
� )
d
x
k

d
s

d
x
�

d
s

or:
dd
τ {

g
µ
ν
d
x
ν

d
τ }

=
12
(∂
µ
g
λ
σ )

d
x
λ

d
τ

d
x
σ

d
τ
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P
R

O
B

L
E
M

L
IS

T

1.
D
id

Y
ou

D
o
the

R
eading

(2000,2002)?
.

.
.
.

.
.
.

.
.
.

6
(Sol:

27)

2.
D
id

Y
ou

D
o
the

R
eading

(2007)?
.

.
.

.
.
.

.
.
.

.
.
.

7
(Sol:

28)

3.
D
id

Y
ou

D
o
the

R
eading

(2011)?
.

.
.

.
.
.

.
.
.

.
.
.

11
(Sol:

32)

*4.
E
volution

of
an

O
pen

U
niverse

.
.

.
.

.
.
.

.
.
.

.
.
.

12
(Sol:

34)

*5.
A
nticipating

a
B
ig

C
runch

.
.

.
.

.
.

.
.
.

.
.
.

.
.
.

12
(Sol:

35)

*6.
T
racing

L
ight

R
ays

in
a
C
losed,

M
atter-D

om
inated

U
niverse

12
(Sol:

36)

7.
L
engths

and
A
reas

in
a
T
w
o-D

im
ensional

M
etric

.
.
.

.
.
.

13
(Sol:

38)

8.
G
eom

etry
in

a
C
losed

U
niverse

.
.

.
.

.
.
.

.
.
.

.
.
.

14
(Sol:

40)

9.
T
he

G
eneral

Spherically
Sym

m
etric

M
etric

.
.

.
.
.

.
.
.

15
(Sol:

41)

10.
V
olum

es
in

a
R
obertson-W

alker
U
niverse

.
.
.

.
.
.

.
.
.

16
(Sol:

42)

*11.
T
he

Schw
arzschild

M
etric

.
.

.
.
.

.
.

.
.
.

.
.
.

.
.
.

16
(Sol:

44)

12.
G
eodesics

.
.

.
.

.
.

.
.
.

.
.
.

.
.

.
.
.

.
.
.

.
.
.

17
(Sol:

47)

*13.
A
n
E
xercise

in
T
w
o-D

im
ensional

M
etrics

.
.
.

.
.
.

.
.
.

18
(Sol:

49)

14.
G
eodesics

on
the

Surface
of

a
Sphere

.
.

.
.
.

.
.
.

.
.
.

19
(Sol:

52)

*15.
G
eodesics

in
a
C
losed

U
niverse

.
.

.
.

.
.
.

.
.
.

.
.
.

19
(Sol:

56)

16.
A

T
w
o-D

im
ensional

C
urved

Space
.

.
.

.
.
.

.
.
.

.
.
.

20
(Sol:

59)

*17.
R
otating

Fram
es

of
R
eference

.
.
.

.
.

.
.
.

.
.
.

.
.
.

22
(Sol:

62)

18.
T
he

Stability
of

Schw
arzschild

O
rbits

.
.

.
.
.

.
.
.

.
.
.

24
(Sol:

65)

*19.
P
ressure

and
E
nergy

D
ensity

of
M
ysterious

Stuff
.

.
.

.
.
.

26
(Sol:

69)
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P
R

O
B

L
E
M

1:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

P
arts

(a)-(c)
of

this
problem

com
e

from
Q
uiz

4,
2000,

and
parts

(d)
and

(e)
com

e
from

Q
uiz

3,
2002.

(a)
(5

points)
B
y
w
hat

factor
does

the
lepton

num
ber

per
com

oving
volum

e
of

the
universe

change
betw

een
tem

peratures
of
k
T

=
10

M
eV

and
k
T

=
0
.1

M
eV

?
Y
ou

should
assum

e
the

existence
of

the
norm

al
three

species
of

neutrinos
for

your
answ

er.

(b)
(5

points)
M
easurem

ents
of

the
prim

ordial
deuterium

abundance
w
ould

give
good

constraints
on

the
baryon

density
of

the
universe.

H
ow

ever,
this

abun-
dance

is
hard

to
m
easure

accurately.
W

hich
of

the
follow

ing
is

N
O
T

a
reason

w
hy

this
is

hard
to

do?

(i)
T
he

neutron
in

a
deuterium

nucleus
decays

on
the

tim
e
scale

of15
m
inutes,

so
alm

ost
none

of
the

prim
ordial

deuterium
produced

in
the

B
ig

B
ang

is
still

present.

(ii)
T
he

deuterium
abundance

in
the

E
arth’s

oceans
is

biased
because,

being
heavier,less

deuterium
than

hydrogen
w
ould

have
escaped

from
the

E
arth’s

surface.

(iii)
T
he

deuterium
abundance

in
the

Sun
is

biased
because

nuclear
reactions

tend
to

destroy
it
by

converting
it

into
helium

-3.

(iv)
T
he

spectrallines
ofdeuterium

are
alm

ost
identicalw

ith
those

ofhydrogen,
so

deuterium
signatures

tend
to

get
w
ashed

out
in

spectra
of

prim
ordial

gas
clouds.

(v)
T
he

deuterium
abundance

is
so

sm
all

(a
few

parts
per

m
illion)

that
it

can
be

easily
changed

by
astrophysical

processes
other

than
prim

ordial
nucleosynthesis.

(c)
(5

points)
G
ive

three
exam

ples
of

hadrons.

(d)
(6

points)
In

C
hapter

6
ofT

he
F
irst

T
hree

M
inutes,Steven

W
einberg

posed
the

question,
“W

hy
w
as

there
no

system
atic

search
for

this
[cosm

ic
background]

radiation,
years

before
1965?”

In
discussing

this
issue,

he
contrasted

it
w
ith

the
history

of
tw

o
different

elem
entary

particles,
each

of
w
hich

w
ere

predicted
approxim

ately
20

years
before

they
w
ere

first
detected.

N
am

e
one

of
these

tw
o
elem

entary
particles.

(If
you

nam
e
them

both
correctly,

you
w
ill

get
3

points
extra

credit.
H
ow

ever,one
right

and
one

w
rong

w
illget

you
4
points

for
the

question,
com

pared
to

6
points

for
just

nam
ing

one
particle

and
getting

it
right.)A

nsw
er:

2nd
A
nsw

er
(optional):
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(e)
(6

points)
In

C
hapter

6
ofT

he
F
irst

T
hree

M
inutes,Steven

W
einberg

discusses
three

reasons
w
hy

the
im

portance
of

a
search

for
a
3 ◦

K
m
icrow

ave
radiation

background
w
as

not
generally

appreciated
in

the
1950s

and
early

1960s.
C
hoose

those
three

reasons
from

the
follow

ing
list.

(2
points

for
each

right
answ

er,circle
at

m
ost

3.)

(i)
T
he

earliest
calculations

erroneously
predicted

a
cosm

ic
background

tem
-

perature
of

only
about

0.1 ◦
K
,
and

such
a
background

w
ould

be
too

w
eak

to
detect.

(ii)
T
here

w
as

a
breakdow

n
in

com
m
unication

betw
een

theorists
and

experi-
m
entalists.

(iii)
It

w
as

not
technologically

possible
to

detect
a
signal

as
w
eak

as
a
3 ◦

K
m
icrow

ave
background

until
about

1965.

(iv)
Since

alm
ost

allphysicists
at

the
tim

e
w
ere

persuaded
by

the
steady

state
m
odel,

the
predictions

of
the

big
bang

m
odel

w
ere

not
taken

seriously.

(v)
It

w
as

extraordinarily
diffi

cult
for

physicists
to

take
seriously

any
theory

of
the

early
universe.

(vi)
T
he

early
w
ork

on
nucleosynthesis

by
G
am

ow
,A

lpher,H
erm

an,and
Follin,

et
al.,had

attem
pted

to
explain

the
origin

ofallcom
plex

nucleiby
reactions

in
the

early
universe.

T
his

program
w
as

never
very

successful,
and

its
credibility

w
as

further
underm

ined
as

im
provem

ents
w
ere

m
ade

in
the

alternative
theory,that

elem
ents

are
synthesized

in
stars.

P
R

O
B

L
E
M

2:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(24
points)

T
he

follow
ing

problem
w
as

P
roblem

1
of

Q
uiz

2
in

2007.

(a)
(6

points)
In

1948
R
alph

A
.A

lpher
and

R
obert

H
erm

an
w
rote

a
paper

predict-
ing

a
cosm

ic
m
icrow

ave
background

w
ith

a
tem

perature
of5

K
.
T
he

paper
w
as

based
on

a
cosm

ological
m
odel

that
they

had
developed

w
ith

G
eorge

G
am

ow
,

in
w
hich

the
early

universe
w
as

assum
ed

to
have

been
filled

w
ith

hot
neutrons.

A
s
the

universe
expanded

and
cooled

the
neutrons

underw
ent

beta
decay

into
protons,

electrons,
and

antineutrinos,
until

at
som

e
point

the
universe

cooled
enough

for
light

elem
ents

to
be

synthesized.
A
lpher

and
H
erm

an
found

that
to

account
for

the
observed

present
abundances

oflight
elem

ents,the
ratio

ofpho-
tons

to
nuclear

particles
m
ust

have
been

about
10

9.
A
lthough

the
predicted

tem
perature

w
as

very
close

to
the

actual
value

of
2.7

K
,
the

theory
differed

from
our

present
theory

in
tw

o
w
ays.

C
ircle

the
tw

o
correct

statem
ents

in
the

follow
ing

list.
(3

points
for

each
right

answ
er;

circle
at

m
ost

2.)

(i)
G
am

ow
,
A
lpher,

and
H
erm

an
assum

ed
that

the
neutron

could
decay,

but
now

the
neutron

is
thought

to
be

absolutely
stable.
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(ii)
In

the
current

theory,
the

universe
started

w
ith

nearly
equal

densities
of

protons
and

neutrons,
not

all
neutrons

as
G
am

ow
,
A
lpher,

and
H
erm

an
assum

ed.

(iii)
In

the
current

theory,the
universe

started
w
ith

m
ainly

alpha
particles,not

all
neutrons

as
G
am

ow
,
A
lpher,

and
H
erm

an
assum

ed.
(N

ote:
an

alpha
particle

is
the

nucleus
ofa

helium
atom

,com
posed

oftw
o
protons

and
tw

o
neutrons.)

(iv)
In

the
current

theory,
the

conversion
of

neutrons
into

protons
(and

vice
versa)

took
place

m
ainly

through
collisions

w
ith

electrons,positrons,neu-
trinos,

and
antineutrinos,

not
through

the
decay

of
the

neutrons.

(v)
T
he

ratio
of

photons
to

nuclear
particles

in
the

early
universe

is
now

be-
lieved

to
have

been
about

10
3,

not
10

9
as

A
lpher

and
H
erm

an
concluded.

(b)
(6

points)
In

W
einberg’s

“R
ecipe

for
a
H
ot

U
niverse,”

he
described

the
prim

or-
dialcom

position
ofthe

universe
in

term
s
ofthree

conserved
quantities:

electric
charge,

baryon
num

ber,
and

lepton
num

ber.
If

electric
charge

is
m
easured

in
units

of
the

electron
charge,

then
all

three
quantities

are
integers

for
w
hich

the
num

ber
density

can
be

com
pared

w
ith

the
num

ber
density

of
photons.

For
each

quantity,
w
hich

choice
m
ost

accurately
describes

the
initial

ratio
of

the
num

ber
density

of
this

quantity
to

the
num

ber
density

of
photons:

E
lectric

C
harge:

(i)∼
10

9
(ii)∼

1000
(iii)∼

1
(iv)∼

10 −
6

(v)
either

zero
or

negligible

B
aryon

N
um

ber:
(i)∼

10 −
2
0

(ii)∼
10 −

9
(iii)∼

10 −
6

(iv)∼
1

(v)
anyw

here
from

10 −
5
to

1

L
epton

N
um

ber:
(i)∼

10
9

(ii)∼
1000

(iii)∼
1

(iv)∼
10 −

6
(v)

could
be

as
high

as∼
1,

but
is

assum
ed

to
be

very
sm

all
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(c)
(12

points)
T
he

figure
below

com
es

from
W
einberg’s

C
hapter

5,and
is
labeled

T
he

Shifting
N
eutron-P

roton
B
alance.

(i)
(3

points)
D
uring

the
period

labeled
“therm

al
equilibrium

,”
the

neutron
fraction

is
changing

because
(choose

one):

(A
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
1
second.

(B
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

seconds.

(C
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

m
inutes.

(D
)
N
eutrons

and
protons

can
be

converted
from

one
into

through
reac-

tions
such

asantineutrino
+
proton←→

electron
+

neutron
neutrino

+
neutron←→

positron
+
proton

.

(E
)
N
eutrons

and
protons

can
be

converted
from

one
into

the
other

through
reactions

such
as

antineutrino
+
proton←→

positron
+

neutron
neutrino

+
neutron←→

electron
+
proton

.

(F
)
N
eutrons

and
protons

can
be

created
and

destroyed
by

reactions
such

as
proton

+
neutrino←→

positron
+
antineutrino

neutron
+
antineutrino←→

electron
+

positron
.
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(ii)
(3

points)
D
uring

the
period

labeled
“neutron

decay,”
the

neutron
fraction

is
changing

because
(choose

one):

(A
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
1
second.

(B
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

seconds.

(C
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

m
inutes.

(D
)
N
eutrons

and
protons

can
be

converted
from

one
into

the
other

through
reactions

such
as

antineutrino
+
proton←→

electron
+

neutron
neutrino

+
neutron←→

positron
+
proton

.

(E
)
N
eutrons

and
protons

can
be

converted
from

one
into

the
other

through
reactions

such
as

antineutrino
+
proton←→

positron
+

neutron
neutrino

+
neutron←→

electron
+
proton

.

(F
)
N
eutrons

and
protons

can
be

created
and

destroyed
by

reactions
such

as
proton

+
neutrino←→

positron
+
antineutrino

neutron
+
antineutrino←→

electron
+

positron
.

(iii)
(3

points)
T
he

m
asses

of
the

neutron
and

proton
are

not
exactly

equal,
but

instead

(A
)
T
he

neutron
is

m
ore

m
assive

than
a
proton

w
ith

a
rest

energy
differ-

ence
of

1.293
G
eV

(1
G
eV

=
10

9
eV

).

(B
)
T
he

neutron
is

m
ore

m
assive

than
a
proton

w
ith

a
rest

energy
differ-

ence
of

1.293
M
eV

(1
M
eV

=
10

6
eV

).

(C
)
T
he

neutron
is

m
ore

m
assive

than
a
proton

w
ith

a
rest

energy
differ-

ence
of

1.293
K
eV

(1
K
eV

=
10

3
eV

).

(D
)
T
he

proton
is
m
ore

m
assive

than
a
neutron

w
ith

a
rest

energy
differ-

ence
of

1.293
G
eV

.

(E
)
T
he

proton
is
m
ore

m
assive

than
a
neutron

w
ith

a
rest

energy
differ-

ence
of

1.293
M
eV

.

(F
)
T
he

proton
is
m
ore

m
assive

than
a
neutron

w
ith

a
rest

energy
differ-

ence
of

1.293
K
eV

.
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(iv)
(3

points)
D
uring

the
period

labeled
“era

ofnucleosynthesis,”
(choose

one:)

(A
)
E
ssentially

all
the

neutrons
present

com
bine

w
ith

protons
to

form
helium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.

(B
)
E
ssentially

all
the

neutrons
present

com
bine

w
ith

protons
to

form
deuterium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.

(C
)
A
bout

halfthe
neutrons

present
com

bine
w
ith

protons
to

form
helium

nuclei,w
hich

m
ostly

survive
untilthe

present
tim

e,and
the

other
half

of
the

neutrons
rem

ain
free.

(D
)
A
bout

half
the

neutrons
present

com
bine

w
ith

protons
to

form
deu-

terium
nuclei,

w
hich

m
ostly

survive
until

the
present

tim
e,

and
the

other
half

of
the

neutrons
rem

ain
free.

(E
)
E
ssentially

all
the

protons
present

com
bine

w
ith

neutrons
to

form
helium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.

(F
)
E
ssentially

all
the

protons
present

com
bine

w
ith

neutrons
to

form
deuterium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.

P
R

O
B

L
E
M

3:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(20
points)

T
he

follow
ing

problem
com

es
from

Q
uiz

2,
2011.

(a)
(8

points)
D
uring

nucleosynthesis,
heavier

nuclei
form

from
protons

and
neu-

trons
through

a
series

of
tw

o
particle

reactions.

(i)
In

T
he

F
irst

T
hree

M
inutes,

W
einberg

discusses
tw

o
chains

of
reactions

that,
starting

from
protons

and
neutrons,

end
up

w
ith

helium
,
H
e
4.

D
e-

scribe
at

least
one

of
these

tw
o
chains.

(ii)
E
xplain

briefly
w
hat

is
the

deuterium
bottleneck,and

w
hat

is
its

role
during

nucleosynthesis.

(b)
(12

points)
In

C
hapter

4
of

T
he

F
irst

T
hree

M
inutes,

Steven
W
einberg

m
akes

the
follow

ing
statem

ent
regarding

the
radiation-dom

inated
phase

of
the

early
universe:

T
he

tim
e
that

it
takes

for
the

universe
to

coolfrom
one

tem
perature

to
another

is
proportionalto

the
diff

erence
of

the
inverse

squares
of

these
tem

peratures.

In
this

part
ofthe

problem
you

w
illexplore

m
ore

quantitatively
this

statem
ent.

(i)
For

a
radiation-dom

inated
universe

the
scale-factor

a(t)∝
t
1
/
2.

F
ind

the
cosm

ic
tim

e
t
as

a
function

of
the

H
ubble

expansion
rate

H
.

(ii)
T
he

m
ass

density
stored

in
radiation

ρ
r
is
proportionalto

the
tem

perature
T

to
the

fourth
pow

er:
i.e.,

ρ
r 	

α
T

4,
for

som
e
constant

α
.
For

a
w
ide
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range
of

tem
peratures

w
e
can

take
α
	

4
.52×

10 −
3
2kg·m

−
3·K

−
4.

If
the

tem
perature

is
m
easured

in
degrees

K
elvin

(K
),

then
ρ
r
has

the
standard

SI
units,

[ρ
r ]=

kg·m
−

3.
U
se

the
Friedm

ann
equation

for
a
flat

universe
(k

=
0)

w
ith

ρ
=
ρ
r
to

express
the

H
ubble

expansion
rate

H
in

term
s
ofthe

tem
perature

T
.
Y
ou

w
ill

need
the

SI
value

of
the

gravitational
constant

G
	

6
.67×

10 −
1
1N·m

2·kg −
2.

