

$\frac{\langle L\rangle}{\langle L\rangle-\left(\phi^{\prime} \theta\right)_{L} L} \equiv\left(\phi^{\prime} \theta\right) \frac{L}{L \rho}$	
¿pəұпq!ił	әurn $^{\text {m }}$ mox
woxf suо!̣е!̣әр рәұәәдәр әлеч р 	
 	* sə.оед צиегя әлошәу от рәұтешлоуәу
	\& ZI@О

${ }_{u-0 \mathrm{I}}>{ }^{\text {əəs }} \mathrm{I}=7|\mathrm{I}-\mho|$

concludes that at one second after the big bang,

 (e) (5 points) The flatness problem refers to the extreme fine-tuning that is needed bluer because of absorption in the intergalactic medium.
 redder because of absorption in the intergalactic medium.

 appear redder because of the Doppler effect.

(d) (5 points) Which of the following describes the Sachs-Wolfe effect?

Letting a denote the Robertson-Walker scale factor, by what factor does the
quantity $a T$ increase when the muons disappear? the heat given off from the muons is shared among all the other particles. black-body radiation are interacting fast enough to maintain equilibrium, so equilibrium radiation. At these temperatures all of the other particles in the
(c) (12 points) As $k T$ falls below 106 MeV , the muons disappear from the thermal
 besides the muons are contained in the thermal radiation that fills the universe? (b) (8 points) When $k T$ is just above 106 MeV as the universe cools, what particles the muons, taking μ^{+}and μ^{-}together? is written in terms of a normalization constant g. What is the value of g for

$\frac{\varepsilon(\partial \underline{)})}{\left(I^{y}\right)} \frac{0 \varepsilon}{z^{\perp}} \delta=n$

(a) (5 points) The formula for the energy density of black-body radiation, as given
by Eq. 6.48) of the lecture notes,

 denoted by $-e$. There is also an antimuon $\left(\mu^{+}\right)$, analogous to the positron, with 0.511 MeV for the electron. The muon $\left(\mu^{-}\right)$has the same charge as an electron, except that it is heavier- the mass/energy of a muon is 106 MeV , compared to

[^0]

 originated at $r=r_{\text {max }}$ arrived at Earth today, what would be its redshift z_{eh}
 ©
as the variable of integration, just as we did when we derived the first of the
expressions for t_{0} shown in the formula sheets.]
$\frac{\left({ }^{0} 7\right) p}{(7) p}=x$
integral. [Hint: One method is to use except perhaps to its present value $a\left(t_{0}\right)$. You are not expected to evaluate this parameters specified in the preamble, without any reference to the function $a(t)$,
 is difficult to use. Show, however, that by changing the variable of integration, (10 points) Since $a(t)$ is not known explicitly, the answer to the previous part should still try part (c).]

 is a maximum coordinate radius $r=r_{\max }$ that this pulse will ever reach, no
 $\mathrm{d} s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]$ flat Robertson-Walker metric, flat universe, so we can take $k=0, \Omega_{m, 0}+\Omega_{\mathrm{rad}, 0}+\Omega_{\mathrm{vac}}=1$, and we can use the Hubble expansion rate. The best estimates of these numbers are consistent with a
 in terms of a small set of numbers: $\Omega_{m, 0}$, the present contribution to Ω from
nonrelativistic matter; $\Omega_{\mathrm{rad}, 0}$, the present contribution to Ω from radiation; Ω_{vac},

points)
PROBLEM 3: THE EVENT HORIZON FOR OUR UNIVERSE (25

H O P 	$\stackrel{ }{\sim}$	ω	N	-	-1 0 0 0 0 0
$\stackrel{\square}{8}$	宫	N	N	¢	砍

$$
\begin{gathered}
\text { EVOLUTION OF A MATTER-DOMINATED UNIVERSE: } \\
\begin{array}{c}
\text { Closed }(k>0): \quad c t=\alpha(\theta-\sin \theta), \quad \frac{a}{\sqrt{k}}=\alpha(1-\cos \theta), \\
\Omega=\frac{2}{1+\cos \theta}>1, \\
\text { where } \alpha \equiv \frac{4 \pi}{3} \frac{G \rho}{c^{2}}\left(\frac{a}{\sqrt{k}}\right)^{3} . \\
c t=\alpha(\sinh \theta-\theta), \quad \frac{a}{\sqrt{\kappa}}=\alpha(\cosh \theta-1), \\
\Omega=\frac{2}{1+\cosh \theta}<1, \\
\text { where } \alpha \equiv \frac{4 \pi}{3} \frac{G \rho}{c^{2}}\left(\frac{a}{\sqrt{\kappa}}\right)^{3}, \\
\kappa \equiv-k>0 .
\end{array} \\
\text { ROBERTSON-WALKER METRIC: } \\
\text { (} k s^{2}=-c^{2} d \tau^{2}=-c^{2} d t^{2}+a^{2}(t)\left\{\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right\} \\
\text { Alternatively, for } k>0, \text { we can define } r=\frac{\sin \psi}{\sqrt{k}}, \text { and then } \\
d s^{2}=-c^{2} d \tau^{2}=-c^{2} d t^{2}+\tilde{a}^{2}(t)\left\{d \psi^{2}+\sin ^{2} \psi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right\}
\end{gathered}
$$

