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Please answer all questions in this stapled booklet.

PROBLEM 1: DID YOU DO THE READING? (25 points)

(a) (4 points) Which of the following statements about deuterium is NOT true? Choose
one.

(i) The abundance of deuterium in the universe tends to decrease with time, because
deuterium is very easily destroyed in stars.

(ii) The most promising way to find the primordial value of deuterium abundance is
to look at the spectra of distant quasars to estimate the abundance of deuterium
within the quasar itself.

(iii) The Lyman-α transition in deuterium corresponds to a slightly different wave-
length than the Lyman-α transition in hydrogen.

(iv) Deuterium plays an important role in forming helium in the early universe
mainly by producing tritium or 3He.

[Comment: The most promising way to find the primordial value of the deuterium
abundance is to look at the spectra of distant quasars to estimate the abundance of
deuterium in intergalactic gas clouds that lie between the quasars and us.]

(b) (6 points) In Chapter 5 of The First Three Minutes, Steven Weinberg describes the
first three minutes of the history of the universe. Choose two correct statements
about the first three minutes. You can assume the fraction by weight of primordial
helium is 26 percent. (3 points for each right answer, no penalty for guessing.)

(i) When the temperature of the universe was about 1010 ◦K (t ∼ 1 sec), neutrinos

and antineutrinos started to behave as free particles, no longer having significant
interactions with electrons, positrons, or photons.

(ii) After the neutrinos decoupled from the photons, the temperature of the neutri-
nos was higher than that of the photons because neutrinos interacted less with
other particles as the universe expanded.

(iii) Most of the atoms heavier than helium were made through nucleosynthesis dur-
ing the first three minutes, and this is why we call this period the era of nucle-
osynthesis.
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(iv) After the first three minutes, there were about 7 times more protons than neu-

trons, and the ratio of protons to neutrons has been almost preserved until
today.

(v) The protons and neutrons became decoupled from the photons after the first
three minutes, because the number densities of protons and neutrons were de-
creased by the formation of helium, and so their interactions with photons be-
came negligible.

(vi) The observed abundance of helium in a galaxy today is much larger than the
abundance of primordial helium, because helium is continuously formed inside
stars by nuclear fusion.

[Comment: The statement (i) is described in Chapter 5 of Weinberg’s book, and
it has also been discussed in class. The correctness of statement (iv) can also be
seen from Weinberg’s Chapter 5, which says that the fraction of neutrons after the
first three minutes is around 14%, and it goes down to around 13% “a little later”.
Thus there were about 7 times more protons compared to neutrons. Weinberg also
explains that most of the neutrons present at this time immdiately combined with
protons to form helium, which causes the ratio to be nearly constant until today. If
you did not remember Weinberg’s numbers, the statement that the fraction by weight
of primordial helium is 26% should allow you to determine the neutron to proton
ratio, provided that you remember that the helium nucleus consists of 2 protons and
two neutrons, that the mass of the proton and neutron are about equal, and that the
remaining 74% of the matter is essentially hydrogen, with no neutrons. Thus helium
is very nearly half protons and half neutrons by weight, so the neutrons must be
about 13% of the matter in the universe. (Note that we are talking about fractions of
the total “baryonic” matter, which does not include the dark matter.) (ii) is clearly
false, because the temperature of neutrinos becomes lower than that of photons. (iii)
is clearly false, because most atoms heavier than helium were made much later in
the history of the universe, in the interiors of stars. (v) is false because protons
did not decouple from photons until about 350,000 years, and it happened because
the plasma of protons and electrons combined to form neutral hydrogen. (vi) is false
because most of the helium in the universe today is primordial. Ryden points out,
for example, that the abundance of helium in the Sun’s atmosphere is only about
28%. Weinberg states, near the end of Chapter 5, that “the 20-30 percent helium
abundance could not have been created recently without liberating enormous amounts
of radiation that we do not observe.”]

(c) (4 points) The cosmic microwave background radiation was first discovered by Pen-
zias and Wilson in 1964. However, according to Chapter 6 of The First Three
Minutes, a team at the MIT Radiation Laboratory led by Robert Dicke was able to
set an upper limit on any isotropic extraterrestrial radiation background, showing
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that the equivalent temperature was less than 20 ◦K at wavelengths of 1.00, 1.25,
and 1.50 centimeters. This measurement was made in the

(i) 1920s (ii) 1930s (iii) 1940s (iv) 1950s (v) 1960s

(d) (5 points) A free neutron can radioactively decay into a proton, plus two other
particles. What are these particles? Give the charge, baryon number, and lepton
number for each of these particles, verifying that each of these quantities is conserved
in this process.