W
hat

is
the

H
ubble

expansion
rate,in

inverse
seconds,

at
the

start
of

nucleosynthesis,
w
hen

T
=
T

n
u
c
l 	

0
.9×

10
9
K
?

(iii)
U
sing

the
results

in
(i)

and
(ii),express

the
cosm

ic
tim

e
t
as

a
function

of
the

tem
perature.

Y
our

result
should

agree
w
ith

W
einberg’s

claim
above.

W
hat

is
the

cosm
ic

tim
e,

in
seconds,

w
hen

T
=
T

n
u
c
l ?

∗
P

R
O

B
L
E
M

4:
E
V

O
L
U

T
IO

N
O

F
A

N
O

P
E
N

U
N

IV
E
R

S
E

T
he

follow
ing

problem
w
as

taken
from

Q
uiz

2,
1990,

w
here

it
counted

10
points

out
of

100.

C
onsider

an
open,

m
atter-dom

inated
universe,

as
described

by
the

evolution
equations

on
the

front
of

the
quiz.

F
ind

the
tim

e
t
at

w
hich

a
/ √

κ
=

2
α
.

∗
P

R
O

B
L
E
M

5:
A

N
T

IC
IP

A
T

IN
G

A
B

IG
C

R
U

N
C

H

Suppose
that

w
e
lived

in
a
closed,

m
atter-dom

inated
universe,

as
described

by
the

equations
on

the
front

of
the

quiz.
Suppose

further
that

w
e
m
easured

the
m
ass

density
param

eter
Ω

to
be

Ω
0
=

2,and
w
e
m
easured

the
H
ubble

“constant”
to

have
som

e
value

H
0 .

H
ow

m
uch

tim
e
w
ould

w
e
have

before
our

universe
ended

in
a
big

crunch,
at

w
hich

tim
e
the

scale
factor

a(t)
w
ould

collapse
to

0?

∗
P

R
O

B
L
E
M

6:
T

R
A

C
IN

G
L
IG

H
T

R
A

Y
S

IN
A

C
L
O

S
E
D

,
M

A
T

T
E
R

-
D

O
M

IN
A

T
E
D

U
N

IV
E
R

S
E

(30
points)

T
he

follow
ing

problem
w
as

P
roblem

3,
Q
uiz

2,
1998.

T
he

spacetim
e
m
etric

for
a
hom

ogeneous,isotropic,closed
universe

is
given

by
the

R
obertson-W

alker
form

ula:

d
s
2
=
−
c
2
d
τ

2
=
−
c
2
d
t
2
+
a
2(t) {

d
r
2

1−
r
2
+
r
2 (d

θ
2
+

sin
2
θ
d
φ

2 ) }
,

w
here

I
have

taken
k
=

1.
T
o
discuss

m
otion

in
the

radial
direction,

it
is

m
ore

convenient
to

w
ork

w
ith

an
alternative

radialcoordinate
ψ
,related

to
r
by

r
=

sin
ψ
.

T
hen

d
r

√
1−

r
2
=
d
ψ
,
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so
the

m
etric

sim
plifies

to

d
s
2
=
−
c
2
d
τ

2
=
−
c
2
d
t
2
+
a
2(t) {

d
ψ

2
+

sin
2
ψ (d

θ
2
+

sin
2
θ
d
φ

2 )}
.

(a)
(7

points)
A

light
pulse

travels
on

a
null

trajectory,
w
hich

m
eans

that
d
τ
=

0
for

each
segm

ent
of

the
trajectory.

C
onsider

a
light

pulse
that

m
oves

along
a
radial

line,
so

θ
=
φ
=

constant.
F
ind

an
expression

for
d
ψ
/
d
t
in

term
s
of

quantities
that

appear
in

the
m
etric.

(b)
(8

points)
W
rite

an
expression

for
the

physical
horizon

distance


p
h
y
s
at

tim
e

t.
Y
ou

should
leave

your
answ

er
in

the
form

of
a
definite

integral.

T
he

form
of
a(t)

depends
on

the
content

of
the

universe.
If
the

universe
is

m
atter-

dom
inated

(i.e.,dom
inated

by
nonrelativistic

m
atter),then

a(t)
is
described

by
the

param
etric

equations
ct

=
α
(θ−

sin
θ)

,

a
=
α
(1−

cos
θ)

,

w
here

α
≡

4
π3
G
ρ
a
3

c
2

.

T
hese

equations
are

identical
to

those
on

the
front

of
the

exam
,except

that
I
have

chosen
k
=

1.

(c)
(10

points)
C
onsider

a
radial

light-ray
m
oving

through
a
m
atter-dom

inated
closed

universe,
as

described
by

the
equations

above.
F
ind

an
expression

for
d
ψ
/
d
θ,w

here
θ
is

the
param

eter
used

to
describe

the
evolution.

(d)
(5

points)
Suppose

that
a
photon

leaves
the

origin
of

the
coordinate

system
(ψ

=
0)

at
t
=

0.
H
ow

long
w
illit

take
for

the
photon

to
return

to
its

starting
place?

E
xpress

your
answ

er
as

a
fraction

of
the

full
lifetim

e
of

the
universe,

from
big

bang
to

big
crunch.

P
R

O
B

L
E
M

7:
L
E
N

G
T

H
S

A
N

D
A

R
E
A

S
IN

A
T

W
O

-D
IM

E
N

S
IO

N
A

L
M

E
T

R
IC

(25
points)

T
he

follow
ing

problem
w
as

P
roblem

3,
Q
uiz

2,
1994:

Suppose
a
tw

o
dim

ensional
space,

described
in

polar
coordinates

(r,θ),
has

a
m
etric

given
by

d
s
2
=

(1
+
a
r)

2
d
r
2
+
r
2(1

+
br)

2
d
θ
2
,

w
here

a
and

b
are

positive
constants.

C
onsider

the
path

in
this

space
w
hich

is
form

ed
by

starting
at

the
origin,

m
oving

along
the

θ
=

0
line

to
r
=

r
0 ,

then
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m
oving

at
fixed

r
to

θ
=
π
/2,

and
then

m
oving

back
to

the
origin

at
fixed

θ.
T
he

path
is

show
n
below

:

a)
(10

points)
F
ind

the
totallength

of
this

path.

b)
(15

points)
F
ind

the
area

enclosed
by

this
path.

P
R

O
B

L
E
M

8:
G

E
O

M
E
T

R
Y

IN
A

C
L
O

S
E
D

U
N

IV
E
R

S
E

(25
points)

T
he

follow
ing

problem
w
as

P
roblem

4,
Q
uiz

2,
1988:

C
onsider

a
universe

described
by

the
R
obertson–W

alker
m
etric

on
the

first
page

of
the

quiz,
w
ith

k
=

1.
T
he

questions
below

all
pertain

to
som

e
fixed

tim
e
t,

so

the
scale

factor
can

be
w
ritten

sim
ply

as
a,dropping

its
explicit

t-dependence.

A
sm

all
rod

has
one

end
at

the
point

(r
=
h
,
θ
=

0
,
φ
=

0)
and

the
other

end

at
the

point
(r

=
h
,
θ
=

∆
θ
,
φ
=

0).
A
ssum

e
that

∆
θ�

1.
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(a)
F
ind

the
physical

distance


p
from

the
origin

(r
=

0)
to

the
first

end
(h
,0
,0)

of
the

rod.
Y
ou

m
ay

find
one

of
the

follow
ing

integrals
useful:

∫
d
r

√
1−

r
2
=

sin −
1
r

∫
d
r

1−
r
2
=

12
ln (

1
+
r

1−
r )

.

(b)
F
ind

the
physical

length
s
p
of

the
rod.

E
xpress

your
answ

er
in

term
s
of

the
scale

factor
a,

and
the

coordinates
h
and

∆
θ.

(c)
N
ote

that
∆
θ
is
the

angle
subtended

by
the

rod,as
seen

from
the

origin.
W
rite

an
expression

for
this

angle
in

term
s
of

the
physical

distance


p ,

the
physical

length
s
p ,

and
the

scale
factor

a.

P
R

O
B

L
E
M

9:
T

H
E

G
E
N

E
R

A
L

S
P

H
E
R

IC
A

L
LY

S
Y

M
M

E
T

R
IC

M
E
T

-
R

IC
(20

points)

T
he

follow
ing

problem
w
as

P
roblem

3,
Q
uiz

2,
1986:

T
he

m
etric

for
a
given

space
depends

ofcourse
on

the
coordinate

system
w
hich

is
used

to
describe

it.
It

can
be

show
n
that

for
any

three
dim

ensional
space

w
hich

is
spherically

sym
m
etric

about
a
particular

point,coordinates
can

be
found

so
that

the
m
etric

has
the

form

d
s
2
=
d
r
2
+
ρ
2(r) [d

θ
2
+
sin

2
θ
d
φ

2 ]
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for
som

e
function

ρ(r).
T
he

coordinates
θ
and

φ
have

their
usual

ranges:
θ
varies

betw
een

0
and

π
,and

φ
varies

from
0
to

2
π
,w

here
φ
=

0
and

φ
=

2
π
are

identified.
G
iven

this
m
etric,

consider
the

sphere
w
hose

outer
boundary

is
defined

by
r
=
r
0 .

(a)
F
ind

the
physical

radius
a
of

the
sphere.

(B
y
“radius”,

I
m
ean

the
physical

length
of

a
radial

line
w
hich

extends
from

the
center

to
the

boundary
of

the
sphere.)

(b)
F
ind

the
physical

area
of

the
surface

of
the

sphere.

(c)
F
ind

an
explicit

expression
for

the
volum

e
of

the
sphere.

B
e
sure

to
include

the
lim

its
of

integration
for

any
integrals

w
hich

occur
in

your
answ

er.

(d)
Suppose

a
new

radialcoordinate
σ
is

introduced,
w
here

σ
is

related
to

r
by

σ
=
r
2
.

E
xpress

the
m
etric

in
term

s
of

this
new

variable.

P
R

O
B

L
E
M

10:
V

O
L
U

M
E
S

IN
A

R
O

B
E
R
T

S
O

N
-W

A
L
K

E
R

U
N

IV
E
R

S
E

(20
points)

T
he

follow
ing

problem
w
as

P
roblem

1,
Q
uiz

3,
1990:

T
he

m
etric

for
a
R
obertson-W

alker
universe

is
given

by

d
s
2
=
a
2(t) {

d
r
2

1−
k
r
2
+
r
2 (d

θ
2
+
sin

2
θ
d
φ

2 ) }
.

C
alculate

the
volum

e
V
(r

m
a
x )

of
the

sphere
described

by

r≤
r
m

a
x
.

Y
ou

should
carry

out
any

angular
integrations

that
m
ay

be
necessary,but

you
m
ay

leave
your

answ
er

in
the

form
of

a
radialintegralw

hich
is
not

carried
out.

B
e
sure,

how
ever,

to
clearly

indicate
the

lim
its

of
integration.

∗
P

R
O

B
L
E
M

11:
T

H
E

S
C

H
W

A
R

Z
S
C

H
IL

D
M

E
T

R
IC

(25
points)

T
he

follow
problem

w
as

P
roblem

4,
Q
uiz

3,
1992:

T
he

space
outside

a
spherically

sym
m
etric

m
ass

M
is

described
by

the
Schw

arzschild
m
etric,

given
at

the
front

of
the

exam
.
T
w
o
observers,

designated
A

and
B
,are

located
along

the
sam

e
radialline,w

ith
values

of
the

coordinate
r
given

by
r
A
and

r
B
,
respectively,

w
ith

r
A
<
r
B
.
Y
ou

should
assum

e
that

both
observers

lie
outside

the
Schw

arzschild
horizon.
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a)
(5

points)
W
rite

dow
n
the

expression
for

the
Schw

arzschild
horizon

radius
R

S ,
expressed

in
term

s
of
M

and
fundam

ental
constants.

b)
(5

points)
W

hat
is

the
proper

distance
betw

een
A

and
B
?

It
is

okay
to

leave
the

answ
er

to
this

part
in

the
form

of
an

integral
that

you
do

not
evaluate—

but
be

sure
to

clearly
indicate

the
lim

its
of

integration.

c)
(5

points)
O
bserver

A
has

a
clock

that
em

its
an

evenly
spaced

sequence
ofticks,

w
ith

proper
tim

e
separation

∆
τ
A
.
W

hat
w
illbe

the
coordinate

tim
e
separation

∆
t
A
betw

een
these

ticks?

d)
(5

points)
A
t
each

tick
of
A
’s

clock,
a
light

pulse
is

transm
itted.

O
bserver

B

receives
these

pulses,and
m
easures

the
tim

e
separation

on
his

ow
n
clock.

W
hat

is
the

tim
e
interval

∆
τ
B

m
easured

by
B
.

e)
(5

points)
Suppose

that
the

ob
ject

creating
the

gravitational
field

is
a
static

black
hole,

so
the

Schw
arzschild

m
etric

is
valid

for
all

r.
N
ow

suppose
that

one
considers

the
case

in
w
hich

observer
A

lies
on

the
Schw

arzschild
horizon,

so
r
A
≡
R

S .
Is

the
proper

distance
betw

een
A

and
B

finite
for

this
case?

D
oes

the
tim

e
interval

of
the

pulses
received

by
B
,∆

τ
B
,
diverge

in
this

case?

P
R

O
B

L
E
M

12:
G

E
O

D
E
S
IC

S
(20

points)

T
he

follow
ing

problem
w
as

P
roblem

4,
Q
uiz

2,
1986:

O
rdinary

E
uclidean

tw
o-dim

ensional
space

can
be

described
in

polar
coordi-

nates
by

the
m
etric

d
s
2
=
d
r
2
+
r
2
d
θ
2
.

(a)
Suppose

that
r(λ)

and
θ(λ)

describe
a
geodesic

in
this

space,w
here

the
param

-
eter

λ
is

the
arc

length
m
easured

along
the

curve.
U
se

the
general

form
ula

on
the

front
of

the
exam

to
obtain

explicit
differential

equations
w
hich

r(λ)
and

θ(λ)
m
ust

obey.

(b)
N
ow

introduce
the

usual
C
artesian

coordinates,
defined

by

x
=
r
cos

θ
,

y
=
r
sin

θ
.

U
se

your
answ

er
to

(a)
to

show
that

the
line

y
=

1
is

a
geodesic

curve.
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∗
P

R
O

B
L
E
M

13:
A

N
E
X

E
R

C
IS

E
IN

T
W

O
-D

IM
E
N

S
IO

N
A

L
M

E
T

R
IC

S
(30

points)

(a)
(8

points)
C
onsider

first
a
tw

o-dim
ensional

space
w
ith

coordinates
r
and

θ.
T
he

m
etric

is
given

by

d
s
2
=

d
r
2
+
r
2d
θ
2
.

C
onsider

the
curve

described
by

r(θ)
=

(1
+
εcos

2
θ)
r
0
,

w
here

ε
and

r
0
are

constants,
and

θ
runs

from
θ
1
to

θ
2 .

W
rite

an
expression,

in
the

form
of

a
definite

integral,
for

the
length

S
of

this
curve.

(b)
(5

points)
N
ow

consider
a
tw

o-dim
ensionalspace

w
ith

the
sam

e
tw

o
coordinates

r
and

θ,but
this

tim
e
the

m
etric

w
illbe

d
s
2
= (1

+
ra )

d
r
2
+
r
2
d
θ
2
,

w
here

a
is

a
constant.

θ
is

a
periodic

(angular)
variable,

w
ith

a
range

of
0
to

2
π
,w

ith
2
π
identified

w
ith

0.
W

hat
is
the

length
R

ofthe
path

from
the

origin
(r

=
0)

to
the

point
r
=
r
0 ,θ

=
0,

along
the

path
for

w
hich

θ
=

0
everyw

here
along

the
path?

Y
ou

can
leave

your
answ

er
in

the
form

of
a
definite

integral.
(B

e
sure,

how
ever,

to
specify

the
lim

its
of

integration.)

(c)
(7

points)
For

the
space

described
in

part
(b),w

hat
is
the

totalarea
contained

w
ithin

the
region

r
<
r
0 .

A
gain

you
can

leave
your

answ
er

in
the

form
of

a
definite

integral,
m
aking

sure
to

specify
the

lim
its

of
integration.

(d)
(10

points)
A
gain

for
the

space
described

in
part

(b),
consider

a
geodesic

de-
scribed

by
the

usual
geodesic

equation,

dd
s {

g
ij d

x
j

d
s }

=
12
(∂
i g
k
� )

d
x
k

d
s

d
x
�

d
s
.

T
he

geodesic
is
described

by
functions

r(s)
and

θ(s),w
here

s
is
the

arc
length

along
the

curve.
W
rite

explicitly
both

(i.e.,
for

i=
1=

r
and

i=
2=

θ)
geodesic

equations.
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P
R

O
B

L
E
M

14:
G

E
O

D
E
S
IC

S
O

N
T

H
E

S
U

R
FA

C
E

O
F

A
S
P

H
E
R

E

In
this

problem
w
e
w
ill

test
the

geodesic
equation

by
com

puting
the

geodesic
curves

on
the

surface
of

a
sphere.

W
e
w
ill

describe
the

sphere
as

in
L
ecture

N
otes

5,
w
ith

m
etric

given
by

d
s
2
=
a
2 (d

θ
2
+

sin
2
θ
d
φ

2 )
.

(a)
C
learly

one
geodesic

on
the

sphere
is

the
equator,

w
hich

can
be

param
etrized

by
θ
=

π
/2

and
φ

=
ψ
,
w
here

ψ
is

a
param

eter
w
hich

runs
from

0
to

2π
.

Show
that

if
the

equator
is

rotated
by

an
angle

α
about

the
x-axis,

then
the

equations
becom

e:
cos

θ
=

sin
ψ
sin

α

tan
φ
=

tan
ψ
cos

α
.

(b)
U
sing

the
generic

form
ofthe

geodesic
equation

on
the

front
ofthe

exam
,derive

the
differential

equation
w
hich

describes
geodesics

in
this

space.

(c)
Show

that
the

expressions
in

(a)
satisfy

the
differential

equation
for

the
geodesic.

H
int:

T
he

algebra
on

this
can

be
m
essy,

but
I
found

things
w
ere

reasonably
sim

ple
if
I
w
rote

the
derivatives

in
the

follow
ing

w
ay:

d
θ

d
ψ

=
−

cos
ψ
sin

α
√

1−
sin

2
ψ
sin

2
α

,
d
φ

d
ψ

=
cos

α

1−
sin

2
ψ
sin

2
α

.

