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PROBLEM 1: DID YOU DO THE READING? (35 points)

(a) (5 points) Ryden summarizes the results of the COBE satellite experiment for
the measurements of the cosmic microwave background (CMB) in the form of
three important results. The first was that, in any particular direction of the
sky, the spectrum of the CMB is very close to that of an ideal blackbody. The
FIRAS instrument on the COBE satellite could have detected deviations from
the blackbody spectrum as small as ∆ε/ε ≈ 10−n, where n is an integer. To
within ±1, what is n?

Answer: n = 4

(b) (5 points) The second result was the measurement of a dipole distortion of
the CMB spectrum; that is, the radiation is slightly blueshifted to higher tem-
peratures in one direction, and slightly redshifted to lower temperatures in
the opposite direction. To what physical effect was this dipole distortion at-
tributed?

Answer: The large dipole in the CMB is attributed to the motion of the satellite
relative to the frame in which the CMB is very nearly isotropic. (The entire
Local Group is moving relative to this frame at a speed of about 0.002c.)

(c) (5 points) The third result concerned the measurement of temperature fluctu-
ations after the dipole feature mentioned above was subtracted out. Defining

δT

T
(θ, φ) ≡ T (θ, φ)− 〈T 〉

〈T 〉 ,

where 〈T 〉 = 2.725 K, the average value of T , they found a root mean square
fluctuation, 〈(

δT

T

)2
〉1/2

,

equal to some number. To within an order of magnitude, what was that num-
ber?

Answer: 〈(
δT

T

)2
〉1/2

= 1.1× 10−5 .
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(d) (5 points) Which of the following describes the Sachs-Wolfe effect?
(i) Photons from fluid which had a velocity toward us along the line of sight

appear redder because of the Doppler effect.
(ii) Photons from fluid which had a velocity toward us along the line of sight

appear bluer because of the Doppler effect.

(iii) Photons from overdense regions at the surface of last scattering appear
redder because they must climb out of the gravitational potential well.

(iv) Photons from overdense regions at the surface of last scattering appear
bluer because they must climb out of the gravitational potential well.

(v) Photons traveling toward us from the surface of last scattering appear
redder because of absorption in the intergalactic medium.

(vi) Photons traveling toward us from the surface of last scattering appear
bluer because of absorption in the intergalactic medium.

(e) (5 points) The flatness problem refers to the extreme fine-tuning that is needed
in Ω at early times, in order for it to be as close to 1 today as we observe.
Starting with the assumption that Ω today is equal to 1 within about 1%, one
concludes that at one second after the big bang,

|Ω− 1|t=1 sec < 10−m ,

where m is an integer. To within ± 3, what is m?
Answer: m = 18. (See the derivation in Lecture Notes 8.)

(f) (5 points) The total energy density of the present universe consists mainly of
baryonic matter, dark matter, and dark energy. Give the percentages of each,
according to the best fit obtained from the Planck 2013 data. You will get full
credit if the first (baryonic matter) is accurate to ±2%, and the other two are
accurate to within ±5%.
Answer: Baryonic matter: 5%. Dark matter: 26.5%. Dark energy: 68.5%.
The Planck 2013 numbers were given in Lecture Notes 7. To the requested
accuracy, however, numbers such as Ryden’s Benchmark Model would also be
satisfactory.

(g) (5 points) Within the conventional hot big bang cosmology (without inflation),
it is difficult to understand how the temperature of the CMB can be correlated
at angular separations that are so large that the points on the surface of last
scattering was separated from each other by more than a horizon distance. Ap-
proximately what angle, in degrees, corresponds to a separation on the surface
last scattering of one horizon length? You will get full credit if your answer is
right to within a factor of 2.
Answer: Ryden gives 1◦ as the angle subtended by the Hubble length on the
surface of last scattering. For a matter-dominated universe, which would be
a good model for our universe, the horizon length is twice the Hubble length.
Any number from 1◦ to 5◦ was considered acceptable.
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PROBLEM 2: FREEZE-OUT OF MUONS (25 points)

See the solutions to Problem Set 7, Problem 2 (2013).

