
M
A
SSA

C
H
U
SE

T
T
S
IN

ST
IT

U
T
E

O
F
T
E
C
H
N
O
L
O
G
Y

P
hysics

D
epartm

ent
P
hysics
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E
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U
niverse

D
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2013
P
rof.

A
lan

G
uth

Q
U

IZ
3

R
eform

atted
to

R
em

ove
B

lan
k

P
ages*

A
F
O

R
M

U
L
A

S
H

E
E
T

IS
A

T
T

H
E

E
N

D
O

F
T

H
E

E
X

A
M

.
Y
ou

m
ay

rip
off

and
keep

the
form

ula
sheet.

P
lease

answ
er

all
questions

in
this

stapled
booklet.

Y
our

N
am

e

*
A

few
corrections

announced
at

the
quiz

have
been

incorporated.

8.286
Q

U
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F
A

L
L
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p
.
2

P
R

O
B

L
E
M

1:
D

ID
Y

O
U

D
O

T
H

E
R

E
A

D
IN

G
?

(35
points)

(a)
(5

points)
R
yden

sum
m
arizes

the
results

of
the

C
O
B
E

satellite
experim

ent
for

the
m
easurem

ents
of

the
cosm

ic
m
icrow

ave
background

(C
M
B
)
in

the
form

of
three

im
portant

results.
T
he

first
w
as

that,
in

any
particular

direction
of

the
sky,the

spectrum
of

the
C
M
B

is
very

close
to

that
of

an
idealblackbody.

T
he

F
IR

A
S
instrum

ent
on

the
C
O
B
E
satellite

could
have

detected
deviations

from
the

blackbody
spectrum

as
sm

all
as

∆
ε/
ε≈

10 −
n,

w
here

n
is

an
integer.

T
o

w
ithin

±
1,

w
hat

is
n?

(b)
(5

points)
T
he

second
result

w
as

the
m
easurem

ent
of

a
dipole

distortion
of

the
C
M
B

spectrum
;that

is,the
radiation

is
slightly

blueshifted
to

higher
tem

-
peratures

in
one

direction,
and

slightly
redshifted

to
low

er
tem

peratures
in

the
opposite

direction.
T
o
w
hat

physical
effect

w
as

this
dipole

distortion
at-

tributed?

(c)
(5

points)
T
he

third
result

concerned
the

m
easurem

ent
of

tem
perature

fluctu-
ations

after
the

dipole
feature

m
entioned

above
w
as

subtracted
out.

D
efining

δTT
(θ
,φ)≡

T
(θ
,φ)−

〈T〉
〈T〉

,

w
here〈T〉

=
2
.725

K
,
the

average
value

of
T
,
they

found
a
root

m
ean

square
fluctuation,

〈(
δTT )

2 〉
1
/
2

,

equal
to

som
e
num

ber.
T
o
w
ithin

an
order

of
m
agnitude,

w
hat

w
as

that
num

-
ber?
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(d)
(5

points)
W

hich
of

the
follow

ing
describes

the
Sachs-W

olfe
effect?

(i)
P
hotons

from
fluid

w
hich

had
a
velocity

tow
ard

us
along

the
line

of
sight

appear
redder

because
of

the
D
oppler

effect.

(ii)
P
hotons

from
fluid

w
hich

had
a
velocity

tow
ard

us
along

the
line

of
sight

appear
bluer

because
of

the
D
oppler

effect.

(iii)
P
hotons

from
overdense

regions
at

the
surface

of
last

scattering
appear

redder
because

they
m
ust

clim
b
out

of
the

gravitationalpotential
w
ell.

(iv)
P
hotons

from
overdense

regions
at

the
surface

of
last

scattering
appear

bluer
because

they
m
ust

clim
b
out

of
the

gravitationalpotentialw
ell.

(v)
P
hotons

traveling
tow

ard
us

from
the

surface
of

last
scattering

appear
redder

because
of

absorption
in

the
intergalactic

m
edium

.

(vi)
P
hotons

traveling
tow

ard
us

from
the

surface
of

last
scattering

appear
bluer

because
of

absorption
in

the
intergalactic

m
edium

.

(e)
(5

points)
T
he

flatness
problem

refers
to

the
extrem

e
fine-tuning

that
is
needed

in
Ω

at
early

tim
es,

in
order

for
it

to
be

as
close

to
1
today

as
w
e
observe.

Starting
w
ith

the
assum

ption
that

Ω
today

is
equalto

1
w
ithin

about
1%

,one
concludes

that
at

one
second

after
the

big
bang,

|Ω
−

1|t=
1

se
c
<

10 −
m
,

w
here

m
is

an
integer.

T
o
w
ithin

±
3,

w
hat

is
m
?

(f)
(5

points)
T
he

total
energy

density
of

the
present

universe
consists

m
ainly

of
baryonic

m
atter,

dark
m
atter,

and
dark

energy.
G
ive

the
percentages

of
each,

according
to

the
best

fit
obtained

from
the

P
lanck

2013
data.

Y
ou

w
illget

full
credit

if
the

first
(baryonic

m
atter)

is
accurate

to±
2%

,
and

the
other

tw
o
are

accurate
to

w
ithin

±
5%

.

(g)
(5

points)
W

ithin
the

conventionalhot
big

bang
cosm

ology
(w

ithout
inflation),

it
is
diffi

cult
to

understand
how

the
tem

perature
ofthe

C
M
B
can

be
correlated

at
angular

separations
that

are
so

large
that

the
points

on
the

surface
of

last
scattering

w
as

separated
from

each
other

by
m
ore

than
a
horizon

distance.
A
p-

proxim
ately

w
hat

angle,in
degrees,corresponds

to
a
separation

on
the

surface
last

scattering
of

one
horizon

length?
Y
ou

w
ill

get
full

credit
if
your

answ
er

is
right

to
w
ithin

a
factor

of
2.

8.286
Q

U
IZ

3,
F
A

L
L

2013
p
.
4

P
R

O
B

L
E
M

2:
F
R

E
E
Z
E
-O

U
T

O
F

M
U

O
N

S
(25

points)

T
he

follow
ing

problem
w
as

on
P
roblem

Set
7,

P
roblem

2
(2013).

A
particle

called
the

m
uon

seem
s
to

be
essentially

identical
to

the
electron,

except
that

it
is

heavier—
the

m
ass/energy

of
a
m
uon

is
106

M
eV

,
com

pared
to

0.511
M
eV

for
the

electron.
T
he

m
uon

(µ −
)
has

the
sam

e
charge

as
an

electron,
denoted

by
−
e.

T
here

is
also

an
antim

uon
(µ

+
),

analogous
to

the
positron,

w
ith

charge
+
e.

T
he

m
uon

and
antim

uon
have

the
sam

e
spin

as
the

electron.
T
here

is
no

know
n
particle

w
ith

a
m
ass

betw
een

that
of

an
electron

and
that

of
a
m
uon.

(a)
(5

points)
T
he

form
ula

for
the

energy
density

ofblack-body
radiation,as

given
by

E
q.(6.48)

of
the

lecture
notes,

u
=
g
π

2

30
(k
T
)
4

(h̄
c)

3
,

is
w
ritten

in
term

s
of

a
norm

alization
constant

g.
W

hat
is

the
value

of
g
for

the
m
uons,

taking
µ

+
and

µ −
together?

(b)
(8

points)
W

hen
k
T
is
just

above
106

M
eV

as
the

universe
cools,w

hat
particles

besides
the

m
uons

are
contained

in
the

therm
alradiation

that
fills

the
universe?

W
hat

is
the

contribution
to

g
from

each
of

these
particles?

(c)
(12

points)
A
s
k
T

falls
below

106
M
eV

,the
m
uons

disappear
from

the
therm

al
equilibrium

radiation.
A
t
these

tem
peratures

all
of

the
other

particles
in

the
black-body

radiation
are

interacting
fast

enough
to

m
aintain

equilibrium
,
so

the
heat

given
off

from
the

m
uons

is
shared

am
ong

all
the

other
particles.