∗
P

R
O

B
L
E
M

15:
G

E
O

D
E
S
IC

S
IN

A
C

L
O

S
E
D

U
N

IV
E
R

S
E

T
he

follow
ing

problem
w
as

P
roblem

3,
Q
uiz

3,
2000,

w
here

it
w
as

w
orth

40
points

plus
5

points
extra

credit.

C
onsider

the
case

of
closed

R
obertson-W

alker
universe.

T
aking

k
=

1,
the

spacetim
e
m
etric

can
be

w
ritten

in
the

form

d
s
2
=
−
c
2
d
τ

2
=
−
c
2
d
t
2
+
a
2(t) {

d
r
2

1−
r
2
+
r
2 (d

θ
2
+

sin
2
θ
d
φ

2 ) }
.

W
e
w
ill

assum
e
that

this
m
etric

is
given,

and
that

a(t)
has

been
specified.

W
hile

galaxies
are

approxim
ately

stationary
in

the
com

oving
coordinate

system
described

by
this

m
etric,w

e
can

stillconsider
an

ob
ject

that
m
oves

in
this

system
.
In

particu-
lar,in

this
problem

w
e
w
illconsider

an
ob

ject
that

is
m
oving

in
the

radialdirection
(r-direction),under

the
influence

of
no

forces
other

than
gravity.

H
ence

the
ob

ject
w
illtravel

on
a
geodesic.

(a)
(7

points)
E
xpress

d
τ
/
d
t
in

term
s
of
d
r/
d
t.
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(b)
(3

points)
E
xpress

d
t/
d
τ
in

term
s
of
d
r/
d
t.

(c)
(10

points)
If

the
ob

ject
travels

on
a
trajectory

given
by

the
function

r
p (t)

betw
een

som
e
tim

e
t
1
and

som
e
later

tim
e
t
2 ,w

rite
an

integralw
hich

gives
the

totalam
ount

of
tim

e
that

a
clock

attached
to

the
ob

ject
w
ould

record
for

this
journey.

(d)
(10

points)
D
uring

a
tim

e
interval

d
t,the

ob
ject

w
illm

ove
a
coordinate

distance

d
r
=
d
rd
t
d
t
.

L
et
d


denote

the
physicaldistance

that
the

ob
ject

m
oves

during
this

tim
e.

B
y

“physicaldistance,”
Im

ean
the

distance
that

w
ould

be
m
easured

by
a
com

oving
observer

(an
observer

stationary
w
ith

respect
to

the
coordinate

system
)
w
ho

is
located

at
the

sam
e
point.

T
he

quantity
d

/
d
t
can

be
regarded

as
the

physical
speed

v
p
h
y
s
of

the
ob

ject,
since

it
is

the
speed

that
w
ould

be
m
easured

by
a

com
oving

observer.
W
rite

an
expression

for
v
p
h
y
s
as

a
function

of
d
r/
d
t
and

r.

(e)
(10

points)
U
sing

the
form

ulas
at

the
front

of
the

exam
,
derive

the
geodesic

equation
of

m
otion

for
the

coordinate
r
of

the
ob

ject.
Specifically,

you
should

derive
an

equation
of

the
form

dd
τ [

A
d
r

d
τ ]

=
B (

d
t

d
τ )

2

+
C (

d
r

d
τ )

2

+
D (

d
θ

d
τ )

2

+
E (

d
φ

d
τ )

2

,

w
here

A
,
B
,
C
,
D
,and

E
are

functions
ofthe

coordinates,som
e
ofw

hich
m
ight

be
zero.

(f)
(5

points
E
X
T
R
A

C
R
E
D
IT

)
O
n
P
roblem

3
of

P
roblem

Set
5
w
e
learned

that
in

a
flat

R
obertson-W

alker
m
etric,

the
relativistically

defined
m
om

entum
of

a
particle,

p
=

m
v
p
h
y
s

√
1−

v
2p
h
y
s

c
2

,

falls
off

as
1
/
a(t).

U
se

the
geodesic

equation
derived

in
part

(e)
to

show
that

the
sam

e
is

true
in

a
closed

universe.

P
R

O
B

L
E
M

16:
A

T
W

O
-D

IM
E
N

S
IO

N
A

L
C

U
R
V

E
D

S
P
A

C
E

(40
points)

T
he

follow
ing

problem
w
as

P
roblem

3,
Q
uiz

2,
2002.

C
onsider

a
tw

o-dim
ensional

curved
space

described
by

polar
coordinates

u
and

θ,w
here

0≤
u≤

a
and

0≤
θ≤

2
π
,

and
θ
=

2
π
is

as
usual

identified
w
ith

θ
=

0.
T
he

m
etric

is
given

by

d
s
2
=

a
d
u

2

4
u(a−

u)
+
u
d
θ
2
.

A
diagram

ofthe
space

is
show

n
at

the
right,but

you
should

ofcourse
keep

in
m
ind

that
the

diagram
does

not
accurately

reflect
the

distances
defined

by
the

m
etric.
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(a)
(6

points)
F
ind

the
radius

R
of

the
space,

defined
as

the
length

of
a
radial

(i.e.,
θ
=

constant)
line.

Y
ou

m
ay

express
your

answ
er

as
a
definite

integral,
w
hich

you
need

not
evaluate.

B
e
sure,how

ever,to
specify

the
lim

its
of

integration.

(b)
(6

points)
F
ind

the
circum

ference
S

of
the

space,
de-

fined
as

the
length

of
the

boundary
of

the
space

at
u
=
a.

(c)
(7

points)
C
onsider

an
annular

region
as

show
n,

con-
sisting

of
all

points
w
ith

a
u-coordinate

in
the

range
u

0 ≤
u
≤
u

0
+

d
u.

F
ind

the
physical

area
d
A

of
this

region,
to

first
order

in
d
u.

(d)
(3

points)
U
sing

your
answ

er
to

part
(c),w

rite
an

expression
for

the
totalarea

of
the

space.

(e)
(10

points)
C
onsider

a
geodesic

curve
in

this
space,

described
by

the
functions

u(s)
and

θ(s),
w
here

the
param

eter
s
is

chosen
to

be
the

arc
length

along
the

curve.
F
ind

the
geodesic

equation
for

u(s),w
hich

should
have

the
form

dd
s [

F
(u
,θ)

d
u

d
s ]

=
...

,

w
here

F
(u
,θ)

is
a
function

that
you

w
ill

find.
(N

ote
that

by
w
riting

F
as

a
function

of
u
and

θ,
w
e
are

saying
that

it
could

depend
on

either
or

both
of

them
,
but

w
e
are

not
saying

that
it

necessarily
depends

on
them

.)
Y
ou

need
not

sim
plify

the
left-hand

side
of

the
equation.

(f)
(8

points)
Sim

ilarly,find
the

geodesic
equation

for
θ(s),w

hich
should

have
the

form
dd
s [

G
(u
,θ)

d
θ

d
s ]

=
...

,

8.286
Q

U
IZ

2
R

E
V

IE
W

P
R

O
B

L
E

M
S
,
F
A

L
L

2011
p
.
22

w
here

G
(u
,θ)

is
a
function

that
you

w
illfind.

A
gain,you

need
not

sim
plify

the
left-hand

side
of

the
equation.

∗
P

R
O

B
L
E
M

17:
R

O
T
A

T
IN

G
F
R

A
M

E
S

O
F

R
E
F
E
R

E
N

C
E

(35
points)

T
he

follow
ing

problem
w
as

P
roblem

3,
Q
uiz

2,
2004.

In
this

problem
w
e
w
illuse

the
form

alism
ofgeneralrelativity

and
geodesics

to
derive

the
relativistic

description
of

a
rotating

fram
e
of

reference.

T
he

problem
w
illconcern

the
consequences

of
the

m
etric

d
s
2
=
−
c
2
d
τ

2
=
−
c
2
d
t
2
+ [d

r
2
+
r
2
(d
φ
+
ω
d
t)

2
+

d
z
2 ]

,
(P

17.1)

w
hich

corresponds
to

a
coordinate

system
rotating

about
the

z-axis,
w
here

φ
is

the
azim

uthal
angle

around
the

z-axis.
T
he

coordinates
have

the
usual

range
for

cylindrical
coordinates:−∞

<
t
<
∞

,
0≤

r
<
∞

,−∞
<
z
<
∞

,
and

0≤
φ
<

2
π
,

w
here

φ
=

2
π
is

identified
w
ith

φ
=

0.

E
X
T
R
A

IN
F
O
R
M

A
T
IO

N

T
o

w
ork

the
problem

,
you

do
not

need
to

know
anything

about
w
here

this
m
etric

cam
e

from
.
H
ow

ever,
it

m
ight

(or
m
ight

not!)
help

your
intuition

to
know

that
E
q.(P

17.1)
w
as

obtained
by

starting
w
ith

a
M

inkow
skim

etric
in

cylindrical
coordinates

t̄,
r̄,
φ̄,

and
z̄,

c
2
d
τ

2
=
c
2
d
t̄
2− [d

r̄
2
+
r̄
2
d
φ̄

2
+

d
z̄
2 ]

,

and
then

introducing
new

coordinates
t,
r,
φ,

and
z

that
are

related
by

t̄
=
t,

r̄
=
r,

φ̄
=
φ
+
ω
t,

z̄
=
z
,

so
d
t̄
=

d
t,

d
r̄
=

d
r,

d
φ̄
=

d
φ
+
ω
d
t,

and
d
z̄
=

d
z.

(a)
(8

points)
T
he

m
etric

can
be

w
ritten

in
m
atrix

form
by

using
the

standard
definition

d
s
2
=
−
c
2
d
τ

2≡
g
µ
ν
d
x
µ
d
x
ν
,

w
here

x
0≡

t,
x

1≡
r,
x

2≡
φ,

and
x

3≡
z.

T
hen,

for
exam

ple,
g
1
1
(w

hich
can

also
be

called
g
r
r )

is
equal

to
1.

F
ind

explicit
expressions

to
com

plete
the

list
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of
the

nonzero
entries

in
the

m
atrix

g
µ
ν :

g
1
1 ≡

g
r
r
=

1

g
0
0 ≡

g
tt
=

?

g
2
0 ≡

g
0
2 ≡

g
φ
t ≡

g
tφ

=
?

g
2
2 ≡

g
φ
φ
=

?

g
3
3 ≡

g
z
z
=

?

(P
17.2)

If
you

cannot
answ

er
part

(a),you
can

introduce
unspecified

functions
f
1 (r),

f
2 (r),

f
3 (r),

and
f
4 (r),w

ith

g
1
1 ≡

g
r
r
=

1

g
0
0 ≡

g
tt
=
f
1 (r)

g
2
0 ≡

g
0
2 ≡

g
φ
t ≡

g
tφ

=
f
1 (r)

g
2
2 ≡

g
φ
φ
=
f
3 (r)

g
3
3 ≡

g
z
z
=
f
4 (r)

,

(P
17.3)

and
you

can
then

express
your

answ
ers

to
the

subsequent
parts

in
term

s
of

these
unspecified

functions.

(b)
(10

points)
U
sing

the
geodesic

equations
from

the
front

of
the

quiz,

dd
τ {

g
µ
ν
d
x
ν

d
τ }

=
12
(∂
µ
g
λ
σ )

d
x
λ

d
τ

d
x
σ

d
τ

,

explicitly
w
rite

the
equation

that
results

w
hen

the
free

index
µ
is

equal
to

1,
corresponding

to
the

coordinate
r.

(c)
(7

points)
E
xplicitly

w
rite

the
equation

that
results

w
hen

the
free

index
µ
is

equal
to

2,
corresponding

to
the

coordinate
φ.

(d)
(10

points)
U
se

the
m
etric

to
find

an
expression

for
d
t/d

τ
in

term
s
of

d
r/d

t,
d
φ
/d
t,
and

d
z
/d
t.

T
he

expression
m
ay

also
depend

on
the

constants
c
and

ω
.

B
e
sure

to
note

that
your

answ
er

should
depend

on
the

derivatives
of
t,
φ,and

z
w
ith

respect
to

t,
not

τ.
(H

int:
first

find
an

expression
for

d
τ
/d
t,

in
term

s
of

the
quantities

indicated,
and

then
ask

yourself
how

this
result

can
be

used
to

find
d
t/d

τ.)
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P
R

O
B

L
E
M

18:
T

H
E

S
T
A

B
IL

IT
Y

O
F

S
C

H
W

A
R

Z
S
C

H
IL

D
O

R
B

IT
S

(30
points)

T
his

problem
w
as

P
roblem

4,
Q
uiz

2
in

2007.
I

have
m
odified

the
reference

to
the

hom
ew

ork
problem

to
correspond

to
the

current
(2011)

context,
w
here

it
is

P
roblem

16
ofthese

review
problem

s.
In

2007
it

had
been

a
hom

ew
ork

problem
prior

to
the

quiz.

T
his

problem
is
an

elaboration
ofthe

previous
problem

,P
roblem

16,for
w
hich

both
the

statem
ent

and
the

solution
are

reproduced
at

the
end

of
this

quiz.
T
his

m
aterialis

reproduced
for

your
reference,but

you
should

be
aw

are
that

the
solution

to
the

present
problem

has
im

portant
differences.

Y
ou

can
copy

from
this

m
aterial,

but
to

allow
the

grader
to

assess
your

understanding,
you

are
expected

to
present

a
logical,self-contained

answ
er

to
this

question.

In
the

solution
to

that
hom

ew
ork

problem
,
it

w
as

stated
that

further
analysis

of
the

orbits
in

a
Schw

arzschild
geom

etry
show

s
that

the
sm

allest
stable

circular
orbit

occurs
for

r
=

3
R
S .

C
ircular

orbits
are

possible
for

32
R
S
<
r
<

3
R
S
,
but

they
are

not
stable.

In
this

problem
w
e
w
ill

explore
the

calculations
behind

this
statem

ent.

W
e
w
ill

consider
a
body

w
hich

undergoes
sm

all
oscillations

about
a
circular

orbit
at

r(t)
=
r
0 ,
θ
=
π
/2,w

here
r
0
is

a
constant.

T
he

coordinate
θ
w
illtherefore

be
fixed,

but
allthe

other
coordinates

w
ill

vary
as

the
body

follow
s
its

orbit.

(a)
(12

points)
T
he

first
step,since

r(τ)
w
illnot

be
a
constant

in
this

solution,w
ill

be
to

derive
the

equation
of

m
otion

for
r(τ).

T
hat

is,
for

the
Schw

arzschild
m
etric

d
s
2
=
−
c
2d
τ

2
=
−
h(r)c

2d
t
2
+
h(r) −

1d
r
2
+
r
2d
θ
2
+
r
2
sin

2
θ
d
φ

2
,

(P
18.1)

w
here

h(r)≡
1−

R
Sr
,

w
ork

out
the

explicit
form

of
the

geodesic
equation

dd
τ [

g
µ
ν
d
x
ν

d
τ ]

=
12
∂
g
λ
σ

∂
x
µ

d
x
λ

d
τ

d
x
σ

d
τ

,
(P

18.2)

for
the

case
µ
=
r.

Y
ou

should
use

this
result

to
find

an
explicit

expression
for

d
2r

d
τ

2
.

Y
ou

m
ay

allow
your

answ
er

to
contain

h(r),its
derivative

h ′(r)
w
ith

respect
to

r,
and

the
derivative

w
ith

respect
to

τ
of

any
coordinate,including

d
t/
d
τ.
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(b)
(6

points)
It

is
usefulto

consider
r
and

φ
to

be
the

independent
variables,w

hile
treating

t
as

a
dependent

variable.
F
ind

an
expression

for

(
d
t

d
τ )

2

in
term

s
of

r,
d
r/
d
τ,

d
φ
/
d
τ,

h(r),
and

c.
U
se

this
equation

to
sim

plify
the

expression
for

d
2r/

d
τ

2
obtained

in
part

(a).
T
he

goalis
to

obtain
an

expression
of

the
form

d
2r

d
τ

2
=
f
0 (r)

+
f
1 (r) (

d
φ

d
τ )

2

.
(P

18.3)

w
here

the
functions

f
0 (r)

and
f
1 (r)

m
ight

depend
on

R
S
or

c,
and

m
ight

be
positive,negative,

or
zero.

N
ote

that
the

interm
ediate

steps
in

the
calculation

involve
a
term

proportional
to

(d
r/
d
τ)

2,
but

the
net

coeffi
cient

for
this

term
vanishes.

(c)
(7

points)
T
o
understand

the
orbit

w
e
w
illalso

need
the

equation
ofm

otion
for

φ.
E
valuate

the
geodesic

equation
(P

18.2)
for

µ
=
φ,

and
w
rite

the
result

in
term

s
of

the
quantity

L
,
defined

byL
≡
r
2
d
φ

d
τ
.

(P
18.4)

(d)
(5

points)
F
inally,w

e
com

e
to

the
question

ofstability.
Substituting

E
q.(P

18.4)
into

E
q.

(P
18.3),the

equation
of

m
otion

for
r
can

be
w
ritten

as

d
2r

d
τ

2
=
f
0 (r)+

f
1 (r)

L
2

r
4
.

N
ow

consider
a
sm

all
perturbation

about
the

circular
orbit

at
r
=

r
0 ,

and
w
rite

an
equation

that
determ

ines
the

stability
of

the
orbit.

(T
hat

is,
if
som

e
external

force
gives

the
orbiting

body
a
sm

allkick
in

the
radialdirection,

how
can

you
determ

ine
w
hether

the
perturbation

w
illlead

to
stable

oscillations,or
w
hether

it
w
ill

start
to

grow
?)

Y
ou

should
express

the
stability

requirem
ent

in
term

s
of

the
unspecified

functions
f
0 (r)

and
f
1 (r).

Y
ou

are
N
O
T

asked
to

carry
out

the
algebra

of
inserting

the
explicit

form
s
that

you
have

found
for

these
functions.
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∗
P

R
O

B
L
E
M

19:
P

R
E
S
S
U

R
E

A
N

D
E
N

E
R

G
Y

D
E
N

S
IT

Y
O

F
M

Y
S
T

E
-

R
IO

U
S

S
T

U
F
F

(25
points)

T
he

follow
ing

problem
w
as

P
roblem

3,
Q
uiz

3,
2002.

In
L
ecture

N
otes

10,a
thought

experim
ent

involving
a
piston

w
as

used
to

show
that

p
=
−
ρ
c
2
for

any
substance

for
w
hich

the
energy

density
rem

ains
constant

under
expansion.

