:»əmsuV ¿ıəə
${ }_{z / \tau}\left\langle\tau\left(\frac{L}{L \rho}\right)\right\rangle$ $\frac{\langle L\rangle}{\langle L\rangle-\left(\phi^{\prime} \theta\right)_{L} L} \equiv\left(\phi^{\prime} \theta\right) \frac{L}{L \varrho}$
¿pəұпq!̣ı $\mp=u: \iota \partial m s u_{V}$
 SNOIU@TOS \& ZI』®

 -Kıоұәеле!̣ет

 accurate to within $\pm 5 \%$.

 baryonic matter, dark matter, and dark energy. Give the percentages of each, (5 points) The total energy density of the present universe consists mainly of

 ${ }^{\prime}{ }_{u-0} 0 \mathrm{~L}>{ }^{\text {әəs } \mathrm{I}=7}|\mathrm{I}-\mho|$
concludes that at one second after the big bang, Starting with the assumption that Ω today is equal to 1 within about 1%, one

 bluer because of absorption in the intergalactic medium.
 redder because of absorption in the intergalactic medium. (v) Photons traveling toward us from the surface of last scattering appear

$(\varepsilon[\cdot \varepsilon)$