L
etting

a
denote

the
R
obertson-W

alker
scale

factor,
by

w
hat

factor
does

the
quantity

a
T

increase
w
hen

the
m
uons

disappear?
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T

H
E

E
V

E
N

T
H

O
R

IZ
O

N
F
O

R
O

U
R

U
N

IV
E
R

S
E

(25
points)

W
e
have

learned
that

the
expansion

history
of

our
universe

can
be

described
in

term
s
of

a
sm

all
set

of
num

bers:
Ω

m
,0 ,

the
present

contribution
to

Ω
from

nonrelativistic
m
atter;

Ω
ra

d
,0 ,

the
present

contribution
to

Ω
from

radiation;
Ω

v
a
c ,

the
present

contribution
to

Ω
from

vacuum
energy;and

H
0 ,the

present
value

ofthe
H
ubble

expansion
rate.

T
he

best
estim

ates
of

these
num

bers
are

consistent
w
ith

a
flat

universe,
so

w
e
can

take
k
=

0,
Ω

m
,0
+

Ω
ra

d
,0
+

Ω
v
a
c
=

1,
and

w
e
can

use
the

flat
R
obertson-W

alker
m
etric,

d
s
2
=

−
c
2
d
t
2
+
a
2(t) [d

r
2
+
r
2 (d

θ
2
+
sin

2
θ
d
φ

2 )]
.

(a)
(5

points)
Suppose

that
w
e
are

at
the

origin
ofthe

coordinate
system

,and
that

at
the

present
tim

e
t
0
w
e
em

it
a
sphericalpulse

oflight.
It

turns
out

that
there

is
a
m
axim

um
coordinate

radius
r
=

r
m

a
x
that

this
pulse

w
ill

ever
reach,

no
m
atter

how
long

w
e
w
ait.

(T
he

pulse
w
ill

never
actually

reach
r
m

a
x ,

but
w
ill

reach
all

r
such

that
0
<

r
<

r
m

a
x .)

r
m

a
x
is

the
coordinate

of
w
hat

is
called

the
event

horizon:
events

that
happen

now
at

r≥
r
m

a
x
w
ill

never
be

visible
to

us,
assum

ing
that

w
e
rem

ain
at

the
origin.

A
ssum

ing
for

this
part

that
the

function
a(t)

is
a
know

n
function,

w
rite

an
expression

for
r
m

a
x .

Y
our

answ
er

should
be

expressed
as

an
integral,

w
hich

can
involve

a(t),
t
0 ,

and
any

of
the

param
eters

defined
in

the
pream

ble.
[A

dvice:
If

you
cannot

answ
er

this,
you

should
still

try
part

(c).]

(b)
(10

points)
Since

a(t)
is

not
know

n
explicitly,the

answ
er

to
the

previous
part

is
diffi

cult
to

use.
Show

,how
ever,that

by
changing

the
variable

of
integration,

you
can

rew
rite

the
expression

for
r
m

a
x
as

a
definite

integralinvolving
only

the
param

eters
specified

in
the

pream
ble,w

ithout
any

reference
to

the
function

a(t),
except

perhaps
to

its
present

value
a(t

0 ).
Y
ou

are
not

expected
to

evaluate
this

integral.
[H

int:
O
ne

m
ethod

is
to

use

x
=

a(t)
a(t

0 )

as
the

variable
of

integration,
just

as
w
e
did

w
hen

w
e
derived

the
first

of
the

expressions
for

t
0
show

n
in

the
form

ula
sheets.]

(c)
(10

points)
A
stronom

ers
often

describe
distances

in
term

s
of

redshifts,
so

it
is

useful
to

find
the

redshift
of

the
event

horizon.
T
hat

is,
if
a
light

ray
that

originated
at

r
=
r
m

a
x
arrived

at
E
arth

today,
w
hat

w
ould

be
its

redshift
z
e
h

(eh
=

event
horizon)?

Y
ou

are
not

asked
to

find
an

explicit
expression

for
z
e
h ,

but
instead

an
equation

that
could

be
solved

num
erically

to
determ

ine
z
e
h .

For
this

part
you

can
treat

r
m

a
x
as

given,
so

it
does

not
m
atter

if
you

have
done

parts
(a)

and
(b).

Y
ou

w
illget

half
credit

for
a
correct

answ
er

that
involves

the
function

a(t),and
fullcredit

for
a
correct

answ
er

that
involves

only
explicit

integrals
depending

only
on

the
param

eters
specified

in
the

pream
ble,

and
possibly

a(t
0 ).
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4:
B

E
H

A
V

IO
R

O
F

Ω
IN

A
U

N
IV

E
R

S
E

D
O

M
IN

A
T

E
D

B
Y

M
Y

S
T

E
R

IO
U

S
S
T

U
F
F

(15
points)

(a)
(5

points)
In

discussing
the

flatness
problem

,
w
e
learned

how
to

calculate
the

behavior
of

(Ω
−
1)/Ω

,learning
that

it
obeys

an
equation

of
the

form

Ω
−

1
Ω

=
A
T

2

ρ
,

(4.1)

w
here

A
is
to

a
good

approxim
ation

independent
of

tim
e.

Show
how

E
q.(4.1)

can
be

derived
from

the
first

order
Friedm

ann
equation,

H
2
=

8
π3
G
ρ−

k
c
2

a
2
,

(4.2)

and
in

the
process

you
should

find
the

expression
for

A
.

(N
o
credit

w
ill

be
given

for
sim

ply
w
riting

the
expression

for
A

from
m
em

ory.)

(b)
(10

points)
U
sing

E
q.(4.1),w

e
learned

that
(Ω−

1)/Ω
grow

s
as

t
in

a
radiation-

dom
inated

universe,
and

as
t
2
/
3
in

a
m
atter-dom

inated
universe.

Suppose,
how

ever,
that

w
e
consider

a
universe

dom
inated

by
“m

ysterious
stuff,”

w
hich

has
the

property
that

ρ∝
1

a
5(t)

.
(4.3))

(Y
ou

m
ay

recall
that

on
Q
uiz

2
w
e
had

a
problem

concerning
a
hypothetical

universe
dom

inated
by

this
fictitious

m
aterial.)

H
ow

w
ould

(Ω−
1)/Ω

behave
in

a
universe

dom
inated

by
m
ysterious

stuff
?
Y
ou

m
ay

assum
e
that

the
universe

is
very

nearly
flat.
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S
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35
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3
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4
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T
O
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A

L
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T
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8.286:
T
he

E
arly

U
niverse

D
ecem

ber
5,

2013
P
rof.

A
lan

G
uth

Q
U

IZ
3

F
O

R
M

U
L
A

S
H

E
E
T

S
P

E
E
D

O
F

L
IG

H
T

IN
C

O
M

O
V

IN
G

C
O

O
R

D
IN

A
T

E
S
:

v
c
o
o
rd

=
c

a(t)
.

D
O

P
P

L
E
R

S
H

IF
T

(F
or

m
otion

alon
g

a
lin

e):

z
=
v
/
u

(nonrelativistic,source
m
oving)

z
=

v
/
u

1−
v
/
u

(nonrelativistic,observer
m
oving)

z
= √

1
+
β

1−
β
−

1
(special

relativity,w
ith

β
=
v
/
c)

C
O

S
M

O
L
O

G
IC

A
L

R
E
D

S
H

IF
T

:

1
+
z≡

λ
o
b
se

rv
e
d

λ
e
m

itte
d

=
a(t

o
b
se

rv
e
d )

a(t
e
m

itte
d )

S
P

E
C

IA
L

R
E
L
A

T
IV

IT
Y

:

T
im

e
D
ilation

Factor:

γ≡
1

√
1−

β
2
,

β
≡
v
/
c

L
orentz-F

itzgerald
C
ontraction

Factor:
γ

R
elativity

of
Sim

ultaneity:
T
railing

clock
reads

later
by

an
am

ount
β
#
0 /
c
.