In
this

problem
you

w
ill

apply
the

sam
e
technique

to
calculate

the
pressure

of
m

y
ste

rio
u
s

stu
ff
,
w
hich

has
the

property
that

the
energy

density
falls

off
in

proportion
to

1/ √
V

as
the

volum
e
V

is
increased.

Ifthe
initialenergy

density
ofthe

m
ysterious

stuff
is
u

0
=
ρ
0 c

2,then
the

initial
configuration

of
the

piston
can

be
draw

n
as

T
he

piston
is

then
pulled

outw
ard,

so
that

its
initial

volum
e
V

is
increased

to
V

+
∆
V
.
Y
ou

m
ay

consider
∆
V

to
be

infinitesim
al,

so
∆
V

2
can

be
neglected.

(a)
(15

points)
U
sing

the
fact

that
the

energy
density

of
m
ysterious

stuff
falls

off
as

1
/ √

V
,
find

the
am

ount
∆
U

by
w
hich

the
energy

inside
the

piston
changes

w
hen

the
volum

e
is

enlarged
by

∆
V
.
D
efine

∆
U

to
be

positive
if
the

energy
increases.

(b)
(5

points)
If

the
(unknow

n)
pressure

of
the

m
ysterious

stuff
is

called
p,

how
m
uch

w
ork

∆
W

is
done

by
the

agent
that

pulls
out

the
piston?

(c)
(5

points)
U
se

your
results

from
(a)

and
(b)

to
express

the
pressure

p
of

the
m
ysterious

stuff
in

term
s
of

its
energy

density
u.

(If
you

did
not

answ
er

parts
(a)

and/or
(b),explain

as
best

you
can

how
you

w
ould

determ
ine

the
pressure

if
you

knew
the

answ
ers

to
these

tw
o
questions.)
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S
O

L
U

T
IO

N
S

P
R

O
B

L
E
M

1:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(a)
T
his

is
a
total

trick
question.

L
epton

num
ber

is,
of

course,
conserved,

so
the

factor
is

just
1.

See
W
einberg

chapter
4,

pages
91-4.

(b)
T
he

correct
answ

er
is

(i).
T
he

others
are

all
real

reasons
w
hy

it’s
hard

to
m
easure,

although
W
einberg’s

book
em

phasizes
reason

(v)
a
bit

m
ore

than
m
odern

astrophysicists
do:

astrophysicists
have

been
looking

for
other

w
ays

that
deuterium

m
ight

be
produced,

but
no

significant
m
echanism

has
been

found.
See

W
einberg

chapter
5,

pages
114-7.

(c)
T
he

m
ost

obvious
answ

ers
w
ould

be
proton,

neutron,
and

pi
m
eson.

H
ow

ever,
there

are
m
any

other
possibilities,including

m
any

that
w
ere

not
m
entioned

by
W
einberg.

See
W
einberg

chapter
7,

pages
136-8.

(d)
T
he

correct
answ

ers
w
ere

the
neutrino

and
the

antiproton.
T
he

neutrino
w
as

first
hypothesized

by
W
olfgang

P
auliin

1932
(in

order
to

explain
the

kine-
m
atics

of
beta

decay),
and

first
detected

in
the

1950s.
A
fter

the
positron

w
as

discovered
in

1932,the
antiproton

w
as

thought
likely

to
exist,and

the
B
evatron

in
B
erkeley

w
as

built
to

look
for

antiprotons.
It

m
ade

the
first

detection
in

the
1950s.

(e)
T
he

correct
answ

ers
w
ere

(ii),(v)
and

(vi).
T
he

others
w
ere

incorrect
for

the
follow

ing
reasons:

(i)
the

earliest
prediction

of
the

C
M
B

tem
perature,

by
A
lpher

and
H
erm

an
in

1948,w
as

5
degrees,

not
0.1

degrees.

(iii)
W
einberg

quotes
his

experim
entalcolleagues

as
saying

that
the

3 ◦
K

radi-
ation

could
have

been
observed

“long
before

1965,
probably

in
the

m
id-

1950s
and

perhaps
even

in
the

m
id-1940s.”

T
o
W
einberg,

how
ever,

the
historically

interesting
question

is
not

w
hen

the
radiation

could
have

been
observed,but

w
hy

radio
astronom

ers
did

not
know

that
they

ought
to

try.

(iv)
W
einberg

argues
that

physicists
at

the
tim

e
did

not
pay

attention
to

either
the

steady
state

m
odelor

the
big

bang
m
odel,as

indicated
by

the
sentence

in
item

(v)
w
hich

is
a
direct

quote
from

the
book:

“It
w
as

extraordinarily
diffi

cult
for

physicists
to

take
seriously

any
theory

of
the

early
universe”.
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P
R

O
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G
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(24
points)

(a)
(6

points)
In

1948
R
alph

A
.A

lpher
and

R
obert

H
erm

an
w
rote

a
paper

predict-
ing

a
cosm

ic
m
icrow

ave
background

w
ith

a
tem

perature
of5

K
.
T
he

paper
w
as

based
on

a
cosm

ological
m
odel

that
they

had
developed

w
ith

G
eorge

G
am

ow
,

in
w
hich

the
early

universe
w
as

assum
ed

to
have

been
filled

w
ith

hot
neutrons.

A
s
the

universe
expanded

and
cooled

the
neutrons

underw
ent

beta
decay

into
protons,

electrons,
and

antineutrinos,
until

at
som

e
point

the
universe

cooled
enough

for
light

elem
ents

to
be

synthesized.
A
lpher

and
H
erm

an
found

that
to

account
for

the
observed

present
abundances

oflight
elem

ents,the
ratio

ofpho-
tons

to
nuclear

particles
m
ust

have
been

about
10

9.
A
lthough

the
predicted

tem
perature

w
as

very
close

to
the

actual
value

of
2.7

K
,
the

theory
differed

from
our

present
theory

in
tw

o
w
ays.

C
ircle

the
tw

o
correct

statem
ents

in
the

follow
ing

list.
(3

points
for

each
right

answ
er;

circle
at

m
ost

2.)

(i)
G
am

ow
,
A
lpher,

and
H
erm

an
assum

ed
that

the
neutron

could
decay,

but
now

the
neutron

is
thought

to
be

absolutely
stable.

(ii)
In

the
current

theory,
the

universe
started

w
ith

nearly
equal

densities
of

protons
and

neutrons,
not

all
neutrons

as
G
am

ow
,
A
lpher,

and
H
erm

an
assum

ed.

(iii)
In

the
current

theory,the
universe

started
w
ith

m
ainly

alpha
particles,not

all
neutrons

as
G
am

ow
,
A
lpher,

and
H
erm

an
assum

ed.
(N

ote:
an

alpha
particle

is
the

nucleus
ofa

helium
atom

,com
posed

oftw
o
protons

and
tw

o
neutrons.)

(iv)
In

the
current

theory,
the

conversion
of

neutrons
into

protons
(and

vice
versa)

took
place

m
ainly

through
collisions

w
ith

electrons,positrons,neu-
trinos,

and
antineutrinos,

not
through

the
decay

of
the

neutrons.

(v)
T
he

ratio
of

photons
to

nuclear
particles

in
the

early
universe

is
now

be-
lieved

to
have

been
about

10
3,

not
10

9
as

A
lpher

and
H
erm

an
concluded.

(b)
(6

points)
In

W
einberg’s

“R
ecipe

for
a
H
ot

U
niverse,”

he
described

the
prim

or-
dialcom

position
ofthe

universe
in

term
s
ofthree

conserved
quantities:

electric
charge,

baryon
num

ber,
and

lepton
num

ber.
If

electric
charge

is
m
easured

in
units

of
the

electron
charge,

then
all

three
quantities

are
integers

for
w
hich

the
num

ber
density

can
be

com
pared

w
ith

the
num

ber
density

of
photons.

For
each

quantity,
w
hich

choice
m
ost

accurately
describes

the
initial

ratio
of

the
num

ber
density

of
this

quantity
to

the
num

ber
density

of
photons:
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E
lectric

C
harge:

(i)∼
10

9
(ii)∼

1000
(iii)∼

1
(iv)∼

10 −
6

(v)
either

zero
or

negligible

B
aryon

N
um

ber:
(i)∼

10 −
2
0

(ii)∼
10 −

9
(iii)∼

10 −
6

(iv)∼
1

(v)
anyw

here
from

10 −
5
to

1

L
epton

N
um

ber:
(i)∼

10
9

(ii)∼
1000

(iii)∼
1

(iv)∼
10 −

6
(v)

could
be

as
high

as∼
1,

but
is

assum
ed

to
be

very
sm

all

(c)
(12

points)
T
he

figure
below

com
es

from
W
einberg’s

C
hapter

5,and
is
labeled

T
he

Shifting
N
eutron-P

roton
B
alance.

(i)
(3

points)
D
uring

the
period

labeled
“therm

al
equilibrium

,”
the

neutron
fraction

is
changing

because
(choose

one):

(A
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
1
second.

(B
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

seconds.

(C
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

m
inutes.

(D
)
N
eutrons

and
protons

can
be

converted
from

one
into

through
reac-

tions
such

as
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antineutrino
+
proton←→

electron
+

neutron
neutrino

+
neutron←→

positron
+
proton

.

(E
)
N
eutrons

and
protons

can
be

converted
from

one
into

the
other

through
reactions

such
as

antineutrino
+
proton←→

positron
+

neutron
neutrino

+
neutron←→

electron
+
proton

.

(F
)
N
eutrons

and
protons

can
be

created
and

destroyed
by

reactions
such

as
proton

+
neutrino←→

positron
+
antineutrino

neutron
+
antineutrino←→

electron
+

positron
.

(ii)
(3

points)
D
uring

the
period

labeled
“neutron

decay,”
the

neutron
fraction

is
changing

because
(choose

one):

(A
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
1
second.

(B
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

seconds.

(C
)
T
he

neutron
is

unstable,
and

decays
into

a
proton,

electron,
and

an-
tineutrino

w
ith

a
lifetim

e
of

about
15

m
inutes.

(D
)
N
eutrons

and
protons

can
be

converted
from

one
into

the
other

through
reactions

such
as

antineutrino
+
proton←→

electron
+

neutron
neutrino

+
neutron←→

positron
+
proton

.

(E
)
N
eutrons

and
protons

can
be

converted
from

one
into

the
other

through
reactions

such
as

antineutrino
+
proton←→

positron
+

neutron
neutrino

+
neutron←→

electron
+
proton

.

(F
)
N
eutrons

and
protons

can
be

created
and

destroyed
by

reactions
such

as
proton

+
neutrino←→

positron
+
antineutrino

neutron
+
antineutrino←→

electron
+

positron
.
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(iii)
(3

points)
T
he

m
asses

of
the

neutron
and

proton
are

not
exactly

equal,
but

instead

(A
)
T
he

neutron
is

m
ore

m
assive

than
a
proton

w
ith

a
rest

energy
differ-

ence
of

1.293
G
eV

(1
G
eV

=
10

9
eV

).

(B
)
T
he

neutron
is

m
ore

m
assive

than
a
proton

w
ith

a
rest

energy
differ-

ence
of

1.293
M
eV

(1
M
eV

=
10

6
eV

).

(C
)
T
he

neutron
is

m
ore

m
assive

than
a
proton

w
ith

a
rest

energy
differ-

ence
of

1.293
K
eV

(1
K
eV

=
10

3
eV

).

(D
)
T
he

proton
is
m
ore

m
assive

than
a
neutron

w
ith

a
rest

energy
differ-

ence
of

1.293
G
eV

.

(E
)
T
he

proton
is
m
ore

m
assive

than
a
neutron

w
ith

a
rest

energy
differ-

ence
of

1.293
M
eV

.

(F
)
T
he

proton
is
m
ore

m
assive

than
a
neutron

w
ith

a
rest

energy
differ-

ence
of

1.293
K
eV

.

(iv)
(3

points)
D
uring

the
period

labeled
“era

ofnucleosynthesis,”
(choose

one:)

(A
)
E
ssentially

all
the

neutrons
present

com
bine

w
ith

protons
to

form
helium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.

(B
)
E
ssentially

all
the

neutrons
present

com
bine

w
ith

protons
to

form
deuterium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.

(C
)
A
bout

halfthe
neutrons

present
com

bine
w
ith

protons
to

form
helium

nuclei,w
hich

m
ostly

survive
untilthe

present
tim

e,and
the

other
half

of
the

neutrons
rem

ain
free.

(D
)
A
bout

half
the

neutrons
present

com
bine

w
ith

protons
to

form
deu-

terium
nuclei,

w
hich

m
ostly

survive
until

the
present

tim
e,

and
the

other
half

of
the

neutrons
rem

ain
free.

(E
)
E
ssentially

all
the

protons
present

com
bine

w
ith

neutrons
to

form
helium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.

(F
)
E
ssentially

all
the

protons
present

com
bine

w
ith

neutrons
to

form
deuterium

nuclei,
w
hich

m
ostly

survive
until

the
present

tim
e.
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R

O
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(20
points) †

(a)
(8

points)

(i)
(4

points)
W
e
w
ill

use
the

notation
X
A

to
indicate

a
nucleus,*

w
here

X
is

the
sym

bol
for

the
elem

ent
w
hich

indicates
the

num
ber

of
protons,

w
hile

A
is
the

m
ass

num
ber,nam

ely
the

totalnum
ber

ofprotons
and

neu-
trons.

W
ith

this
notation

H
1,
H

2,
H

3,
H
e
3
and

H
e
4
stand

for
hydrogen,

deuterium
,
tritium

,
helium

-3
and

helium
-4

nuclei,
respectively.

Steven
W
einberg,

in
T
he

F
irst

T
hree

M
inutes,

chapter
V
,
page

108,
describes

tw
o
chains

of
reactions

that
produce

helium
,
starting

from
protons

and
neutrons.

T
hey

can
be

w
ritten

as:

p
+
n
→

H
2
+
γ

H
2
+
n
→

H
3
+
γ

H
3
+
p→

H
e
4
+
γ
,

p
+
n
→

H
2
+
γ

H
2
+
p→

H
e
3
+
γ

H
e
3
+
n
→

H
e
4
+
γ
.

T
hese

are
the

tw
o
exam

ples
given

by
W
einberg.

H
ow

ever,different
chains

of
tw

o
particle

reactions
can

take
place

(in
general

w
ith

different
proba-

bilities).
For

exam
ple:

p
+
n
→

H
2
+
γ

H
2
+
H

2→
H
e
4
+
γ
,

p
+
n
→

H
2
+
γ

H
2
+
n
→

H
3
+
γ

H
3
+
H

2→
H
e
4
+
n
,

p
+
n
→

H
2
+
γ

H
2
+
p→

H
e
3
+
γ

H
e
3
+
H

2→
H
e
4
+
p
,

...

Students
w
ho

described
chains

different
from

those
of

W
einberg,

but
that

can
stilltake

place,
got

fullcredit
for

this
part.

A
lso,notice

that
photons

in
the

reactions
above

carry
the

additionalenergy
released.

H
ow

ever,since
the

m
ain

point
w
as

to
describe

the
nuclear

reactions,students
w
ho

didn’t
include

the
photons

stillreceived
full

credit.

(ii)
(4

points)
T
he

deuterium
bottleneck

is
discussed

by
W
einberg

in
T
he

F
irst

T
hree

M
inutes,

chapter
V
,
pages

109-110.
T
he

key
point

is
that

from
part

(i)
it

should
be

clear
that

deuterium
(H

2)
plays

a
crucial

role
in

*
N
otice

that
som

e
students

talked
about

atom
s,

w
hile

w
e
are

talking
about

nuclei
form

ation.
D
uring

nucleosynthesis
the

tem
perature

is
w
ay

too
high

to
allow

electrons
and

nuclei
to

bind
together

to
form

atom
s.

T
his

happens
m
uch

later,
in

the
process

called
recom

bination.
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nucleosynthesis,
since

it
is

the
starting

point
for

all
the

chains.
H
ow

ever,
the

deuterium
nucleus

is
extrem

ely
loosely

bound
com

pared
to

H
3,
H
e
3,

or
especially

H
e
4.

So,
there

w
ill

be
a
range

of
tem

peratures
w
hich

are
low

enough
for

H
3,
H
e
3,

and
H
e
4
nuclei

to
be

bound,
but

too
high

to
allow

the
deuterium

nucleus
to

be
stable.

T
his

is
the

tem
perature

range
w
here

the
deuterium

bottleneck
is

in
action:

even
if
H

3,
H
e
3,

and
H
e
4

nucleicould
in

principle
be

stable
at

those
tem

peratures,they
do

not
form

because
deuterium

,w
hich

is
the

starting
point

for
their

form
ation,cannot

be
form

ed
yet.

N
ucleosynthesis

cannot
proceed

at
a
significant

rate
until

the
tem

perature
is
low

enough
so

that
deuterium

nucleiare
stable;at

this
point

the
deuterium

bottleneck
has

been
passed.

(b)
(12

points)

(i)
(3

points)
If

w
e
take

a(t)
=

bt
1
/
2,

for
som

e
constant

b,
w
e
get

for
the

H
ubble

expansion
rate:

H
=
ȧa
=

12
t

=⇒
t
=

12
H
.

(ii)
(6

points)
B
y
using

the
Friedm

ann
equation

w
ith

k
=

0
and

ρ
=
ρ
r
=
α
T

4,
w
e
find:H

2
=

8
π3
G
ρ
r
=

8
π3
G
α
T

4
=⇒

H
=
T

2 √
8
π3
G
α
.

If
w
e
substitute

the
given

num
ericalvalues

G
	

6
.67×

10 −
1
1
N
·m

2·kg −
2

and
α
	

4
.52×

10 −
3
2
kg·m

−
3·K

−
4
w
e
get:

H
	
T

2×
5
.03×

10 −
2
1s −

1·K
−

2
.

N
otice

that
the

units
correctly

com
bine

to
give

H
in

units
of

s −
1
if

the
tem

perature
is

expressed
in

degrees
K
elvin

(K
).

In
detail,w

e
see:

[G
α
] 1
/
2
=

(N
·m

2·kg −
2·kg·m

−
3·K

−
4)

1
/
2
=

s −
1·K

−
2
,

w
here

w
e
used

the
fact

that
1
N

=
1
kg·m

·s −
2.

A
t
T

=
T

n
u
c
l 	

0
.9×

10
9K

w
e
get:

H
	

4
.07×

10 −
3s −

1.
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(iii)
(3

points)
U
sing

the
results

in
parts

(i)
and

(ii),w
e
get

t
=

12
H
	 (

9
.95×

10
1
9

T
2

)
s·K

2
.

T
o
good

accuracy,
the

num
erator

in
the

expression
above

can
be

rounded
to

10
2
0.