Answer:

The neutron decays through the reaction

n→ p+ e− + ν̄e .

The quantum numbers of these particles can be described by the following table:

Particle Charge
Baryon
Number

Lepton
Number

Neutron (n) 0 1 0

Proton (p) +e 1 0

Electron (e−) -e 0 1

Anti-electron-neutrino (ν̄e) 0 0 -1

Thus, the total charge of the final state is zero, the total baryon number is 1, and the
total lepton number is zero, in all cases matching the initial value of these quantities.

(e) (6 points) In Chapter 8 of Ryden’s Introduction to Cosmology, she discusses three
ways to measure the dark matter in clusters. Give a brief, qualitative description of
TWO of them. (If you give three descriptions, only the first two will be graded!)

Answer: You should have given two of the following three items.

1) Virial theorem: The virial theorem relates the total kinetic energy of a steady-
state cluster to is gravitational potential energy. Since the kinetic energy is
proportional to the mass M of the cluster, while the potential energy is propor-
tional to M2, the relation will hold for only one value of M . By measuring the
velocity dispersion (root mean square of the radial galaxy velocities relative to
the mean radial velocity) and the size of the cluster, the mass can be inferred.
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2) Hot, x-ray emitting gases: By measuring the x-rays emitted by the cluster, it is
possible to model the density, temperature, and composition of the hot gas within
the cluster (intracluster gas). By assuming that the gas is in hydrostatic equi-
librium — i.e., by assuming that the pressure gradients balance the gravitational
forces — one can infer the gravitational field, and hence the total mass.

3) Gravitational lensing: If one can find a galaxy behind the cluster, so that the
image of the galaxy is gravitationally lensed, then the mass of the galaxy can be
inferred by the degree to which the galaxy is lensed.

— End of Problem 1. —
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PROBLEM 2: EVOLUTION OF A FRIEDMANN–ROBERTSON–
WALKER UNIVERSE (20 points)

(a) (10 points) The evolution of a homogeneous isotropic model of the universe, known as
a Friedmann–Robertson-Walker (FRW) universe, can be described by the following
equations: (

ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, (2.1)

ä = −4π

3
G

(
ρ+

3p

c2

)
a , (2.2)

and

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
. (2.3)

These equations are not independent, but any two can in fact be used to derive the
third. For example, in Problem Set 6, you were asked to use Eqs. (2.1) and (2.3) to
derive Eq. (2.2). Here you are asked to show that Eqs. (2.1) and (2.2) can be used
to derive Eq. (2.3).

Answer:

We can rewrite Eq. (2.1) as

ȧ2 =
8π

3
Gρa2 − kc2 ,

which can then be differentiated to give

2ȧä =
16π

3
Gρaȧ+

8π

3
Gρ̇a2 .

The above equation can be solved for ρ̇, giving

ρ̇ = −2
ȧ

a
ρ+

3

4πG

äȧ

a2
.

Then if Eq. (2.2) is used to replace ä, one finds

ρ̇ = −2
ȧ

a
ρ− ȧ

a

(
ρ+

3p

c2

)
= −3

ȧ

a

(
ρ+

p

c2

)
.
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(b) (6 points) If the universe were flat, expanding, and filled with a material for which

p = −ρc2 , (2.4)

what would be the form of the scale factor a(t)?

Answer:

If p = −ρc2, then Eq. (2.3) implies that

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
= 0 ,

so ρ is a constant. Then, since k = 0 for a flat universe, Eq. (2.1) implies(
ȧ

a

)2

=
8π

3
Gρ = const ,

so

ȧ = ±
√

8π

3
Gρa .

Only the positive option describes an expanding universe, so

ȧ =

√
8π

3
Gρa =⇒ a(t) = b e

√
8π
3 Gρ t ,

where b is an arbitrary constant.

(c) (4 points) In the universe described in part (b), suppose that, at t = 0, my friend
Bob emits a photon in my direction. Show that if Bob is more than a certain distance
away from me at the time of emission, t = 0, then the photon will never reach me.
What is this distance?