E
nergy-M

om
entum

Four-V
ector:

p
µ
= (

Ec
,&p )

,
&p
=
γ
m

0 &v
,
E

=
γ
m

0 c
2
= √

(m
0 c

2)
2
+
|&p| 2

c
2
,

p
2≡

|&p| 2− (p
0 )

2
=

|&p| 2−
E

2

c
2

=
−
(m

0 c)
2
.
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F
O

R
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U
L
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S
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T
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C
O

S
M

O
L
O

G
IC

A
L

E
V

O
L
U

T
IO

N
:

H
2
= (

ȧa )
2

=
8
π3
G
ρ−

k
c
2

a
2
,

ä
=

−
4
π3
G (

ρ
+

3
pc
2 )

a
,

ρ
m
(t)

=
a
3(t

i )
a
3(t)

ρ
m
(t

i )
(m

atter),
ρ

r (t)
=

a
4(t

i )
a
4(t)

ρ
r (t

i )
(radiation).

ρ̇
=

−
3
ȧa (

ρ
+

pc
2 )

,
Ω

≡
ρ
/
ρ

c
,

w
here

ρ
c
=

3
H

2

8
π
G

.

F
lat

(k
=

0):
a(t)∝

t
2
/
3

(m
atter-dom

inated)
,

a(t)∝
t
1
/
2

(radiation-dom
inated)

,

Ω
=

1
.

E
V

O
L
U

T
IO

N
O

F
A

M
A

T
T

E
R

-D
O

M
IN

A
T

E
D

U
N

IV
E
R

S
E
:

C
losed

(k
>

0):
ct

=
α
(θ−

sin
θ)

,
a√k

=
α
(1−

cos
θ)

,

Ω
=

2
1
+

cos
θ
>

1
,

w
here

α
≡

4
π3
G
ρ

c
2 (

a√k )
3

.

O
pen

(k
<

0):
ct

=
α
(sinh

θ−
θ)

,
a√κ

=
α
(cosh

θ−
1)

,

Ω
=

2
1
+

cosh
θ
<

1
,

w
here

α
≡

4
π3
G
ρ

c
2 (

a√κ )
3

,

κ≡
−
k
>

0
.

R
O

B
E
R
T

S
O

N
-W

A
L
K

E
R

M
E
T

R
IC

:

d
s
2
=

−
c
2
d
τ

2
=

−
c
2
d
t
2+

a
2(t) {

d
r
2

1−
k
r
2
+
r
2 (d

θ
2
+
sin

2
θ
d
φ

2 ) }
.

A
lternatively,for

k
>

0,
w
e
can

define
r
=

sin
ψ

√
k

,
and

then

d
s
2
=

−
c
2
d
τ

2
=

−
c
2
d
t
2+

ã
2(t) {

d
ψ

2
+
sin

2
ψ (d

θ
2
+
sin

2
θ
d
φ

2 )}
,
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w
here

ã(t)
=
a(t)/ √

k.
For

k
<

0
w
e
can

define
r
=

sinh
ψ

√−
k
,
and

then

d
s
2
=

−
c
2
d
τ

2
=

−
c
2
d
t
2+

ã
2(t) {

d
ψ

2
+
sinh

2
ψ (d

θ
2
+

sin
2
θ
d
φ

2 )}
,

w
here

ã(t)
=
a(t)/ √−

k.
N
ote

that
ã
can

be
called

a
if
there

is

no
need

to
relate

it
to

the
a(t)

that
appears

in
the

first
equation

above.

H
O

R
IZ

O
N

D
IS

T
A

N
C

E
:

#
p
,h

o
riz

o
n (t)

=
a(t) ∫

t

0

c

a(t ′)
d
t ′

= {
3
ct

(flat,
m
atter-dom

inated),
2
ct

(flat,
radiation-dom

inated).

S
C

H
W

A
R

Z
S
C

H
IL

D
M

E
T

R
IC

:

d
s
2
=

−
c
2d
τ

2
=

− (
1−

2
G
M

rc
2 )

c
2d
t
2
+ (

1−
2
G
M

rc
2 )

−
1

d
r
2

+
r
2d
θ
2
+
r
2
sin

2
θ
d
φ

2
,

G
E
O

D
E
S
IC

E
Q

U
A

T
IO

N
:

dd
s {

g
ij
d
x

j

d
s }

=
12
(∂

i g
k
 )
d
x

k

d
s

d
x



d
s

or:
dd
τ {

g
µ

ν
d
x

ν

d
τ }

=
12
(∂

µ
g

λ
σ )

d
x

λ

d
τ

d
x

σ

d
τ



8.286
Q

U
IZ

3
F
O

R
M

U
L
A

S
H

E
E

T
,
F
A

L
L

2013
p
.
4

B
L
A

C
K

-B
O

D
Y

R
A

D
IA

T
IO

N
:

u
=
g
π

2

30
(k
T
)
4

(h̄
c)