T
he

above
equation

agrees
w
ith

W
einberg’s

claim
that,

for
a

radiation
dom

inated
universe,

tim
e
is

proportional
to

the
inverse

square
of

the
tem

perature.
In

particular
for

T
=
T

n
u
c
l
w
e
get:

t
n
u
c
l 	

123
s≈

2
m
in
.

†Solution
w
ritten

by
D
aniele

B
ertolini.

P
R

O
B

L
E
M

4:
E
V

O
L
U

T
IO

N
O

F
A

N
O

P
E
N

U
N

IV
E
R

S
E

T
he

evolution
of

an
open,

m
atter-dom

inated
universe

is
described

by
the

fol-
low

ing
param

etric
equations:

ct
=
α
(sinh

θ−
θ)

a√κ
=
α
(cosh

θ−
1)

.

E
valuating

the
second

of
these

equations
at

a
/ √

κ
=

2
α
yields

a
solution

for
θ:

2
α
=
α
(cosh

θ−
1)

=⇒
cosh

θ
=

3
=⇒

θ
=

cosh −
1(3)

.

W
e
can

use
these

results
in

the
first

equation
to

solve
for

t.
N
oting

that

sinh
θ
= √

cosh
2
θ−

1
=
√
8
=

2 √
2
,

w
e
have

t
=
αc [2 √

2−
cosh −

1(3) ]
.

N
um

erically,
t≈

1
.06567

α
/
c.
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5:
A

N
T

IC
IP

A
T

IN
G

A
B

IG
C

R
U

N
C

H

T
he

criticaldensity
is

given
by

ρ
c
=

3
H

20

8
π
G

,

so
the

m
ass

density
is

given
byρ
=

Ω
0 ρ

c
=

2
ρ
c
=

3
H

20

4
π
G

.
(S5.1)

Substituting
this

relation
into

H
20
=

8
π3
G
ρ−

k
c
2

a
2
,

w
e
find

H
20
=

2
H

20 −
k
c
2

a
2
,

from
w
hich

it
follow

s
that

a√k
=

cH
0
.

(S5.2)

N
ow

use

α
=

4
π3
G
ρ
a
3

k
3
/
2c

2
.

Substituting
the

values
w
e
have

from
E
qs.

(S5.1)
and

(S5.2)
for

ρ
and

a
/ √

k,
w
e

have
α
=

cH
0
.

(S5.3)

T
o
determ

ine
the

value
of

the
param

eter
θ,

use

a√k
=
α
(1−

cos
θ)

,

w
hich

w
hen

com
bined

w
ith

E
qs.

(S5.2)
and

(S5.3)
im

plies
that

cos
θ

=
0
.
T
he

equation
cos

θ
=

0
has

m
ultiple

solutions,
but

w
e
know

that
the

θ-param
eter

for
a
closed

m
atter-dom

inated
universe

varies
betw

een
0
and

π
during

the
expansion

phase
of

the
universe.

W
ithin

this
range,cos

θ
=

0
im

plies
that

θ
=
π
/2.

T
hus,the

age
of

the
universe

at
the

tim
e
these

m
easurem

ents
are

m
ade

is
given

by

t
=
αc
(θ−

sin
θ)

=
1H
0 (

π2
−

1 )
.
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T
he

totallifetim
e
of

the
closed

universe
corresponds

to
θ
=

2
π
,or

t
fi
n
a
l =

2
π
αc

=
2
π

H
0
,

so
the

tim
e
rem

aining
before

the
big

crunch
is

given
by

t
fi
n
a
l −

t
=

1H
0 [2

π− (
π2
−

1 )]
=

(
3
π2
+

1 )
1H
0
.

P
R

O
B

L
E
M

6:
T

R
A

C
IN

G
L
IG

H
T

R
A

Y
S

IN
A

C
L
O

S
E
D

,
M

A
T

T
E
R

-
D

O
M

IN
A

T
E
D

U
N

IV
E
R

S
E

(a)
Since

θ
=
φ
=

constant,
d
θ
=
d
φ
=

0,and
for

light
rays

one
alw

ays
has

d
τ
=

0.
T
he

line
elem

ent
therefore

reduces
to

0
=
−
c
2
d
t
2
+
a
2(t)d

ψ
2
.

R
earranging

gives
(
d
ψd
t )

2

=
c
2

a
2(t)

,

w
hich

im
plies

that

d
ψd
t
=
±

c

a(t)
.

T
he

plus
sign

describes
outw

ard
radialm

otion,w
hile

the
m
inus

sign
describes

inw
ard

m
otion.

(b)
T
he

m
axim

um
value

ofthe
ψ
coordinate

that
can

be
reached

by
tim

e
t
is
found

by
integrating

its
rate

of
change:

ψ
h
o
r
= ∫

t

0

c

a(t ′)
d
t ′
.

T
he

physicalhorizon
distance

is
the

proper
length

ofthe
shortest

line
draw

n
at

the
tim

e
t
from

the
origin

to
ψ
=
ψ

h
o
r ,
w
hich

according
to

the
m
etric

is
given

by



p
h
y
s (t)

= ∫
ψ

=
ψ

h
o
r

ψ
=

0

d
s
= ∫

ψ
h
o
r

0

a(t)
d
ψ
=

a(t) ∫
t

0

c

a(t ′)
d
t ′
.
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(c)
From

part
(a),

d
ψd
t
=

c

a(t)
.

B
y
differentiating

the
equation

ct
=

α
(θ−

sin
θ)

stated
in

the
problem

,
one

finds
d
t

d
θ
=
αc
(1−

cos
θ)

.

T
hen

d
ψd
θ
=
d
ψd
t

d
t

d
θ
=
α
(1−

cos
θ)

a(t)
.

T
hen

using
a
=
α
(1−

cos
θ),as

stated
in

the
problem

,one
has

the
very

sim
ple

result

d
ψd
θ
=

1
.

(d)
T
his

part
is

very
sim

ple
if

one
know

s
that

ψ
m
ust

change
by

2
π

before
the

photon
returns

to
its

starting
point.

Since
d
ψ
/
d
θ
=

1,this
m
eans

that
θ
m
ust

also
change

by
2
π
.
From

a
=
α
(1−

cos
θ),

one
can

see
that

a
returns

to
zero

at
θ
=

2
π
,so

this
is

exactly
the

lifetim
e
of

the
universe.

So,

T
im

e
for

photon
to

return
L
ifetim

e
of

universe
=

1
.

If
it

is
not

clear
w
hy

ψ
m
ust

change
by

2
π

for
the

photon
to

return
to

its
starting

point,
then

recall
the

construction
of

the
closed

universe
that

w
as

used
in

L
ecture

N
otes

5.
T
he

closed
universe

is
described

as
the

3-dim
ensional

surface
of

a
sphere

in
a
four-dim

ensional
E
uclidean

space
w
ith

coordinates
(x
,y
,z
,w

):
x

2
+
y
2
+
z
2
+
w

2
=
a
2
,

w
here

a
is

the
radius

of
the

sphere.
T
he

R
obertson-W

alker
coordinate

system
is

constructed
on

the
3-dim

ensional
surface

of
the

sphere,
taking

the
point

(0
,0
,0
,1)

as
the

center
of

the
coordinate

system
.
If

w
e
define

the
w
-direction

as
“north,”

then
the

point
(0,0

,0
,1)

can
be

called
the

north
pole.

E
ach

point
(x
,y
,z
,w

)
on

the
surface

ofthe
sphere

is
assigned

a
coordinate

ψ
,defined

to
be

the
angle

betw
een

the
positive

w
axis

and
the

vector
(x
,y
,z
,w

).
T
hus

ψ
=

0
at

the
north

pole,and
ψ
=
π
for

the
antipodalpoint,(0,0

,0
,−

1),w
hich

can
be

called
the

south
pole.

In
m
aking

the
round

trip
the

photon
m
ust

travel
from

the
north

pole
to

the
south

pole
and

back,
for

a
totalrange

of
2π

.
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D
iscussion:

Som
e
students

answ
ered

that
the

photon
w
ould

return
in

the
life-

tim
e
ofthe

universe,but
reached

this
conclusion

w
ithout

considering
the

details
ofthe

m
otion.

T
he

argum
ent

w
as

sim
ply

that,at
the

big
crunch

w
hen

the
scale

factor
returns

to
zero,alldistances

w
ould

return
to

zero,including
the

distance
betw

een
the

photon
and

its
starting

place.
T
his

statem
ent

is
correct,but

it
does

not
quite

answ
er

the
question.

F
irst,the

statem
ent

in
no

w
ay

rules
out

the
pos-

sibility
that

the
photon

m
ight

return
to

its
starting

point
before

the
big

crunch.
Second,

if
w
e
use

the
delicate

but
w
ell-m

otivated
definitions

that
general

rel-
ativists

use,
it

is
not

necessarily
true

that
the

photon
returns

to
its

starting
point

at
the

big
crunch.

T
o
be

concrete,let
m
e
consider

a
radiation-dom

inated
closed

universe—
a
hypothetical

universe
for

w
hich

the
only

“m
atter”

present
consists

of
m
assless

particles
such

as
photons

or
neutrinos.

In
that

case
(you

can
check

m
y
calculations)

a
photon

that
leaves

the
north

pole
at

t
=

0
just

reaches
the

south
pole

at
the

big
crunch.

It
m
ight

seem
that

reaching
the

south
pole

at
the

big
crunch

is
not

any
different

from
com

pleting
the

round
trip

back
to

the
north

pole,since
the

distance
betw

een
the

north
pole

and
the

south
pole

is
zero

at
t
=
t
C

ru
n
ch ,

the
tim

e
of

the
big

crunch.
H
ow

ever,
suppose

w
e
adopt

the
principle

that
the

instant
of

the
initial

singularity
and

the
instant

of
the

final
crunch

are
both

too
singular

to
be

considered
part

of
the

spacetim
e.

W
e

w
ill

allow
ourselves

to
m
athem

atically
consider

tim
es

ranging
from

t
=

ε
to

t
=

t
C

ru
n
ch −

ε,
w
here

ε
is

arbitrarily
sm

all,
but

w
e
w
ill

not
try

to
describe

w
hat

happens
exactly

at
t
=

0
or

t
=
t
C

ru
n
ch .

T
hus,w

e
now

consider
a
photon

that
starts

its
journey

at
t
=
ε,

and
w
e
follow

it
until

t
=
t
C

ru
n
ch −

ε.
For

the
case

of
the

m
atter-dom

inated
closed

universe,
such

a
photon

w
ould

traverse
a
fraction

of
the

full
circle

that
w
ould

be
alm

ost
1,

and
w
ould

approach
1
as

ε→
0.

B
y
contrast,

for
the

radiation-dom
inated

closed
universe,

the
photon

w
ould

traverse
a
fraction

of
the

full
circle

that
is

alm
ost

1/2,
and

it
w
ould

approach
1/2

as
ε→

0.
T
hus,

from
this

point
of

view
the

tw
o
cases

look
very

different.
In

the
radiation-dom

inated
case,

one
w
ould

say
that

the
photon

has
com

e
only

half-w
ay

back
to

its
starting

point.

P
R

O
B

L
E
M

7:
L
E
N

G
T

H
S

A
N

D
A

R
E
A

S
IN

A
T

W
O

-D
IM

E
N

-
S
IO

N
A

L
M

E
T

R
IC

a)
A
long

the
first

segm
ent

d
θ
=

0,
so

d
s
2
=

(1
+
a
r)

2
d
r
2,

or
d
s
=

(1
+
a
r)
d
r.

Integrating,
the

length
of

the
first

segm
ent

is
found

to
be

S
1
= ∫

r
0

0

(1
+
a
r)
d
r
=
r
0
+

12
a
r
20
.

A
long

the
second

segm
ent

d
r
=

0,
so

d
s
=
r(1

+
br)

d
θ,

w
here

r
=
r
0 .

So
the

length
of

the
second

segm
ent

is

S
2
= ∫

π
/
2

0

r
0 (1

+
br

0 )
d
θ
=
π2
r
0 (1

+
br

0 )
.
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F
inally,the

third
segm

ent
is
identicalto

the
first,so

S
3
=
S

1 .
T
he

totallength
is

then

S
=

2
S

1
+
S

2
=

2 (
r
0
+

12
a
r
20 )

+
π2
r
0 (1

+
br

0 )

=
(2

+
π2 )

r
0
+

12
(2
a
+
π
b)r

20
.

b)
T
o
find

the
area,it

is
best

to
divide

the
region

into
concentric

strips
as

show
n:

N
ote

that
the

strip
has

a
coordinate

w
idth

of
d
r,

but
the

distance
across

the
w
idth

of
the

strip
is

determ
ined

by
the

m
etric

to
be

d
h
=

(1
+
a
r)
d
r
.

T
he

length
of

the
strip

is
calculated

the
sam

e
w
ay

as
S

2
in

part
(a):

s(r)
=
π2
r(1

+
br)

.

T
he

area
is

then

d
A

=
s(r)

d
h
,
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so
A

= ∫
r
0

0

s(r)
d
h

= ∫
r
0

0

π2
r(1

+
br)(1

+
a
r)
d
r

=
π2 ∫

r
0

0

[r
+
(a

+
b)r

2
+
a
br

3]d
r

=
π2 [

12
r
20
+

13
(a

+
b)r

30
+

14
a
br

40 ]

P
R

O
B

L
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M

8:
G

E
O

M
E
T

R
Y

IN
A

C
L
O

S
E
D

U
N

IV
E
R

S
E

(a)
A
s
one

m
oves

along
a
line

from
the

origin
to

(h
,0
,0),there

is
no

variation
in
θ

or
φ.

So
d
θ
=
d
φ
=

0,
and

d
s
=

a
d
r

√
1−

r
2
.

So



p
= ∫

h

0

a
d
r

√
1−

r
2
=
a
sin −

1
h
.

(b)
In

this
case

it
is

only
θ
that

varies,
so

d
r
=
d
φ
=

0.
So

d
s
=
a
r
d
θ
,

so

s
p
=
a
h
∆
θ
.

(c)
From

part
(a),one

has
h
=

sin(

p /
a)

.

Inserting
this

expression
into

the
answ

er
to

(b),
and

then
solving

for
∆
θ,

one
has

∆
θ
=

s
p

a
sin(


p /
a)

.

N
ote

that
as

a→
∞

,this
approaches

the
E
uclidean

result,
∆
θ
=
s
p /


p .
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9:
T

H
E

G
E
N

E
R

A
L

S
P

H
E
R

IC
A

L
LY

S
Y

M
M

E
T

R
IC

M
E
T

-
R

IC

(a)
T
he

m
etric

is
given

byd
s
2
=
d
r
2
+
ρ
2(r) [d

θ
2
+

sin
2
θ
d
φ

2 ]
.

T
he

radius
a
is

defined
as

the
physical

length
of

a
radial

line
w
hich

extends
from

the
center

to
the

boundary
ofthe

sphere.
T
he

length
ofa

path
is
just

the
integral

of
d
s,so

a
= ∫

radial
path

from
origin

to
r
0

d
s
.

T
he

radial
path

is
at

a
constant

value
of
θ
and

φ,
so

d
θ
=
d
φ
=

0,
and

then
d
s
=
d
r.

So

a
= ∫

r
0

0

d
r
=

r
0
.

(b)
O
n
the

surface
r
=
r
0 ,

so
d
r≡

0.
T
hen

d
s
2
=
ρ
2(r

0 ) [d
θ
2
+

sin
2
θ
d
φ

2 ]
.

T
o
find

the
area

elem
ent,

consider
first

a
path

obtained
by

varying
only

θ.
T
hen

d
s
=
ρ(r

0 )
d
θ.

Sim
ilarly,

a
path

obtained
by

varying
only

φ
has

length
d
s
=

ρ(r
0 )sin

θ
d
φ.

Furtherm
ore,

these
tw

o
paths

are
perpendicular

to
each

other,
a
fact

that
is

incorporated
into

the
m
etric

by
the

absence
of

a
d
r
d
θ

term
.
T
hus,

the
area

of
a
sm

all
rectangle

constructed
from

these
tw

o
paths

is
given

by
the

product
of

their
lengths,

so

d
A

=
ρ
2(r

0 )sin
θ
d
θ
d
φ
.

T
he

area
is

then
obtained

by
integrating

over
the

range
of

the
coordinate

variables:

A
=
ρ
2(r

0 ) ∫
2
π

0

d
φ ∫

π

0

sin
θ
d
θ

=
ρ
2(r

0 )(2
π
) (−

cos
θ ∣∣∣ π0 )

=⇒
A

=
4
π
ρ
2(r

0 )
.

A
s
a
check,

notice
that

if
ρ(r)

=
r,

then
the

m
etric

becom
es

the
m
etric

of
E
uclidean

space,
in

spherical
polar

coordinates.
In

this
case

the
answ

er
above

becom
es

the
w
ell-know

n
form

ula
for

the
area

of
a
E
uclidean

sphere,
4π
r
2.
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(c)
A
s
in

P
roblem

5
ofP

roblem
Set

4,w
e
can

im
agine

breaking
up

the
volum

e
into

sphericalshells
ofinfinitesim

althickness,w
ith

a
given

shellextending
from

r
to

r
+
d
r.

B
y
the

previous
calculation,the

area
of

such
a
shellis

A
(r)

=
4
π
ρ
2(r).

(In
the

previous
part

w
e
considered

only
the

case
r
=
r
0 ,but

the
sam

e
argum

ent
applies

for
any

value
of
r.)

T
he

thickness
ofthe

shellis
just

the
path

length
d
s

of
a
radial

path
corresponding

to
the

coordinate
interval

d
r.

For
radial

paths
the

m
etric

reduces
to

d
s
2
=
d
r
2,

so
the

thickness
of

the
shell

is
d
s
=
d
r.

T
he

volum
e
of

the
shell

is
then

d
V

=
4
π
ρ
2(r)

d
r
.

T
he

totalvolum
e
is

then
obtained

by
integration:

V
=

4
π ∫

r
0

0

ρ
2(r)

d
r
.

C
hecking

the
answ

er
for

the
E
uclidean

case,
ρ(r)

=
r,

one
sees

that
it

gives
V

=
(4
π
/3)r

30 ,
as

expected.

(d)
If
r
is
replaced

by
a
new

coordinate
σ
≡
r
2,then

the
infinitesim

alvariations
of

the
tw

o
coordinates

are
related

by

d
σd
r
=

2
r
=

2 √
σ
,

so

d
r
2
=
d
σ

2

4
σ

.

T
he

function
ρ(r)

can
then

be
w
ritten

as
ρ( √

σ
),

so

d
s
2
=
d
σ

2

4
σ

+
ρ
2( √

σ
) [d

θ
2
+

sin
2
θ
d
φ

2 ]
.

P
R

O
B

L
E
M

10:
V

O
L
U

M
E
S

IN
A

R
O

B
E
R
T

S
O

N
-W

A
L
K

E
R

U
N

IV
E
R

S
E

T
he

product
of

differential
length

elem
ents

corresponding
to

infinitesim
al

changes
in

the
coordinates

r,θ
and

φ
equals

the
differential

volum
e
elem

ent
d
V
.

T
herefore

d
V

=
a(t)

d
r

√
1−

k
r
2 ×

a(t)rd
θ×

a(t)r
sin

θ
d
φ
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T
he

totalvolum
e
is

then

V
= ∫

d
V

=
a
3(t) ∫

r
m

a
x

0

d
r ∫

π

0

d
θ ∫

2
π

0

d
φ

r
2
sin

θ
√
1−

k
r
2

W
e
can

do
the

angular
integrations

im
m
ediately:

V
=

4
π
a
3(t) ∫

r
m

a
x

0

r
2d
r

√
1−

k
r
2
.

[P
edagogicalN

ote:
Ifyou

don’t
see

through
the

solutions
above,then

note
that

the
volum

e
of

the
sphere

can
be

determ
ined

by
integration,after

first
breaking

the
volum

e
into

infinitesim
al

cells.
A

generic
cell

is
show

n
in

the
diagram

below
:

T
he

cellincludes
the

volum
e
lying

betw
een

r
and

r
+
d
r,betw

een
θ
and

θ
+
d
θ,

and
betw

een
φ
and

φ
+
d
φ.

In
the

lim
it

as
d
r,
d
θ,

and
d
φ
all

approach
zero,

the
cell

approaches
a
rectangular

solid
w
ith

sides
of

length:

d
s
1
=
a(t)

d
r

√
1−

k
r
2

d
s
2
=
a(t)r

d
θ

d
s
3
=
a(t)r

sin
θ
d
θ
.

H
ere

each
d
s
is
calculated

by
using

the
m
etric

to
find

d
s
2,in

each
case

allow
ing

only
one

ofthe
quantities

d
r,
d
θ,or

d
φ
to

be
nonzero.

T
he

infinitesim
alvolum

e
elem

ent
is
then

d
V

=
d
s
1 d
s
2 d
s
3 ,resulting

in
the

answ
er

above.
T
he

derivation
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relies
on

the
orthogonality

of
the

d
r,
d
θ,

and
d
φ
directions;

the
orthogonality

is
im

plied
by

the
m
etric,

w
hich

otherw
ise

w
ould

contain
cross

term
s
such

as
d
r
d
θ.]

[E
xtension:

T
he

integral
can

in
fact

be
carried

out,using
the

substitution

√
k
r
=

sin
ψ

(if
k
>

0)
√−

k
r
=

sinh
ψ

(if
k
>

0).

T
he

answ
er

is

V
= 

2
π
a
3(t) 

sin −
1 (√

k
r
m

a
x )

k
3
/
2

− √
1−

k
r
2m

a
x

k


(if

k
>

0)

2
π
a
3(t) [√

1−
k
r
2m

a
x

(−
k)

−
sinh −

1 (√−
k
r
m

a
x )

(−
k)

3
/
2

]
(if

k
<

0)
.]

P
R

O
B

L
E
M

11:
T

H
E

S
C

H
W

A
R

Z
S
C

H
IL

D
M

E
T

R
IC

a)
T
he

Schw
arzschild

horizon
is

the
value

of
r
for

w
hich

the
m
etric

becom
es

sin-
gular.

Since
the

m
etric

contains
the

factor

(
1−

2
G
M

rc
2 )

,

it
becom

es
singular

at

R
S
=

2
G
M

c
2

.

b)
T
he

separation
betw

een
A

and
B

is
purely

in
the

radialdirection,so
the

proper
length

of
a
segm

ent
along

the
path

joining
them

is
given

by

d
s
2
= (

1−
2
G
M

rc
2 )

−
1

d
r
2
,

so

d
s
=

d
r

√
1−

2
G
M

r
c
2

.
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T
he

proper
distance

from
A

to
B

is
obtained

by
adding

the
proper

lengths
of

all
the

segm
ents

along
the

path,
so

s
A
B
= ∫

r
B

r
A

d
r

√
1−

2
G
M

r
c
2

.

E
X

T
E

N
S
IO

N
:
T
he

integration
can

be
carried

out
explicitly.

F
irst

use
the

expression
for

the
Schw

arzschild
radius

to
rew

rite
the

expression
for

s
A
B

as

s
A
B
= ∫

r
B

r
A

√
r
d
r

√
r−

R
S

.

T
hen

introduce
the

hyperbolic
trigonom

etric
substitution

r
=
R
S
cosh

2
u
.

O
ne

then
has

√
r−

R
S
= √

R
S
sinh

u

d
r
=

2
R
S
cosh

u
sinh

u
d
u
,

and
the

indefinite
integral

becom
es

∫
√
r
d
r

√
r−

R
S

=
2
R
S ∫

cosh
2
u
d
u

=
R
S ∫

(1
+
cosh

2
u)d

u

=
R
S (

u
+

12
sinh

2
u )

=
R
S (u

+
sinh

u
cosh

u)

=
R
S
sinh −

1 (√
rR
S
−

1 )
+ √

r(r−
R
S )

.

T
hus,

s
A
B
=
R
S [sinh −

1 (√
r
B

R
S
−

1 )
−
sinh −

1 (√
r
A

R
S
−
1 )]

+ √
r
B
(r
B
−
R
S )− √

r
A
(r
A −

R
S )

.
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c)
A

tick
ofthe

clock
and

the
follow

ing
tick

are
tw

o
events

that
differ

only
in

their
tim

e
coordinates.

T
hus,

the
m
etric

reduces
to

−
c
2d
τ

2
=
− (

1−
2
G
M

rc
2 )

c
2d
t
2
,

so

d
τ
= √

1−
2
G
M

rc
2

d
t
.

T
he

reading
on

the
observer’s

clock
corresponds

to
the

proper
tim

e
interval

d
τ,

so
the

corresponding
interval

of
the

coordinate
t
is

given
by

∆
t
A
=

∆
τ
A

√
1−

2
G
M

r
A
c
2

.

d)
Since

the
Schw

arzschild
m
etric

does
not

change
w
ith

tim
e,

each
pulse

leaving
A

w
illtake

the
sam

e
length

of
tim

e
to

reach
B
.
T
hus,the

pulses
em

itted
by

A
w
illarrive

at
B

w
ith

a
tim

e
coordinate

spacing

∆
t
B
=

∆
t
A
=

∆
τ
A

√
1−

2
G
M

r
A
c
2

.

T
he

clock
at

B
,
how

ever,
w
ill

read
the

proper
tim

e
and

not
the

coordinate
tim

e.
T
hus,

∆
τ
B
= √

1−
2
G
M

r
B
c
2
∆
t
B

=

√√√√
1−

2
G
M

r
B
c
2

1−
2
G
M

r
A
c
2

∆
τ
A
.

e)
From

parts
(a)

and
(b),the

proper
distance

betw
een

A
and

B
can

be
rew

ritten
as

s
A
B
= ∫

r
B

R
S

√
rd
r

√
r−

R
S

.

T
he

potentially
divergent

part
of

the
integral

com
es

from
the

range
of

inte-
gration

in
the

im
m
ediate

vicinity
of
r
=
R

S ,
say

R
S
<
r
<
R
S
+
ε.

For
this
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range
the

quantity √
r
in

the
num

erator
can

be
approxim

ated
by √

R
S ,

so
the

contribution
has

the
form√

R
S ∫

R
S
+
ε

R
S

d
r

√
r−

R
S

.

C
hanging

the
integration

variable
to
u≡

r−
R
S ,the

contribution
can

be
easily

evaluated:√
R
S ∫

R
S
+
ε

R
S

d
r

√
r−

R
S

= √
R

S ∫
ε

0

d
u
√
u
=

2 √
R

S ε
<
∞

.

So,
although

the
integrand

is
infinite

at
r
=
R
S ,

the
integral

is
stillfinite.

T
he

proper
distance

betw
een

A
and

B
does

not
diverge.

L
ooking

at
the

answ
er

to
part

(d),
how

ever,
one

can
see

that
w
hen

r
A
=
R
S ,

T
he

tim
e
interval

∆
τ
B

diverges.

P
R

O
B

L
E
M

12:
G

E
O

D
E
S
IC

S

T
he

geodesic
equation

for
a
curve

x
i(λ),

w
here

the
param

eter
λ

is
the

arc
length

along
the

curve,
can

be
w
ritten

as

dd
λ {

g
ij
d
x
j

d
λ }

=
12
(∂
i g
k
� )
d
x
k

d
λ

d
x
�

d
λ

.

H
ere

the
indices

j,
k,

and


are

sum
m
ed

from
1
to

the
dim

ension
of

the
space,

so
there

is
one

equation
for

each
value

of
i.

(a)
T
he

m
etric

is
given

by

d
s
2
=
g
ij d

x
id
x
j
=
d
r
2
+
r
2
d
θ
2
,

so
g
r
r
=

1
,

g
θ
θ
=
r
2
,

g
r
θ
=
g
θ
r
=

0
.

F
irst

taking
i
=
r,the

nonvanishing
term

s
in

the
geodesic

equation
becom

e

dd
λ {

g
r
r
d
r

d
λ }

=
12
(∂
r g
θ
θ )
d
θ

d
λ

d
θ

d
λ
,
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w
hich

can
be

w
ritten

explicitly
as

dd
λ {

d
r

d
λ }

=
12 (∂

r r
2 ) (

d
θ

d
λ )

2

,

or

d
2r

d
λ

2
=
r (

d
θ

d
λ )

2

.

For
i
=
θ,

one
has

the
sim

plification
that

g
ij

is
independent

of
θ
for

all
(i,j).

So

dd
λ {

r
2
d
θ

d
λ }

=
0
.

(b)
T
he

first
step

is
to

param
eterize

the
curve,

w
hich

m
eans

to
im

agine
m
oving

along
the

curve,
and

expressing
the

coordinates
as

a
function

of
the

distance
traveled.

(I
am

calling
the

locus
y
=

1
a
curve

rather
than

a
line,

since
the

techniques
that

are
used

here
are

usually
applied

to
curves.

Since
a
line

is
a

specialcase
ofa

curve,there
is
nothing

w
rong

w
ith

treating
the

line
as

a
curve.)

In
C
artesian

coordinates,
the

curve
y
=

1
can

be
param

eterized
as

x(λ)
=
λ
,

y(λ)
=

1
.

(T
he

param
eterization

is
not

unique,because
one

can
choose

λ
=

0
to

represent
any

point
along

the
curve.)

C
onverting

to
the

desired
polar

coordinates,

r(λ)
= √

x
2(λ)

+
y
2(λ)

= √
λ

2
+

1
,

θ(λ)
=

tan −
1
y(λ)
x(λ)

=
tan −

1(1
/
λ)

.
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C
alculating

the
needed

derivatives,*

d
r

d
λ
=

λ
√
λ

2
+
1

d
2r

d
λ

2
=

1
√
λ

2
+
1 −

λ
2

(λ
2
+
1)

3
/
2
=

1

(λ
2
+

1)
3
/
2
=

1r
3

d
θ

d
λ
=
−

1

1
+ (

1λ )
2

1λ
2
=
−

1r
2
.

T
hen,

substituting
into

the
geodesic

equation
for

i
=
r,

d
2r

d
λ

2
=
r (

d
θ

d
λ )

2⇐⇒
1r
3
=
r (−

1r
2 )

2

,

w
hich

checks.
Substituting

into
the

geodesic
equation

for
i
=
θ,

dd
λ {

r
2
d
θ

d
λ }

=
0⇐⇒

dd
λ {

r
2 (−

1r
2 )}

=
0
,

w
hich

also
checks.

P
R

O
B

L
E
M

13:
A

N
E
X

E
R

C
IS

E
IN

T
W

O
-D

IM
E
N

S
IO

N
A

L
M

E
T

R
IC

S
(30

points)

(a)
Since

r(θ)
=

(1
+
εcos

2
θ)
r
0
,

as
the

angular
coordinate

θ
changes

by
d
θ,
r
changes

by

d
r
=

d
r

d
θ
d
θ
=
−
2
εr

0
cos

θ
sin

θ
d
θ
.

*
If

you
do

not
rem

em
ber

how
to

differentiate
φ

=
tan −

1(z),
then

you
should

know
how

to
derive

it.
W
rite

z
=

tan
φ
=

sin
φ
/
cos

φ,
so

d
z
= (

cos
φ

cos
φ
+

sin
2
φ

cos
2
φ )

d
φ
=

(1
+
tan

2
φ)d

φ
.

T
hen

d
φd
z
=

1
1
+
tan

2
φ
=

1
1
+
z
2
.
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d
s
2
is

then
given

by

d
s
2
=

d
r
2
+
r
2d
θ
2

=
4
ε
2r

20
cos

2
θ
sin

2
θ
d
θ
2
+
(1

+
εcos

2
θ)

2
r
20
d
θ
2

= [4
ε
2
cos

2
θ
sin

2
θ
+
(1

+
εcos

2
θ)

2 ]
r
20
d
θ
2
,

so
d
s
=
r
0 √

4
ε
2
cos

2
θ
sin

2
θ
+

(1
+
εcos

2
θ)

2d
θ
.

Since
θ
runs

from
θ
1
to

θ
2
as

the
curve

is
sw

ept
out,

S
=
r
0 ∫

θ
2

θ
1 √

4
ε
2
cos

2
θ
sin

2
θ
+

(1
+
εcos

2
θ)

2
d
θ
.

(b)
Since

θ
does

not
vary

along
this

path,

d
s
= √

1
+
ra
d
r
,

and
so

R
= ∫

r
0

0 √
1
+
ra
d
r
.

(c)
Since

the
m
etric

does
not

contain
a
term

in
d
r
d
θ,

the
r
and

θ
directions

are
orthogonal.

T
hus,ifone

considers
a
sm

allregion
in

w
hich

r
is
in

the
interval

r ′

to
r ′+

d
r ′,and

θ
is
in

the
interval

θ ′to
θ ′+

d
θ ′,then

the
region

can
be

treated
as

a
rectangle.

T
he

side
along

w
hich

r
varies

has
length

d
s
r
= √

1
+

(r ′/
a)d

r ′,
w
hile

the
side

along
w
hich

θ
varies

has
length

d
s
θ
=
r ′d

θ ′.
T
he

area
is

then

d
A

=
d
s
r
d
s
θ
=
r ′ √

1
+

(r ′/
a)d

r ′d
θ ′
.

T
o
cover

the
area

for
w
hich

r
<
r
0 ,
r ′

m
ust

be
integrated

from
0
to

r
0 ,

and
θ ′

m
ust

be
integrated

from
0
to

2
π
:

A
= ∫

r
0

0

d
r ′ ∫

2
π

0

d
θ ′r ′ √

1
+

(r ′/
a)

.

B
ut

∫
2
π

0

d
θ ′=

2
π
,
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so

A
=

2
π ∫

r
0

0

d
r ′r ′ √

1
+

(r ′/
a)

.

Y
ou

w
ere

not
asked

to
carry

out
the

integration,
but

it
can

be
done

by
using

the
substitution

u
=

1
+

(r ′/
a),

so
d
u
=

(1
/
a)d

r ′,
and

r ′
=

a(u−
1).

T
he

result
is

A
=

4
π
a
2

15 [2
+ (

3
r
20

a
2

+
r
0a
−
2 ) √

1
+
r
0a ]

.

(d)
T
he

nonzero
m
etric

coeffi
cients

are
given

by

g
r
r
=

1
+
ra
,

g
θ
θ
=
r
2
,

so
the

m
etric

is
diagonal.

For
i
=

1
=
r,

the
geodesic

equation
becom

es

dd
s {

g
r
r d
r

d
s }

=
12
∂
g
r
r

∂
r

d
r

d
s

d
r

d
s
+

12
∂
g
θ
θ

∂
r

d
θ

d
s

d
θ

d
s
,

so
if
w
e
substitute

the
values

from
above,

w
e
have

dd
s {(1

+
ra )

d
r

d
s }

=
12
∂∂
r (1

+
ra ) (

d
r

d
s )

2

+
12
∂
r
2

∂
r (

d
θ

d
s )

2

.

Sim
plifying

slightly,

dd
s {(1

+
ra )

d
r

d
s }

=
12
a (

d
r

d
s )

2

+
r (

d
θ

d
s )

2

.

T
he

answ
er

above
is

perfectly
acceptable,

but
one

m
ight

w
ant

to
expand

the
left-hand

side:

dd
s {(1

+
ra )

d
r

d
s }

=
1a (

d
r

d
s )

2

+ (1
+
ra )

d
2r

d
s
2
.

Inserting
this

expansion
into

the
boxed

equation
above,

the
first

term
can

be
brought

to
the

right-hand
side,

giving

(1
+
ra )

d
2r

d
s
2
=
−

12
a (

d
r

d
s )

2

+
r (

d
θ

d
s )

2

.
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T
he

i
=

2
=
θ
equation

is
sim

pler,
because

none
of

the
g
ij

coeffi
cients

depend
on

θ,so
the

right-hand
side

of
the

geodesic
equation

vanishes.
O
ne

has
sim

ply

dd
s {

r
2 d
θ

d
s }

=
0
.

For
m
ost

purposes
this

is
the

best
w
ay

to
w
rite

the
equation,since

it
leads

im
-

m
ediately

to
r
2(d

θ
/d
s)

=
con

st.
H
ow

ever,
it

is
possible

to
expand

the
deriva-

tive,
giving

the
alternative

form

r
2 d

2θ

d
s
2
+

2
r d
r

d
s

d
θ

d
s
=

0
.

P
R

O
B

L
E
M

14:
G

E
O

D
E
S
IC

S
O

N
T

H
E

S
U

R
FA

C
E

O
F

A
S
P

H
E
R

E

(a)
R
otations

are
easy

to
understand

in
C
artesian

coordinates.
T
he

relationship
betw

een
the

polar
and

C
artesian

coordinates
is

given
by

x
=
r
sin

θ
cos

φ

y
=
r
sin

θ
sin

φ

z
=
r
cos

θ
.