Answer:

The metric for this universe is

ds2 = −c2 dt2 + b2e2Ht d~x2 ,

where

H =

√
8π

3
Gρ .

Light pulses travel with ds2 = 0, so the coordinate speed of light, for a pulse traveling
along the x axis, is given by

dx

dt
=

c

beHt
.
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So the coordinate distance that the pulse will travel between time 0 and some arbi-
trary time t is given by

`coord(t) =

∫ t

0

dx

dt
(t′) dt′ =

c

b

∫ t

0

e−Ht
′
dt′ =

c

bH

(
1− e−Ht

)
.

Therefore, even if we let t→∞, the coordinate distance traveled by the light pulse
will always be less than c/(bH). Since I am stationary in the comoving coordinates,
if the initial coordinate distance between Bob and me was more than c/(bH), the
light pulse will never reach me. Since the initial time was t = 0, with a(0) = b,

the light pulse will never reach me if the initial physical
distance between Bob and me was more than cH−1,
which is called the Hubble length.

[Comment: many students tried to use the formulas that we have learned for the
horizon distance, but that is not the same thing. The horizon distance is the present
proper distance to the most distant objects from which light has had time to reach us,
since t = 0. This is often called the “particle horizon,” and clearly it is determined
solely by the history of the universe, up to the present. The current question concerns
whether a photon emitted at the present time by Bob will ever reach me. This question
is determined solely by the future evolution of the universe, and is a completely
different question from the particle horizon issue. It is also called a horizon, however.
The distance beyond which light will never reach me is called the “event horizon.”]

— End of Problem 2. —
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PROBLEM 3: EVOLUTION OF AN OPEN, MATTER-DOMINATED UNI-
VERSE (35 points)

The following problem was Problem 2 on Problem Set 4.

The equations describing the evolution of an open, matter-dominated universe were
given in Lecture Notes 4 as

ct = α (sinh θ − θ)
and a√

κ
= α (cosh θ − 1) ,

where α is a constant with units of length. The following mathematical identities, which
you should know, may also prove useful on parts (e) and (f):

sinh θ =
eθ − e−θ

2
, cosh θ =

eθ + e−θ

2

eθ = 1 +
θ

1!
+
θ2

2!
+
θ3

3!
+ . . . .

(a) (5 points) Find the Hubble expansion rate H as a function of α and θ.

Answer:

Using the chain rule, the standard formula for the Hubble expansion rate can be
rewritten as

H(θ) =
1

a

da

dθ

dθ

dt
.

The parametric equations for a and t for an open, matter-dominated universe are
given by

ct = α (sinh θ − θ)
a√
κ

= α (cosh θ − 1) .

Recall that the hyperbolic trigonometric functions are differentiated as

d

dθ
sinh θ = cosh θ ,

d

dθ
cosh θ = sinh θ .

So, differentiating the parametric equations,

da

dθ
= α
√
k sinh θ ,

dt

dθ
=
α

c
(cosh θ − 1) =

1

dθ/dt
.
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Then

H(θ) =

[
1√

κα(cosh θ − 1)

] [
α
√
κ sinh θ

] [ c

α(cosh θ − 1)

]

=
c sinh θ

α(cosh θ − 1)2
.

(b) (5 points) Find the mass density ρ as a function of α and θ.

Answer:

This problem can be attacked by at least three different methods. While you were
expected to use only one, we will show all three.

(i) One way to find ρ is to use

H2 =
8π

3
Gρ− kc2

a2
.

This is usually the safest method to find ρ for a cosmological model, since the
above equation is one of the general Friedmann equations. The equation requires
that the universe be homogeneous and isotropic, but it is valid for any form of
matter. By contrast, the two other methods that will be shown below are valid
only for “matter-dominated” universes (i.e., universes that are dominated by
nonrelativistic matter, for which the pressure is always negligible). One can
rewrite this equation as

8π

3
Gρ = H2 +

kc2

a2
.

Recalling that we described open universes by using κ ≡ −k, this can be rewrit-
ten as

8π

3
Gρ = H2 − κc2

a2
.

Replacing H by the answer in part (a) and a by its parametric equation, one
finds

8π

3
Gρ =

c2 sinh2 θ

α2(cosh θ − 1)4
− κc2

α2κ(cosh θ − 1)2

=
c2

α2(cosh θ − 1)4
[
sinh2 θ − (cosh θ − 1)2

]
.