PROBLEM 3: THE EVENT HORIZON FOR OUR UNIVERSE (25
points)

(a) In a spherical pulse each light ray is moving radially outward, so dθ = dφ = 0.
A light ray travels along a null trajectory, meaning that ds2 = 0, so we have

ds2 = −c2 dt2 + a2(t) dr2 = 0 . (3.1)

from which it follows that
dr

dt
= ± c

a(t)
. (3.2)

We are interested in a radial pulse that starts at r = 0 at time t = t0, so the
limiting value of r is given by

rmax =
∫ ∞

t0

c

a(t)
dt . (3.3)

(b) Changing variables of integration to

x =
a(t)
a(t0)

, (3.4)

the integral becomes

rmax =
∫ ∞

1

c

a(t)
dt

dx
dx =

c

a(t0)

∫ ∞

1

1
x

dt

dx
dx , (3.5)

where we used the fact that t = t0 corresponds to x = a(t0)/a(t0) = 1. As
given to us on the formula sheet, the first-order Friedmann equation can be
written as

x
dx

dt
= H0

√
Ωm,0x +Ωrad,0 + Ωvac,0x4 + Ωk,0x2 . (3.6)

Using this substitution,

rmax =
c

a(t0)H0

∫ ∞

1

dx√
Ωm,0x + Ωrad,0 + Ωvac,0x4

, (3.7)
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where we have used Ωk,0 = 0, since the universe is taken to be flat.

(c) To find the value of the redshift for the light that we are presently receiving from
coordinate distance rmax, we can begin by noticing that the time of emission te
can be determined by the equation which implies that the coordinate distance
traveled by a light pulse between times te and t0 must equal rmax. Using
Eq. (3.2) for the coordinate velocity of light, this equation reads∫ t0

te

c

a(t)
dt = rmax . (3.8)

The “half-credit” answer to the quiz problem would include the above equation,
followed by the statement that the redshift zeh can be determined from

z =
a(t0)
a(te)

− 1 . (3.9)

The “full-credit” answer is obtained by changing the variable of integration as
in part (b), so Eq. (3.8) becomes

rmax =
∫ 1

xe

c

a(t)
dt

dx
dx

=
c

a(t0)

∫ 1

xe

1
x

dt

dx
dx ,

(3.10)

where xe is the value of x corresponding to t = te. Then using Eq. (3.6) with
Ωk,0 = 0, we find

rmax =
c

a(t0)H0

∫ 1

xe

dx√
Ωm,0x + Ωrad,0 + Ωvac,0x4

. (3.11)

To complete the answer in this language, we use

z =
1
xe

− 1 . (3.12)

Eqs. (3.11) and (3.12) constitute a full answer to the question, but one could
go further and replace rmax using Eq. (3.7), finding

∫ ∞

1

dx√
Ωm,0x +Ωrad,0 +Ωvac,0x4

=
∫ 1

xe

dx√
Ωm,0x + Ωrad,0 +Ωvac,0x4

.

(3.13)
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In this form the answer depends only on the values of ΩX,0.

You were of course not asked to evaluate this formula numerically, but you
might be interested in knowing that the Planck 2013 values Ωm,0 = 0.315,
Ωvac,0 = 0.685, and Ωrad,0 = 9.2 × 10−5 lead to zeh = 1.87. Thus, no event
that is happening now (i.e., at the same value of the cosmic time) in a galaxy
at redshift larger than 1.87 will ever be visible to us or our descendants, even
in principle.

PROBLEM 4: BEHAVIOR OF Ω IN A UNIVERSE DOMINATED BY
MYSTERIOUS STUFF (15 points)

(a) From the Friedmann equation,

H2 =
8π
3

Gρ − kc2

a2
,

and the definition of ρc,

H2 =
8π
3

Gρc ,

we have
8π
3

Gρ − kc2

a2
=

8π
3

Gρc ,

which can be rearranged to give

ρ − ρc =
3kc2

8πGa2
.

Dividing both sides by ρ we find

ρ − ρc

ρ
=

Ω− 1
Ω

=
3kc2

8πGa2ρ
.

(The middle expression above is obtained from the expression on the left by
multiplying both the numerator and the denominator by 1/ρc.) Now multiply
both the numerator and denominator of the expression on the right by T 2,
recognizing that aT is approximately constant. We then have

Ω− 1
Ω

= A
T 2

ρ
,

where

A =
3kc2

8πG(aT )2
.
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(b) Combining the above equation with our knowledge that T ∝ 1/a and ρ ∝ 1/a5,
we have immediately that

Ω− 1
Ω

∝ 1/a2

1/a5
∝ a3 .

To determine how a depends on time, we can solve the Friedmann equation for
a flat universe dominated by mysterious stuff:

(
ȧ

a

)2

=
const
a5

=⇒ da

dt
=

√
const
a3/2

.

Thus
a3/2 da =

√
const dt

and then
2
5

a5/2 =
√
const t ,

where the constant of integration is set to zero by using the convention that
a = 0 when t = 0. Thus

a ∝ t2/5 ,

and then

Ω− 1
Ω

∝ a3 ∝ t6/5 .