T
he

equator
is
then

described
by

θ
=
π
/2,and

φ
=
ψ
,w

here
ψ

is
a
param

eter
running

from
0
to

2
π
.
T
hus,the

equator
is
described

by
the

curve
x
i(ψ

),w
here

x
1
=
x
=
r
cos

ψ

x
2
=
y
=
r
sin

ψ

x
3
=
z
=

0
.
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N
ow

introduce
a
prim

ed
coordinate

system
that

is
related

to
the

originalsystem
by

a
rotation

in
the

y-z
plane

by
an

angle
α
:

x
=
x ′

y
=
y ′cos

α−
z ′sin

α

z
=
z ′cos

α
+
y ′sin

α
.

T
he

rotated
equator,

w
hich

w
e
seek

to
describe,

is
just

the
standard

equator
in

the
prim

ed
coordinates:

x ′=
r
cos

ψ
,

y ′=
r
sin

ψ
,

z ′=
0
.

U
sing

the
relation

betw
een

the
tw

o
coordinate

system
s
given

above,

x
=
r
cos

ψ

y
=
r
sin

ψ
cos

α

z
=
r
sin

ψ
sin

α
.

U
sing

again
the

relations
betw

een
polar

and
C
artesian

coordinates,

cos
θ
=
zr
=

sin
ψ
sin

α

tan
φ
=

yx
=

tan
ψ
cos

α
.

(b)
A

segm
ent

of
the

equator
corresponding

to
an

interval
d
ψ

has
length

a
d
ψ
,
so

the
param

eter
ψ

is
proportional

to
the

arc
length.

E
xpressed

in
term

s
of

the
m
etric,

this
relationship

becom
es

d
s
2
=
g
ij
d
x
i

d
ψ

d
x
j

d
ψ
d
ψ

2
=
a
2d
ψ

2
.
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T
hus

the
quantity

A
≡
g
ij
d
x
i

d
ψ

d
x
j

d
ψ

is
equal

to
a
2,

so
the

geodesic
equation

(5.50)
reduces

to
the

sim
pler

form
of

E
q.(5.52).

(N
ote

that
w
e
are

follow
ing

the
notation

ofL
ecture

N
otes

5,except
that

the
variable

used
to

param
eterize

the
path

is
called

ψ
,rather

than
λ
or

s.
A
lthough

A
is
not

equalto
1
as

w
e
assum

ed
in

L
ecture

N
otes

5,it
is
easily

seen
that

E
q.(5.52)

follow
s
from

(5.50)
provided

only
that

A
=
con

sta
n
t.)

T
hus,

dd
ψ {

g
ij
d
x
j

d
ψ }

=
12
(∂
i g
k
� )
d
x
k

d
ψ

d
x
�

d
ψ

.

For
this

problem
the

m
etric

has
only

tw
o
nonzero

com
ponents:

g
θ
θ
=
a
2
,

g
φ
φ
=
a
2
sin

2
θ
.

T
aking

i
=
θ
in

the
geodesic

equation,

dd
ψ {

g
θ
θ
d
θ

d
ψ }

=
12
∂
θ g
φ
φ
d
φ

d
ψ

d
φ

d
ψ

=⇒

d
2θ

d
ψ

2
=

sin
θ
cos

θ (
d
φ

d
ψ )

2

.

T
aking

i
=
φ,

dd
ψ {

a
2
sin

2
θ
d
φ

d
ψ }

=
0

=⇒

dd
ψ {

sin
2
θ
d
φ

d
ψ }

=
0
.

(c)
T
his

part
is

m
ainly

algebra.
T
aking

the
derivative

of

cos
θ
=

sin
ψ
sin

α

im
plies

−
sin

θ
d
θ
=

cos
ψ
sin

α
d
ψ
.

T
hen,

using
the

trigonom
etric

identity
sin

θ
=
√
1−

cos
2
θ,

one
finds

sin
θ
= √

1−
sin

2
ψ
sin

2
α
,
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so
d
θ

d
ψ

=
−

cos
ψ
sin

α
√

1−
sin

2
ψ
sin

2
α
.

Sim
ilarly

tan
φ
=

tan
ψ
cos

α
=⇒

sec
2
φ
d
φ
=

sec
2
ψ
d
ψ
cos

α
.

T
hen

sec
2
φ
=

tan
2
φ
+
1
=

tan
2
ψ
cos

2
α
+

1

=
1

cos
2
ψ
[sin

2
ψ
cos

2
α
+

cos
2
ψ
]

=
sec

2
ψ
[sin

2
ψ
(1−

sin
2
α
)
+

cos
2
ψ
]

=
sec

2
ψ
[1−

sin
2
ψ
sin

2
α
]
,

So
d
φ

d
ψ

=
cos

α

1−
sin

2
ψ
sin

2
α
.

T
o
verify

the
geodesic

equations
of

part
(b),

it
is

easiest
to

check
the

second
one

first:

sin
2
θ
d
φ

d
ψ

=
(1−

sin
2
ψ
sin

2
α
)

cos
α

1−
sin

2
ψ
sin

2
α

=
cos

α
,

so
clearly

dd
ψ {

sin
2
θ
d
φ

d
ψ }

=
dd
ψ
(cos

α
)
=

0
.

T
o
verify

the
first

geodesic
equation

from
part

(b),first
calculate

the
left-hand

side,
d
2θ
/
d
ψ

2,
using

our
result

for
d
θ
/
d
ψ
:

d
2θ

d
ψ

2
=

dd
ψ (

d
θ

d
ψ )

=
dd
ψ {−

cos
ψ
sin

α
√

1−
sin

2
ψ
sin

2
α }

.

A
fter

som
e
straightforw

ard
algebra,one

finds

d
2θ

d
ψ

2
=

sin
ψ
sin

α
cos

2
α

[1−
sin

2
ψ
sin

2
α ]

3
/
2
.
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T
he

right-hand
side

of
the

first
geodesic

equation
can

be
evaluated

using
the

expression
found

above
for

d
φ
/
d
ψ
,giving

sin
θ
cos

θ (
d
φ

d
ψ )

2

= √
1−

sin
2
ψ
sin

2
α
sin

ψ
sin

α
cos

2
α

[1−
sin

2
ψ
sin

2
α ]

2

=
sin

ψ
sin

α
cos

2
α

[1−
sin

2
ψ
sin

2
α ]

3
/
2
.

So
the

left-
and

right-hand
sides

are
equal.

P
R

O
B

L
E
M

15:
G

E
O

D
E
S
IC

S
IN

A
C

L
O

S
E
D

U
N

IV
E
R

S
E

(a)
(7

points)
For

purely
radial

m
otion,

d
θ
=
d
φ
=

0,
so

the
line

elem
ent

reduces
do

−
c
2
d
τ

2
=
−
c
2
d
t
2
+
a
2(t) {

d
r
2

1−
r
2 }

.

D
ividing

by
d
t
2,

−
c
2 (

d
τd
t )

2

=
−
c
2
+

a
2(t)

1−
r
2 (

d
rd
t )

2

.

R
earranging,

d
τd
t
= √

1−
a
2(t)

c
2(1−

r
2) (

d
rd
t )

2

.

(b)
(3

points)

d
t

d
τ
=

1d
τd
t

=
1

√
1−

a
2(t)

c
2(1−

r
2) (

d
rd
t )

2
.

(c)
(10

points)
D
uring

any
interval

of
clock

tim
e
d
t,

the
proper

tim
e
that

w
ould

be
m
easured

by
a
clock

m
oving

w
ith

the
ob

ject
is
given

by
d
τ,as

given
by

the
m
etric.

U
sing

the
answ

er
from

part
(a),

d
τ
=
d
τd
t
d
t
= √

1−
a
2(t)

c
2(1−

r
2p ) (

d
r
p

d
t )

2

d
t
.
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Integrating
to

find
the

totalproper
tim

e,

τ
= ∫

t2

t1 √
1−

a
2(t)

c
2(1−

r
2p ) (

d
r
p

d
t )

2

d
t
.

(d)
(10

points)
T
he

physicaldistance
d


that

the
ob

ject
m
oves

during
a
given

tim
e

intervalis
related

to
the

coordinate
distance

d
r
by

the
spatialpart

ofthe
m
etric:

d


2
=
d
s
2
=
a
2(t) {

d
r
2

1−
r
2 }

=⇒
d


=

a(t)
√
1−

r
2
d
r
.

T
hus

v
p
h
y
s
=
d

d
t
=

a(t)
√
1−

r
2

d
rd
t
.

D
iscussion:

A
com

m
on

m
istake

w
as

to
include

−
c
2
d
t
2
in

the
expression

for
d


2.

T
o
understand

w
hy

this
is

not
correct,

w
e
should

think
about

how
an

observer
w
ould

m
easure

d

,the

distance
to

be
used

in
calculating

the
velocity

ofa
passing

ob
ject.

T
he

observer
w
ould

place
a
m
eter

stick
along

the
path

ofthe
ob

ject,and
she

w
ould

m
ark

off
the

position
of

the
ob

ject
at

the
beginning

and
end

ofa
tim

e
interval

d
t
m

e
a
s .

T
hen

she
w
ould

read
the

distance
by

subtracting
the

tw
o
readings

on
the

m
eter

stick.
T
his

subtraction
is

equal
to

the
physical

distance
betw

een
the

tw
o
m
arks,

m
easured

at
the

sa
m

e
tim

e
t.

T
hus,

w
hen

w
e
com

pute
the

distance
betw

een
the

tw
o
m
arks,

w
e
set

d
t
=

0.
T
o
com

pute
the

speed
she

w
ould

then
divide

the
distance

by
d
t
m

e
a
s ,
w
hich

is
nonzero.

(e)
(10

points)
W
e
start

w
ith

the
standard

form
ula

for
a
geodesic,

as
w
ritten

on
the

front
of

the
exam

:dd
τ {

g
µ
ν
d
x
ν

d
τ }

=
12
(∂
µ
g
λ
σ )

d
x
λ

d
τ

d
x
σ

d
τ

.

T
his

form
ula

is
true

for
each

possible
value

of
µ,w

hile
the

E
instein

sum
m
ation

convention
im

plies
that

the
indices

ν,
λ,

and
σ
are

sum
m
ed.

W
e
are

trying
to

derive
the

equation
for

r,
so

w
e
set

µ
=
r.

Since
the

m
etric

is
diagonal,

the
only

contribution
on

the
left-hand

side
w
ill

be
ν
=
r.

O
n
the

right-hand
side,

the
diagonalnature

ofthe
m
etric

im
plies

that
nonzero

contributions
arise

only
w
hen

λ
=

σ
.
T
he

term
w
ill

vanish
unless

d
x
λ
/
d
τ
is

nonzero,
so

λ
m
ust

be
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either
r
or

t
(i.e.,

there
is

no
m
otion

in
the

θ
or

φ
directions).

H
ow

ever,
the

right-hand
side

is
proportional

to

∂
g
λ
σ

∂
r

.

Since
g
tt

=
−
c
2,

the
derivative

w
ith

respect
to

r
w
ill

vanish.
T
hus,

the
only

nonzero
contribution

on
the

right-hand
side

arises
from

λ
=
σ
=
r.

U
sing

g
r
r
=

a
2(t)

1−
r
2
,

the
geodesic

equation
becom

es

dd
τ {

g
r
r
d
r

d
τ }

=
12
(∂
r g
r
r )
d
r

d
τ

d
r

d
τ
,

or
dd
τ {

a
2

1−
r
2

d
r

d
τ }

=
12 [

∂
r (

a
2

1−
r
2 )]

d
r

d
τ

d
r

d
τ
,

or
finally

dd
τ {

a
2

1−
r
2

d
r

d
τ }

=
a
2

r

(1−
r
2)

2 (
d
r

d
τ )

2

.

T
his

m
atches

the
form

show
n
in

the
question,

w
ith

A
=

a
2

1−
r
2
,
and

C
=
a
2

r

(1−
r
2)

2
,

w
ith

B
=
D

=
E

=
0.

(f)
(5

points
E
X
T
R
A

C
R
E
D
IT

)
T
he

algebra
here

can
get

m
essy,but

it
is
not

too
bad

if
one

does
the

calculation
in

an
effi

cient
w
ay.

O
ne

good
w
ay

to
start

is
to

sim
plify

the
expression

for
p.

U
sing

the
answ

er
from

(d),

p
=

m
v
p
h
y
s

√
1−

v
2p
h
y
s

c
2

=
m

a
(t)

√
1−

r
2
d
r
d
t

√
1−

a
2

c
2
(1−

r
2
) (

d
r
d
t )

2
.

U
sing

the
answ

er
from

(b),this
sim

plifies
to

p
=
m

a(t)
√
1−

r
2

d
rd
t

d
t

d
τ
=
m

a(t)
√
1−

r
2

d
r

d
τ
.
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M
ultiply

the
geodesic

equation
by

m
,
and

then
use

the
above

result
to

rew
rite

it
as

dd
τ {

a
p

√
1−

r
2 }

=
m
a
2

r

(1−
r
2)

2 (
d
r

d
τ )

2

.

E
xpanding

the
left-hand

side,

L
H
S
=

dd
τ {

a
p

√
1−

r
2 }

=
1

√
1−

r
2

dd
τ {

a
p}

+
a
p

r

(1−
r
2)

3
/
2

d
r

d
τ

=
1

√
1−

r
2

dd
τ {

a
p}

+
m
a
2

r

(1−
r
2)

2 (
d
r

d
τ )

2

.

Inserting
this

expression
back

into
left-hand

side
of

the
original

equation,
one

sees
that

the
second

term
cancels

the
expression

on
the

right-hand
side,leaving

1
√
1−

r
2

dd
τ {

a
p}

=
0
.

M
ultiplying

by √
1−

r
2,

one
has

the
desired

result:

dd
τ {a

p}
=

0
=⇒

p∝
1a(t)

.

P
R

O
B

L
E
M

16:
A

T
W

O
-D

IM
E
N

S
IO

N
A

L
C

U
R
V

E
D

S
P
A

C
E

(40
points)

(a)
For

θ
=
con

sta
n
t,the

expression
for

the
m
etric

reduces
to

d
s
2
=

a
d
u

2

4
u(a−

u)
=⇒

d
s
=

12 √
a

u(a−
u)

d
u
.

T
o

find
the

length
of

the
radial

line
show

n,
one

m
ust

integrate
this

expression
from

the
value
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of
u
at

the
center,

w
hich

is
0,

to
the

value
of
u
at

the
outer

edge,
w
hich

is
a.

So

R
=

12 ∫
a

0 √
a

u(a−
u)

d
u
.

Y
ou

w
ere

not
expected

to
do

it,
but

the
integral

can
be

carried
out,

giving
R

=
(π
/2) √

a.

(b)
For

u
=
con

sta
n
t,the

expression
for

the
m
etric

reduces
to

d
s
2
=
u
d
θ
2

=⇒
d
s
=
√
u
d
θ
.

Since
θ
runs

from
0
to

2π
,and

u
=
a
for

the
circum

fer-
ence

of
the

space,

S
= ∫

2
π

0

√
a
d
θ
=

2
π √

a
.

(c)
T
o
evaluate

the
answ

er
to

first
order

in
d
u
m
eans

to
neglect

any
term

s
that

w
ould

be
proportional

to
d
u

2

or
higher

pow
ers.

T
his

m
eans

that
w
e
can

treat
the

annulus
as

if
it

w
ere

arbitrarily
thin,

in
w
hich

case
w
e
can

im
agine

bending
it

into
a
rectangle

w
ithout

changing
its

area.
T
he

area
is

then
equal

to
the

cir-
cum

ference
tim

es
the

w
idth.

B
oth

the
circum

ference
and

the
w
idth

m
ust

be
calculated

by
using

the
m
etric:
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d
A

=
circum

ference×
w
idth

=
[2
π √

u
0
]× [

12 √
a

u
0 (a−

u
0 )

d
u ]

=
π √

a

(a−
u

0 )
d
u
.

(d)
W
e
can

find
the

total
area

by
im

agining
that

it
is

broken
up

into
annuluses,

w
here

a
single

annulus
starts

at
radial

coordinate
u
and

extends
to

u
+

d
u.

A
s
in

part
(a),

this
expression

m
ust

be
integrated

from
the

value
of
u
at

the
center,

w
hich

is
0,to

the
value

of
u
at

the
outer

edge,
w
hich

is
a.

A
=
π ∫

a

0 √
a

(a−
u)

d
u
.

Y
ou

did
not

need
to

carry
out

this
integration,

but
the

answ
er

w
ould

be
A

=
2
π
a.

(e)
From

the
list

at
the

front
of

the
exam

,
the

general
form

ula
for

a
geodesic

is
w
ritten

as
dd
s [

g
ij
d
x
j

d
s ]

=
12
∂
g
k
�

∂
x
i

d
x
k

d
s

d
x
�

d
s
.

T
he

m
etric

com
ponents

g
ij

are
related

to
d
s
2
by

d
s
2
=
g
ij d

x
id
x
j
,

w
here

the
E
instein

sum
m
ation

convention
(sum

over
repeated

indices)
is

as-
sum

ed.
In

this
case

g
1
1 ≡

g
u
u
=

a

4
u(a−

u)

g
2
2 ≡

g
θ
θ
=
u

g
1
2
=
g
2
1
=

0
,

w
here

I
have

chosen
x

1
=
u
and

x
2
=
θ.

T
he

equation
w
ith

d
u
/d
s
on

the
left-

hand
side

is
found

by
looking

at
the

geodesic
equations

for
i
=

1.
O
f
course

j,
k,

and


m
ust

all
be

sum
m
ed,

but
the

only
nonzero

contributions
arise

w
hen

j
=

1,
and

k
and



are

either
both

equal
to

1
or

both
equal

to
2:

dd
s [

g
u
u
d
u

d
s ]

=
12
∂
g
u
u

∂
u (

d
u

d
s )

2

+
12
∂
g
θ
θ

∂
u (

d
θ

d
s )

2

.
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dd
s [

a

4
u(a−

u)
d
u

d
s ]

=
12 [

dd
u (

a

4
u(a−

u) )](
d
u

d
s )

2

+
12 [

dd
u
(u) ](

d
θ

d
s )

2

=
12 [

a

4
u(a−

u)
2 −

a

4
u

2(a−
u) ](

d
u

d
s )

2

+
12 (

d
θ

d
s )

2

=
18
a(2

u−
a)

u
2(a−

u)
2 (

d
u

d
s )

2

+
12 (

d
θ

d
s )

2

.

(f)
T
his

part
is
solved

by
the

sam
e
m
ethod,but

it
is
sim

pler.
H
ere

w
e
consider

the
geodesic

equation
w
ith

i
=

2.
T
he

only
term

that
contributes

on
the

left-hand
side

is
j
=

2.
O
n
the

right-hand
side

one
finds

nontrivial
expressions

w
hen

k
and



are

either
both

equal
to

1
or

both
equal

to
2.