3
(energy

density)

p
=

13
u

ρ
=
u
/
c
2

(pressure,
m
ass

density)

n
=
g ∗
ζ(3)
π

2

(k
T
)
3

(h̄
c)

3
(num

ber
density)

s
=
g
2
π

2

45
k

4T
3

(h̄
c)

3
,

(entropy
density)

w
here

g≡ {
1
per

spin
state

for
bosons

(integer
spin)

7/8
per

spin
state

for
ferm

ions
(half-integer

spin)

g ∗≡ {
1
per

spin
state

for
bosons

3/4
per

spin
state

for
ferm

ions
,

and
ζ(3)

=
11
3
+

12
3
+

13
3
+
···≈

1
.202

.

g
γ
=
g ∗γ

=
2
,

g
ν
=

78
︸ ︷︷︸
F
e
rm

io
n

fa
c
to

r

×
3

︸︷︷︸
3

sp
e
c
ie

s
ν

e
,ν

µ
,ν

τ ×
2

︸︷︷︸
P
a
rtic

le
/

a
n
tip

a
rtic

le ×
1

︸︷︷︸
S
p
in

sta
te

s =
214

,

g ∗ν
=

34
︸ ︷︷︸
F
e
rm

io
n

fa
c
to

r

×
3

︸︷︷︸
3

sp
e
c
ie

s
ν

e
,ν

µ
,ν

τ ×
2

︸︷︷︸
P
a
rtic

le
/

a
n
tip

a
rtic

le ×
1

︸︷︷︸
S
p
in

sta
te

s =
92
,
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g
e
+

e −
=

78
︸ ︷︷︸
F
e
rm

io
n

fa
c
to

r

×
1

︸︷︷︸
S
p
e
c
ie

s ×
2

︸︷︷︸
P
a
rtic

le
/

a
n
tip

a
rtic

le ×
2

︸︷︷︸
S
p
in

sta
te

s =
72
,

g ∗e
+

e −
=

34
︸︷︷︸
F
e
rm

io
n

fa
c
to

r

×
1

︸︷︷︸
S
p
e
c
ie

s ×
2

︸︷︷︸
P
a
rtic

le
/

a
n
tip

a
rtic

le ×
2

︸︷︷︸
S
p
in

sta
te

s =
3
.

E
V

O
L
U

T
IO

N
O

F
A

F
L
A

T
R

A
D

IA
T

IO
N

-D
O

M
IN

A
T

E
D

U
N

IV
E
R

S
E
:

ρ
=

3
32
π
G
t
2

k
T
= (

45
h̄

3c
5

16
π

3g
G )

1
/
4

1√t
For

m
µ
=

106
M
eV


k
T


m

e
=

0
.511

M
eV

,
g
=

10
.75

and
then

k
T
=

0
.860

M
eV

√
t
(in

sec) (
10
.75
g )

1
/
4

A
fter

the
freeze-out

of
electron-positron

pairs,

T
ν

T
γ
= (

411 )
1
/
3

.

C
O

S
M

O
L
O

G
IC

A
L

C
O

N
S
T
A

N
T

:

u
v
a
c
=
ρ
v
a
c c

2
=

Λ
c
4

8
π
G

,

p
v
a
c
=

−
ρ
v
a
c c

2
=

−
Λ
c
4

8
π
G

.