$$
\begin{aligned}
& \text { where } \tilde{a}(t)=a(t) / \sqrt{-k} \text {. Note that } \tilde{a} \text { can be called } a \text { if there is } \\
& \text { no need to relate it to the } a(t) \text { that appears in the first equation } \\
& \text { above. }
\end{aligned}
$$

HORIZON DISTANCE:
$\frac{\varepsilon^{(\partial y)}}{\varepsilon^{L_{\mp} Y}} \frac{\Phi \mp}{z^{\perp Z}} B=s$

$p=\frac{1}{3} u$

:NOILתTONA TVOIDOTONSOD GAZITVYGNGD

Particle/
antiparticle

$\|$
e
8.286 QUIZ 3 FORMULA SHEET, FALL 2013

$$
\begin{aligned}
& G=6.674 \times 10^{-11} \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{-2}=6.674 \times 10^{-8} \mathrm{~cm}^{3} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~s}^{-2} \\
& k=\text { Boltzmann's constant }=1.381 \times 10^{-23} \text { joule } / \mathrm{K} \\
&=1.381 \times 10^{-16} \mathrm{erg} / \mathrm{K} \\
&=8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad=8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K} \\
& \begin{aligned}
\hbar=\frac{h}{2 \pi} & =1.055 \times 10^{-34} \text { joule } \cdot \mathrm{s} \\
& =1.055 \times 10^{-27} \mathrm{erg} \cdot \mathrm{~s} \\
& =6.582 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~s}
\end{aligned} \\
& \begin{aligned}
c=2.998 & \times 10^{8} \mathrm{~m} / \mathrm{s} \\
= & 2.998 \times 10^{10} \mathrm{~cm} / \mathrm{s}
\end{aligned} \\
& \begin{aligned}
\hbar c & =197.3 \mathrm{MeV}-\mathrm{fm}, \quad 1 \mathrm{fm}=10^{-15} \mathrm{~m}
\end{aligned} \\
& 1 \mathrm{yr}=3.156 \times 10^{7} \mathrm{~s} \\
& 1 \mathrm{eV}=1.602 \times 10^{-19} \text { joule }=1.602 \times 10^{-12} \mathrm{erg} \\
& 1 \mathrm{GeV}=10^{9} \mathrm{eV}=1.783 \times 10^{-27} \mathrm{~kg}(\text { where } c \equiv 1)
\end{aligned}
$$

dilute $\left(n_{i} \ll\left(2 \pi m_{i} k T\right)^{3 / 2} /(2 \pi \hbar)^{3}\right)$.
 reaction equation must equal the sum of the μ_{i} on the right-hand For any reaction, the sum of the μ_{i} on the left-hand side of the
 әр!̣тед јо sseu $={ }^{?} u$

$\Lambda^{ə ŋ}{ }_{6 \mathrm{I}} 0 I \times L Z Z^{\circ} \mathrm{I}=\frac{\eta}{\underline{q^{\partial u}}} \Lambda=d_{\mathcal{H}}$
${ }^{\circ} \delta_{g_{-}} 0 I \times L L I \cdot Z=$
' ®y $_{{ }_{8}} 0 I \times L L I \cdot Z=\frac{D}{\partial y} \Lambda=d u$
. ${ }^{\circ Y}{ }_{8}{ }_{8} 0\left[\times 2 L\left[\left.\sigma=\frac{\partial \bar{y}}{\underline{\partial}} \right\rvert\,=d u\right.\right.$

$$
\overbrace{\mp \succeq-0 I} \times \varepsilon 8 L \cdot I=
$$

Ideal Gas of Classical Nonrelativistic Particles:

8.286 QUIZ 3 FORMULA SHEET, FALL 2013

[^0]:

