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8.286:
T
he

E
arly

U
niverse

D
ecem

ber
21,

2013
P
rof.

A
lan

G
uth

Q
U

IZ
2

S
O

L
U

T
IO

N
S

Q
u
iz

D
ate:

N
ovem

b
er

7,
2013

P
R

O
B

L
E
M

1:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(25
points)

(a)
(6

points)
T
he

prim
ary

evidence
for

dark
m
atter

in
galaxies

com
es

from
m
ea-

suring
their

rotation
curves,

i.e.,
the

orbital
velocity

v
as

a
function

of
radius

R
.
If

stars
contributed

all,
or

m
ost,

of
the

m
ass

in
a
galaxy,

w
hat

w
ould

w
e

expect
for

the
behavior

of
v(R

)
at

large
radii?

A
nsw

er:
If

stars
contributed

m
ost

of
the

m
ass,

then
at

large
radii

the
m
ass

w
ould

appear
to

be
concentrated

as
a
spherical

lum
p
at

the
center,

and
the

orbits
of

the
stars

w
ould

be
“K

eplerian,”
i.e.,

orbits
in

a
1/
r
2
gravitational

field.
T
hen

�F
=
m
�a
im

plies
that

1R
2 ∝

v
2

R
=⇒

v∝
1√R

.

(b)
(5

points)
W

hat
is

actually
found

for
the

behavior
of
v(R

)?

A
nsw

er:
v(R

)
looks

nearly
flat

at
large

radii.

(c)
(7

points)
A
n
im

portant
toolfor

estim
ating

the
m
ass

in
a
galaxy

is
the

steady-
state

virialtheorem
.
W

hat
does

this
theorem

state?

A
nsw

er:
For

a
gravitationally

bound
system

in
equilibrium

,

K
inetic

energy
=

−
12
(G

ravitationalpotential
energy)

.

(T
he

equality
holds

w
henever

Ï≈
0,w

here
I
is

the
m
om

ent
of

inertia.)

(d)
(7

points)
A
t
the

end
of

C
hapter

10,
R
yden

w
rites

“T
hus,

the
very

strong
asym

m
etry

betw
een

baryons
and

antibaryons
today

and
the

large
num

ber
of

photons
per

baryon
are

both
products

of
a
tiny

asym
m
etry

betw
een

quarks
and

anitquarks
in

the
early

universe.”
E
xplain

in
one

or
a
few

sentences
how

a
tiny

asym
m
etry

betw
een

quarks
and

anitquarks
in

the
early

universe
results

in
a
strong

asym
m
etry

betw
een

baryons
and

antibaryons
today.

A
nsw

er:
W

hen
k
T

w
as

large
com

pared
to

150
M
eV

,
the

excess
of

quarks
over

antiquarks
w
as

tiny:
only

about
3
extra

quarks
for

every
10

9
antiquarks.

B
ut

there
w
as

m
assive

quark-antiquark
annihilation

as
k
T

fell
below

150
M
eV

,
so

that
today

w
e
see

the
excess

quarks,
bound

into
baryons,

and
alm

ost
no

sign
of

antiquarks.
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R
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L
E
M

2:
T

IM
E

E
V

O
L
U

T
IO

N
O

F
A

U
N

IV
E
R

S
E

W
IT

H
M

Y
S
T

E
-

R
IO

U
S

S
T

U
F
F

(20
points)

(a)
T
he

Friedm
ann

equation
in

a
flat

universe
is

(
ȧa )

2

=
8
π
G3
ρ
.

Substituting
ρ
=

const/
a
5
and

taking
the

square
root

of
both

sides
gives

ȧa
=
α
a −

5
/
2
,

for
som

e
constant

α
.
R
earranging

to
a
form

w
e
can

integrate,

d
a
a
3
/
2
=
α
d
t,

and
therefore

25
a
5
/
2
=
α
t.

N
otice

that
once

again
w
e
have

elim
inated

the
arbitrary

integration
constant

by
choosing

the
big

bang
boundary

conditions
a
=

0
at

t
=

0.
Solving

for
a

yields

a∝
t
2
/
5.

(b)
T
he

H
ubble

param
eter

is,from
its

definition,

H
=

ȧa
=

25
t ,

w
here

w
e
have

used
the

tim
e
dependence

of
a(t)

that
w
e
found

in
part

(a).
(N

otice
that

w
e
don’t

need
to

know
the

constant
of

proportionality
left

unde-
term

ined
in

part
(a),as

it
cancels

betw
een

num
erator

and
denom

inator
in

this
calculation.)

(c)
R
ecallthat

the
horizon

distance
is
the

physicaldistance
traveled

by
a
light

ray
since

t
=

0,

�
p
,h

o
riz

o
n (t)

=
a(t) ∫

t

0

c
d
t ′

a(t ′)
.

U
sing

a(t)∝
t
2
/
5,

w
e
find�

p
,h

o
riz

o
n (t)

=
ct

2
/
5 ∫

t

0

d
t ′t ′−

2
/
5
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.
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or

�
p
,h

o
riz

o
n (t)

=
ct

2
/
5 (

53
t
3
/
5 )

=
53
ct.

(d)
Since

w
e
know

the
H
ubble

param
eter,

w
e
can

find
the

m
ass

density
ρ(t)

easily
from

the
Friedm

ann
equation,

ρ(t)
=

3
H

2

8
π
G
.

U
sing

the
result

from
part

(b),
w
e
find

ρ(t)
=

3
50
π
G

1t
2
.

A
s
a
check

on
our

algebra,
since

w
e
found

in
(a)

that
a
∝
t
2
/
5,

and
knew

at
the

beginning
of

the
calculation

that
ρ∝

a −
5,

w
e
should

find,
as

w
e
do

here,
that

ρ∝
t −

2.
N
otice,

how
ever,

that
in

this
case

w
e
do

not
leave

our
answ

er
in

term
s
of

som
e
undeterm

ined
constant

ofproportionality;the
units

of
ρ
are

not
arbitrary,and

therefore
w
e
care

about
its

norm
alization.

P
R

O
B

L
E
M

3:
R

O
T
A

T
IN

G
F
R

A
M

E
S

O
F

R
E
F
E
R

E
N

C
E

(35
points)

(a)
T
he

m
etric

w
as

given
as

−
c
2
d
τ

2
=

−
c
2
d
t
2
+ [d

r
2
+
r
2
(d
φ
+
ω
d
t)

2
+

d
z
2 ]

,

and
the

m
etric

coeffi
cients

are
then

just
read

off
from

this
expression:

g
1
1 ≡

g
r
r
=

1

g
0
0 ≡

g
tt
=

coeffi
cient

of
d
t
2
=

−
c
2
+
r
2ω

2

g
2
0 ≡

g
0
2 ≡

g
φ

t ≡
g

tφ
=

12 ×
coeffi

cient
of

d
φ
d
t
=
r
2ω

2

g
2
2 ≡

g
φ

φ
=

coeffi
cient

of
d
φ

2
=
r
2

g
3
3 ≡

g
z
z
=

coeffi
cient

of
d
z
2
=

1
.

N
ote

that
the

off-diagonal
term

g
φ

t
m
ust

be
m
ultiplied

by
1/2,

because
the

expression
3

∑µ
=

0

3
∑ν
=

0

g
µ

ν
d
x

µ
d
x

ν
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includes
the

tw
o
equal

term
s
g
2
0 d
φ
d
t+

g
0
2 d
td
φ,

w
here

g
2
0 ≡

g
0
2 .

(b)
Starting

w
ith

the
general

expression

dd
τ {

g
µ

ν
d
x

ν

d
τ }

=
12
(∂

µ
g

λ
σ )

d
x

λ

d
τ

d
x

σ

d
τ

,

w
e
set

µ
=
r:

dd
τ {

g
r
ν
d
x

ν

d
τ }

=
12
(∂

r g
λ

σ )
d
x

λ

d
τ

d
x

σ

d
τ

.

W
hen

w
e
sum

over
ν
on

the
left-hand

side,
the

only
value

for
w
hich

g
r
ν �=

0
is

ν
=

1≡
r.

T
hus,

the
left-hand

side
is

sim
ply

L
H
S
=

dd
τ (

g
r
r d
x

1

d
τ )

=
dd
τ (

d
r

d
τ )

=
d

2r

d
τ

2
.

T
he

R
H
S
includes

every
com

bination
of

λ
and

σ
for

w
hich

g
λ

σ
depends

on
r,

so
that

∂
r
g

λ
σ �=

0.
T
his

m
eans

g
tt ,

g
φ

φ ,
and

g
φ

t .
So,

R
H
S
=

12
∂

r (−
c
2
+
r
2ω

2) (
d
t

d
τ )

2

+
12
∂

r (r
2) (

d
φ

d
τ )

2

+
∂

r (r
2ω

)
d
φ

d
τ

d
t

d
τ

=
rω

2 (
d
t

d
τ )

2

+
r (

d
φ

d
τ )

2

+
2
rω

d
φ

d
τ

d
t

d
τ

=
r (

d
φ

d
τ
+
ω

d
t

d
τ )

2

.

N
ote

that
the

final
term

in
the

first
line

is
really

the
sum

of
the

contributions
from

g
φ

t
and

g
tφ ,

w
here

the
tw

o
term

s
w
ere

com
bined

to
cancel

the
factor

of
1/2

in
the

general
expression.