G
E
N

E
R

A
L
IZ

E
D

C
O

S
M

O
L
O

G
IC

A
L

E
V

O
L
U

T
IO

N
:

x
d
xd
t
=
H

0 √
Ω

m
,0 x

+
Ω

ra
d
,0
+
Ω

v
a
c
,0 x

4
+

Ω
k
,0 x

2
,

w
here

x≡
a(t)
a(t

0 ) ≡
1

1
+
z
,

Ω
k
,0 ≡

−
k
c
2

a
2(t

0 )H
20

=
1−

Ω
m

,0 −
Ω

ra
d
,0 −

Ω
v
a
c
,0
.
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A
ge

of
universe:

t
0
=

1H
0 ∫

1

0

x
d
x

√
Ω

m
,0 x

+
Ω

ra
d
,0
+
Ω

v
a
c
,0 x

4
+

Ω
k
,0 x

2

=
1H
0 ∫

∞0

d
z

(1
+
z) √

Ω
m

,0 (1
+
z)

3
+
Ω

ra
d
,0 (1

+
z)

4
+

Ω
v
a
c,0

+
Ω

k
,0 (1

+
z)

2
.

L
ook-back

tim
e:

t
lo

o
k-b

a
ck (z)

=

1H
0 ∫

z

0

d
z ′

(1
+
z ′) √

Ω
m

,0 (1
+
z ′)

3
+

Ω
ra

d
,0 (1

+
z ′)

4
+
Ω

v
a
c
,0
+

Ω
k
,0 (1

+
z ′)

2
.

P
H

Y
S
IC

A
L

C
O

N
S
T
A

N
T

S
:

G
=

6
.674×

10 −
1
1
m

3·kg −
1·s −

2
=

6
.674×

10 −
8
cm

3·g −
1·s −

2

k
=

B
oltzm

ann’s
constant

=
1
.381×

10 −
2
3
joule/K

=
1
.381×

10 −
1
6
erg

/K

=
8
.617×

10 −
5
eV

/K

h̄
=

h2
π

=
1
.055×

10 −
3
4
joule·s

=
1
.055×

10 −
2
7
erg·s

=
6
.582×

10 −
1
6
eV

·s
c
=

2
.998×

10
8
m
/s

=
2
.998×

10
1
0
cm

/s

h̄
c
=

197
.3

M
eV

-fm
,

1
fm

=
10 −

1
5
m

1
yr

=
3
.156×

10
7
s

1
eV

=
1
.602×

10 −
1
9
joule

=
1
.602×

10 −
1
2
erg

1
G
eV

=
10

9
eV

=
1
.783×

10 −
2
7

kg
(w

here
c≡

1)

=
1
.783×

10 −
2
4
g
.
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P
lanck

U
nits:

T
he

P
lanck

length
#
P
,
the

P
lanck

tim
e
t
P
,
the

P
lanck

m
ass

m
P
,
and

the
P
lanck

energy
E

p
are

given
by

#
P
= √

G
h̄

c
3

=
1
.616×

10 −
3
5
m

,

=
1
.616×

10 −
3
3
cm

,

t
P
= √

h̄
Gc
5

=
5
.391×

10 −
4
4
s
,

m
P
= √

h̄
cG
=

2
.177×

10 −
8
kg

,

=
2
.177×

10 −
5
g
,

E
P
= √

h̄
c
5

G
=

1
.221×

10
1
9
G
eV

.

C
H

E
M

IC
A

L
E
Q

U
IL

IB
R

IU
M

:

(T
his

topic
w
as

not
included

in
the

course
in

2013,but
the

form
u-

las
are

nonetheless
included

here
for

logical
com

pleteness.
T
hey

w
illnot

be
relevant

to
Q
uiz

3.)

Id
eal

G
as

of
C

lassical
N

on
relativ

istic
P
articles:

n
i
=
g

i (2
π
m

i k
T
)
3
/
2

(2
π
h̄)

3
e
(µ

i −
m

i c
2
)/

k
T
.

w
here

n
i
=

num
ber

density
of

particle
g

i
=

num
ber

of
spin

states
of

particle
m

i
=

m
ass

of
particle

µ
i
=

chem
ical

potential

For
any

reaction,
the

sum
of

the
µ

i
on

the
left-hand

side
of

the
reaction

equation
m
ust

equalthe
sum

ofthe
µ

i
on

the
right-hand

side.
Form

ula
assum

es
gas

is
nonrelativistic

(k
T

�
m

i c
2)

and
dilute

(n
i �

(2
π
m

i k
T
)
3
/
2/(2

π
h̄)

3).