H
ow

ever,
the

term
s
on

the
right-hand

side
both

involve
the

derivative
of

the
m
etric

w
ith

respect
to

x
2
=
θ,and

these
derivatives

all
vanish.

So

dd
s [

g
θ
θ d
θ

d
s ]

=
12
∂
g
u
u

∂
θ (

d
u

d
s )

2

+
12
∂
g
θ
θ

∂
θ (

d
θ

d
s )

2

,

w
hich

reduces
to

dd
s [

u
d
θ

d
s ]

=
0
.

P
R

O
B

L
E
M

17:
R

O
T
A

T
IN

G
F
R

A
M

E
S

O
F

R
E
F
E
R

E
N

C
E

(35
points)

(a)
T
he

m
etric

w
as

given
as

−
c
2
d
τ

2
=
−
c
2
d
t
2
+ [d

r
2
+
r
2
(d
φ
+
ω
d
t)

2
+

d
z
2 ]

,

and
the

m
etric

coeffi
cients

are
then

just
read

off
from

this
expression:

g
1
1 ≡

g
r
r
=

1

g
0
0 ≡

g
tt
=

coeffi
cient

of
d
t
2
=
−
c
2
+
r
2ω

2

g
2
0 ≡

g
0
2 ≡

g
φ
t ≡

g
tφ

=
12 ×

coeffi
cient

of
d
φ
d
t
=
r
2ω

2

g
2
2 ≡

g
φ
φ
=

coeffi
cient

of
d
φ

2
=
r
2

g
3
3 ≡

g
z
z
=

coeffi
cient

of
d
z
2
=

1
.
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N
ote

that
the

off-diagonal
term

g
φ
t
m
ust

be
m
ultiplied

by
1/2,

because
the

expression
3
∑µ
=

0

3
∑ν
=

0

g
µ
ν
d
x
µ
d
x
ν

includes
the

tw
o
equal

term
s
g
2
0 d
φ
d
t+

g
0
2 d
td
φ,

w
here

g
2
0 ≡

g
0
2 .

(b)
Starting

w
ith

the
general

expression

dd
τ {

g
µ
ν
d
x
ν

d
τ }

=
12
(∂
µ
g
λ
σ )

d
x
λ

d
τ

d
x
σ

d
τ

,

w
e
set

µ
=
r:

dd
τ {

g
r
ν
d
x
ν

d
τ }

=
12
(∂
r g
λ
σ )

d
x
λ

d
τ

d
x
σ

d
τ

.

W
hen

w
e
sum

over
ν
on

the
left-hand

side,
the

only
value

for
w
hich

g
r
ν �=

0
is

ν
=

1≡
r.

T
hus,

the
left-hand

side
is

sim
ply

L
H
S
=

dd
τ (

g
r
r d
x

1

d
τ )

=
dd
τ (

d
r

d
τ )

=
d

2r

d
τ

2
.

T
he

R
H
S
includes

every
com

bination
of
λ
and

σ
for

w
hich

g
λ
σ
depends

on
r,

so
that

∂
r
g
λ
σ �=

0.
T
his

m
eans

g
tt ,

g
φ
φ ,

and
g
φ
t .

So,

R
H
S
=

12
∂
r (−

c
2
+
r
2ω

2) (
d
t

d
τ )

2

+
12
∂
r (r

2) (
d
φ

d
τ )

2

+
∂
r (r

2ω
)
d
φ

d
τ

d
t

d
τ

=
rω

2 (
d
t

d
τ )

2

+
r (

d
φ

d
τ )

2

+
2
rω

d
φ

d
τ

d
t

d
τ

=
r (

d
φ

d
τ
+
ω

d
t

d
τ )

2

.

N
ote

that
the

final
term

in
the

first
line

is
really

the
sum

of
the

contributions
from

g
φ
t
and

g
tφ ,

w
here

the
tw

o
term

s
w
ere

com
bined

to
cancel

the
factor

of
1/2

in
the

general
expression.

F
inally,

d
2r

d
τ

2
=
r (

d
φ

d
τ
+
ω

d
t

d
τ )

2

.

If
one

expands
the

R
H
S
as

d
2r

d
τ

2
=
r (

d
φ

d
τ )

2

+
rω

2 (
d
t

d
τ )

2

+
2
rω

d
φ

d
τ

d
t

d
τ
,
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then
one

can
identify

the
term

proportionalto
ω

2
as

the
centrifugal

force,and
the

term
proportional

to
ω
as

the
C
oriolis

force.

(c)
Substituting

µ
=
φ,

dd
τ {

g
φ
ν
d
x
ν

d
τ }

=
12
(∂
φ
g
λ
σ )

d
x
λ

d
τ

d
x
σ

d
τ

.

B
ut

none
of

the
m
etric

coeffi
cients

depend
on

φ,so
the

right-hand
side

is
zero.

T
he

left-hand
side

receives
contributions

from
ν
=
φ
and

ν
=
t:

dd
τ (

g
φ
φ
d
φ

d
τ
+
g
φ
t
d
t

d
τ )

=
dd
τ (

r
2
d
φ

d
τ
+
r
2ω

d
t

d
τ )

=
0
,

so

dd
τ (

r
2
d
φ

d
τ
+
r
2ω

d
t

d
τ )

=
0
.

N
ote

that
one

cannot
“factor

out”
r
2,since

r
can

depend
on

τ.
Ifthis

equation
is
expanded

to
give

an
equation

for
d

2φ
/d
τ

2,the
term

proportionalto
ω
w
ould

be
identified

as
the

C
oriolis

force.
T
here

is
no

term
proportional

to
ω

2,
since

the
centrifugal

force
has

no
com

ponent
in

the
φ
direction.

(d)
If

E
q.(P

17.1)
of

the
problem

is
divided

by
c
2d
t
2,

one
obtains

(
d
τd
t )

2

=
1−

1c
2 [(

d
rd
t )

2

+
r
2 (

d
φd
t
+
ω )

2

+ (
d
zd
t )

2 ]
.

T
hen

using
d
t

d
τ
=

1
(

d
τ

d
t )

,

one
has

d
t

d
τ
=

1
√√√√

1−
1c
2 [(

d
rd
t )

2

+
r
2 (

d
φd
t
+
ω )

2

+ (
d
zd
t )

2 ]
.

N
ote

that
this

equation
is

really
just

d
t

d
τ
=

1
√

1−
v
2/
c
2
,

adapted
to

the
rotating

cylindricalcoordinate
system

.
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P
R

O
B

L
E
M

18:
T

H
E

S
T
A

B
IL

IT
Y

O
F

S
C

H
W

A
R

Z
S
C

H
IL

D
O

R
B

IT
S ∗

(30
points)

From
the

m
etric:

d
s
2
=
−
c
2d
τ

2
=
−
h(r)

c
2d
t
2
+
h(r) −

1d
r
2
+
r
2d
θ
2
+
r
2
sin

2
θ
d
φ

2
,

(S18.1)

and
the

convention
d
s
2
=
g
µ
ν
d
x
µ
d
x
ν
w
e
read

the
nonvanishing

m
etric

com
ponents:

g
tt
=
−
h(r)c

2
,
g
r
r
=

1
h(r)

,
g
θ
θ
=
r
2
,
g
φ
φ
=
r
2
sin

2
θ
.

(S18.2)

W
e
are

told
that

the
orbit

has
θ
=
π
/2,

so
on

the
orbit

d
θ
=

0
and

the
relevant

m
etric

and
m
etric

com
ponents

are:

d
s
2
=
−
c
2d
τ

2
=
−
h(r)

c
2d
t
2
+
h(r) −

1d
r
2
+
r
2d
φ

2
,

(S18.3)

g
tt
=
−
h(r)c

2
,
g
r
r
=

1
h(r)

,
g
φ
φ
=
r
2
.

(S18.4)

W
e
also

know
that

h(r)
=

1−
R
Sr
.

(S18.5)

(a)
T
he

geodesic
equationdd

τ [
g
µ
ν
d
x
ν

d
τ ]

=
12
∂
g
λ
σ

∂
x
µ

d
x
λ

d
τ

d
x
σ

d
τ
,

(S18.6)

for
the

index
value

µ
=
r
takes

the
form

dd
τ [

g
r
r
d
r

d
τ ]

=
12
∂
g
λ
σ

∂
r

d
x
λ

d
τ

d
x
σ

d
τ

.

E
xpanding

out

dd
τ [

1h

d
r

d
τ ]

=
12
∂
g
tt

∂
r (

d
t

d
τ )

2

+
12
∂
g
r
r

∂
r (

d
r

d
τ )

2

+
12
∂
g
φ
φ

∂
r (

d
φ

d
τ )

2

.

U
sing

the
values

in
(S18.4)

to
evaluate

the
right-hand

side
and

taking
the

derivatives
on

the
left-hand

side:

−
h ′

h
2 (

d
r

d
τ )

2

+
1h

d
2r

d
τ

2
=
−
12
c
2h ′ (

d
t

d
τ )

2−
12
h ′

h
2 (

d
r

d
τ )

2

+
r (

d
φ

d
τ )

2

.

*
Solution

by
B
arton

Z
w
iebach.
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H
ere

h ′≡
d
h
d
r
and

w
e
have

supressed
the

argum
ents

of
h
and

h ′
to

avoid
clutter.

C
ollecting

the
underlined

term
s
to

the
right

and
m
ultiplying

by
h,

w
e
find

d
2r

d
τ

2
=
−
12
h ′h

c
2 (

d
t

d
τ )

2

+
12
h ′h (

d
r

d
τ )

2

+
rh (

d
φ

d
τ )

2

.
(S18.7)

(b)
D
ividing

the
expression

(S18.3)
for

the
m
etric

by
d
τ

2
w
e
readily

find

−
c
2
=
−
h
c
2 (

d
t

d
τ )

2

+
1h (

d
r

d
τ )

2

+
r
2 (

d
φ

d
τ )

2

,

and
rearranging,

h
c
2 (

d
t

d
τ )

2

=
c
2
+

1h (
d
r

d
τ )

2

+
r
2 (

d
φ

d
τ )

2

.
(S18.8)

T
his

is
the

m
ost

useful
form

of
the

answ
er.

O
f
course,

w
e
also

have

(
d
t

d
τ )

2

=
1h
+

1
h

2c
2 (

d
r

d
τ )

2

+
r
2

h
c
2 (

d
φ

d
τ )

2

.
(S18.9)

W
e
use

now
(S18.8)

to
sim

plify
(S18.7):

d
2r

d
τ

2
=
−
12
h ′ (

c
2
+

1h (
d
r

d
τ )

2

+
r
2 (

d
φ

d
τ )

2 )
+

12
h ′h (

d
r

d
τ )

2

+
rh (

d
φ

d
τ )

2

.

E
xpanding

out,
the

term
s
w
ith

(
d
r
d
τ )

2
cancel

and
w
e
find

d
2r

d
τ

2
=
−
12
h ′c

2
+ (

rh−
12
h ′r

2 )(
d
φ

d
τ )

2

.
(S18.10)

T
his

is
an

acceptable
answ

er.
O
ne

can
sim

plify
(S18.10)

further
by

noting
that

h ′=
R
S
/
r
2
and

rh
=
r−

R
S :

d
2r

d
τ

2
=
−
12
R
S
c
2

r
2

+ (
r−

32
R
S )(

d
φ

d
τ )

2

.
(S18.11)

In
the

notation
of

the
problem

statem
ent,

w
e
have

f
0 (r)

=
−
12
R
S
c
2

r
2

,
f
1 (r)

=
r−

32
R
S
.

(S18.12)
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(c)
T
he

geodesic
equation

(S18.6)
for

µ
=
φ
gives

dd
τ [

g
φ
φ
d
φ

d
τ ]

=
12
∂
g
λ
σ

∂
φ

d
x
λ

d
τ

d
x
σ

d
τ
.

Since
no

m
etric

com
ponent

depends
on

φ,
the

right-hand
side

vanishes
and

w
e
get:

dd
τ [

r
2
d
φ

d
τ ]

=
0
→

dd
τ
L
=

0
,

w
here

L
≡
r
2
d
φ

d
τ
.

(S18.13)

T
he

quantity
L

is
a
constant

of
the

m
otion,nam

ely,
it

is
a
num

ber
independent

of
τ.(d)

U
sing

(S18.13)
the

second-order
differentialequation

(S18.11)
for

r(τ)
takes

the
form

stated
in

the
problem

:d
2r

d
τ

2
=
f
0 (r)+

f
1 (r)
r
4

L
2≡

H
(r)

,
(S18.14)

w
here

w
e
have

introduced
the

function
H
(r)

(recall
that

L
is

a
constant!).

T
he

differential
equation

then
takes

the
form

d
2r

d
τ

2
=
H
(r)

.
(S18.15)

Since
w
e
are

told
that

a
circular

orbit
w
ith

radius
r
0
exists,

the
function

r(τ)
=
r
0

m
ust

solve
this

equation.
B
eing

the
constant

function,
the

left-hand
side

vanishes
and,

consequently,
the

right-hand
side

m
ust

also
vanish:

H
(r

0 )
=
f
0 (r

0 )
+
f
1 (r

0 )
r
40

L
2
=

0
.

(S18.16)

T
o
investigate

stability
w
e
consider

a
sm

allperturbation
δr(τ)

of
the

orbit:

r(τ)
=
r
0
+
δr(τ)

,
w
ith

δr(τ)�
r
0
at

som
e
initial

τ
.

Substituting
this

into
(S18.15)

w
e
get,to

first
nontrivialapproxim

ation

d
2δr

d
τ

2
=
H
(r

0
+
δr)	

H
(r

0 )+
δrH

′(r
0 )

=
δr
H

′(r
0 )
,

w
here

H
′(r)

=
d
H

(r
)

d
r

and
w
e
used

H
(r

0 )
=

0
from

(S18.16).
T
he

resulting
equation

d
2δr(τ)
d
τ

2
=
H

′(r
0 )
δr(τ)

,
(S18.17)
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is
fam

iliar
because

H
′(r

0 )
is

just
a
num

ber.
T
he

condition
of

stability
is

that
this

num
ber

is
negative:

H
′(r

0 )
<

0.
Indeed,

in
this

case
(S18.17)

is
the

harm
onic

oscillator
equation

d
2x

d
t
2
=
−
ω

2x
,

w
ith

replacem
ents

x↔
δr,

t↔
τ
,
−
ω

2↔
H

′(r
0 )
,

and
the

solution
describes

bounded
oscillations.

So
stability

requires:

Stability
C
ondition:

H
′(r

0 )
=

dd
r [

f
0 (r)

+
f
1 (r)
r
4

L
2 ]

r
=
r
0

<
0
.

(S18.18)

T
his

is
the

answ
er

to
part

(d).
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−−

For
students

interested
in

getting
the

fam
ous

result
that

orbits
are

stable
for

r
>

3
R
S

w
e
com

plete
this

part
of

the
analysis

below
.

F
irst

w
e
evaluate

H
′(r

0 )
in

(S18.18)
using

the
values

of
f
0
and

f
1
in

(S18.12):

H
′(r

0 )
=

dd
r [−

12
R
S
c
2

r
2

+ (
1r
3 −

3
R
S

2
r
4 )

L
2 ]

r
=
r
0

=
R
S
c
2

r
30

−
3
L

2

r
50

(r
0 −

2
R
S )
.

T
he

inequality
in

(S18.18)
then

gives
us

R
S
c
2−

3
L

2

r
20

(r
0 −

2
R
S )

<
0
,

(S18.19)

w
here

w
e
m
ultiplied

by
r
30
>

0.
T
o
com

plete
the

calculation
w
e
need

the
value

of
L

2
for

the
orbit

w
ith

radius
r
0 .

T
his

value
is
determ

ined
by

the
vanishing

of
H
(r

0 ):

−
12
R
S
c
2

r
20

+
(r

0 −
32
R
S )
L

2

r
40

=
0
→

L
2

r
20

=
12

R
S
c
2

(r
0 −

32
R
S )

.

N
ote,

incidentally,
that

the
equality

to
the

right
dem

ands
that

for
a
circular

orbit
r
0
>

32
R
S .

Substituting
the

above
value

of
L

2/
r
20
in

(S18.19)
w
e
get:

R
S
c
2−

32
R
S
c
2

(r
0 −

32
R
S ) (r

0 −
2
R
S )

<
0
.

C
ancelling

the
com

m
on

factors
of
R
S
c
2
w
e
find

1−
32
(r

0 −
2
R
S )

(r
0 −

32
R
S )

<
0
,

w
hich

is
equivalent

to
32
(r

0 −
2
R
S )

(r
0 −

32
R
S )

>
1
.

For
r
0
>

32
R
S ,

w
e
get

3(r
0 −

2
R
S )

>
2(r

0 −
32
R
S )

→
r
0
>

3
R
S
.

(S18.20)

T
his

is
the

desired
condition

for
stable

orbits
in

the
Schw

arzschild
geom

etry.
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P

R
E
S
S
U

R
E

A
N

D
E
N

E
R

G
Y

D
E
N

S
IT

Y
O

F
M

Y
S
T

E
-

R
IO

U
S

S
T

U
F
F

(a)
If
u∝

1
/ √

V
,
then

one
can

w
rite

u(V
+
∆
V
)
=
u

0 √
V

V
+

∆
V

.

(T
he

above
expression

is
proportional

to
1/ √

V
+

∆
V
,
and

reduces
to

u
=
u

0

w
hen

∆
V

=
0.)

E
xpanding

to
first

order
in

∆
V
,

u
=

u
0

√
1
+

∆
VV

=
u

0

1
+

12
∆
VV

=
u

0 (
1−

12
∆
VV )

.

T
he

totalenergy
is

the
energy

density
tim

es
the

volum
e,

so

U
=
u(V

+
∆
V
)
=
u

0 (
1−

12
∆
VV )

V (
1
+

∆
VV )

=
U

0 (
1
+

12
∆
VV )

,

w
here

U
0
=
u

0 V
.
T
hen

∆
U

=
12
∆
VV
U

0
.

(b)
T
he

w
ork

done
by

the
agent

m
ust

be
the

negative
ofthe

w
ork

done
by

the
gas,

w
hich

is
p
∆
V
.
So

∆
W

=
−
p
∆
V

.

(c)
T
he

agent
m
ust

supply
the

full
change

in
energy,

so

∆
W

=
∆
U

=
12
∆
VV
U

0
.

C
om

bining
this

w
ith

the
expression

for
∆
W

from
part

(b),one
sees

im
m
ediately

that

p
=
−
12
U

0

V
=

−
12
u

0
.