F
inally,

d
2r

d
τ

2
=
r (

d
φ

d
τ
+
ω

d
t

d
τ )

2

.

If
one

expands
the

R
H
S
as

d
2r

d
τ

2
=
r (

d
φ

d
τ )

2

+
rω

2 (
d
t

d
τ )

2

+
2
rω

d
φ

d
τ

d
t

d
τ
,

then
one

can
identify

the
term

proportionalto
ω

2
as

the
centrifugal

force,and
the

term
proportional

to
ω
as

the
C
oriolis

force.
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(c)
Substituting

µ
=
φ,

dd
τ {

g
φ

ν
d
x

ν

d
τ }

=
12
(∂

φ
g

λ
σ )

d
x

λ

d
τ

d
x

σ

d
τ

.

B
ut

none
of

the
m
etric

coeffi
cients

depend
on

φ,so
the

right-hand
side

is
zero.

T
he

left-hand
side

receives
contributions

from
ν
=
φ
and

ν
=
t:

dd
τ (

g
φ

φ
d
φ

d
τ
+
g

φ
t
d
t

d
τ )

=
dd
τ (

r
2
d
φ

d
τ
+
r
2ω

d
t

d
τ )

=
0
,

so

dd
τ (

r
2
d
φ

d
τ
+
r
2ω

d
t

d
τ )

=
0
.

N
ote

that
one

cannot
“factor

out”
r
2,since

r
can

depend
on

τ.
Ifthis

equation
is
expanded

to
give

an
equation

for
d

2φ
/d
τ

2,the
term

proportionalto
ω
w
ould

be
identified

as
the

C
oriolis

force.
T
here

is
no

term
proportional

to
ω

2,
since

the
centrifugal

force
has

no
com

ponent
in

the
φ
direction.

(d)
If

E
q.(P

3.1)
of

the
problem

is
divided

by
c
2d
t
2,one

obtains

(
d
τd
t )

2

=
1−

1c
2 [(

d
rd
t )

2

+
r
2 (

d
φd
t
+
ω )

2

+ (
d
zd
t )

2 ]
.

T
hen

using
d
t

d
τ
=

1
(

d
τ

d
t )

,

one
has

d
t

d
τ
=

1
√√√√

1−
1c
2 [(

d
rd
t )

2

+
r
2 (

d
φd
t
+
ω )

2

+ (
d
zd
t )

2 ]
.

N
ote

that
this

equation
is

really
just

d
t

d
τ
=

1
√

1−
v
2/
c
2
,

adapted
to

the
rotating

cylindricalcoordinate
system

.
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R
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4:
P

R
E
S
S
U

R
E

A
N

D
E
N

E
R

G
Y

D
E
N

S
IT

Y
O

F
IM

A
G

I-
N

A
R
Y

S
T

U
F
F

(20
points)

(a)
If
the

energy
density

u
as

a
function

of
the

volum
e
V

satisfies
u(V

)∝
1
/
V

3
/
2,

then
one

can
w
rite

u(V
+

∆
V
)
=
u

0 (
V

V
+

∆
V )

3
/
2

.

(T
he

above
expression

is
proportionalto

1/(V
+
∆
V
)
3
/
2,and

reduces
to
u
=
u

0

w
hen

∆
V

=
0.)

E
xpanding

to
first

order
in

∆
V
,

u(V
+

∆
V
)
=

u
0

(1
+

∆
VV )

3
/
2
=

u
0

1
+

32
∆

VV

= (
1−

32
∆
VV )

u
0
.

T
he

totalenergy
is
the

volum
e
tim

es
the

energy
density,so

the
totalenergy

U
after

the
piston

is
pulled

out
is

given
by

U
=

[V
+

∆
V
]
u(V

+
∆
V
)

=
V (

1
+

∆
VV )(

1−
32
∆
VV )

u
0

= (
1−

12
∆
VV )

U
0
,

w
here

U
0 ≡

V
u

0
is

the
totalenergy

before
the

piston
is

pulled
out.

T
hen

∆
U

≡
U

−
U

0
=

−
12
∆
VV
U

0
.

(b)
T
he

w
ork

done
by

the
agent

m
ust

be
the

negative
ofthe

w
ork

done
by

the
gas,

w
hich

is
p
∆
V
.
So

∆
W

=
−
p
∆
V

.

(c)
T
he

agent
m
ust

supply
the

full
change

in
energy,

so

∆
W

=
∆
U

=
−
12
∆
VV
U

0
.

C
om

bining
this

w
ith

the
expression

for
∆
W

from
part

(b),one
sees

im
m
ediately

that

p
=

12
U

0

V
=

12
u

0
.