Now make use of the hypertrigonometric identity

cosh2 θ − sinh2 θ = 1
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to simplify:

sinh2 θ − (cosh θ − 1)2 = sinh2 θ − cosh2 θ + 2 cosh θ − 1

= 2(cosh θ − 1) ,

so
8π

3
Gρ =

2c2

α2(cosh θ − 1)3
.

Dividing both sides of the equation by (8π/3)G, one finds

ρ =
3c2

4πGα2(cosh θ − 1)3
.

(ii) Use the definition of α,

α ≡ 4π

3

Gρã3

c2
,

from Eq. (4.17) of Lecture Notes 4, with Eq. (4.39),

ã(t) ≡ a(t)√
κ
.

One can then solve for ρ, finding

ρ =
3

4π

ακ3/2c2

Ga3
.

By substituting for a(θ) by using the parametric equation, one finds the final
result:

ρ =
3

4π

ακ3/2c2

G

1

α3κ3/2(cosh θ − 1)3

=
3c2

4πGα2(cosh θ − 1)3
.

(iii) ρ can also be found from ä = −(4π/3)Gρa, as long as we know that the universe
is matter-dominated. (Be careful, however, about applying this formula in other
situations: if the pressure cannot be neglected, then this equation has to be
modified.) To evaluate ä, again use the chain rule. Starting with ȧ,

ȧ =
da

dθ

dθ

dt
= α
√
κ sinh θ

c

α(cosh θ − 1)
=
c
√
κ sinh θ

cosh θ − 1
.



8.286 QUIZ 2 SOLUTIONS, FALL 2018 p. 11

Then

ä =
dȧ

dθ

dθ

dt
=

d

dθ

[
c
√
κ sinh θ

cosh θ − 1

]
c

α(cosh θ − 1)

=
c2
√
κ

α(cosh θ − 1)

[
cosh θ

cosh θ − 1
− sinh2 θ

(cosh θ − 1)2

]
=

c2
√
κ

α(cosh θ − 1)3
[
cosh θ(cosh θ − 1)− sinh2 θ

]
=

c2
√
κ

α(cosh θ − 1)3
(1− cosh θ) = − c2

√
κ

α(cosh θ − 1)2
.

So

ä = −4π

3
Gρa =⇒ − c2

√
κ

α(cosh θ − 1)2
= −4π

3
Gρα
√
κ(cosh θ − 1) ,

and

ρ =
3c2

4πGα2(cosh θ − 1)3
.

(c) (5 points) Find the mass density parameter Ω as a function of α and θ.

Answer:

The critical mass density satisfies the cosmological evolution equations for k = 0, so

H2 =
8π

3
Gρc .

Then

Ω ≡ ρ

ρc
=

8πGρ

3H2
.

Now replace H by the answer to part (a), and ρ by the answer to part (b):

Ω =
8πG

3

[
3

4π

c2

Gα2(cosh θ − 1)3

] [
α2(cosh θ − 1)4

c2 sinh2 θ

]
= 2

cosh θ − 1

sinh2 θ
= 2

cosh θ − 1

cosh2 θ − 1

= 2
cosh θ − 1

(cosh θ + 1)(cosh θ − 1)
=

2

cosh θ + 1
.
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The answer can be written even more compactly, if one wishes, by using a further
hypertrigonometric identity:

Ω =
2

cosh θ + 1
=

1

cosh2 1
2θ

= sech2 1

2
θ .

(d) (6 points) Find the physical value of the horizon distance, `p,horizon, as a function of
α and θ.

Answer:

The basic formula that determines the physical value of the horizon distance is given
by Eq. (4.7) of the lecture notes:

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′ .

The complication here is that a is given as a function of θ, rather than t. The
problem is handled, however, by a simple change of integration variables. One can
change the integral over t′ to an integral over θ′, provided that one replaces

dt′ → dt′

dθ′
dθ′ =

α

c
(cosh θ′ − 1)dθ′ .

One must also re-express the limits of integration in terms of θ. So

`p,horizon(t) = a
(
θ(t)

) ∫ θ(t)

0

c

a(θ′)

dt′

dθ′
dθ′

= α
√
κ
(

cosh θ(t)− 1
) ∫ θ(t)

0

c

α
√
κ(cosh θ′ − 1)

α

c
(cosh θ′ − 1) dθ′ .

= α
(

cosh θ(t)− 1
) ∫ θ(t)

0

dθ′ = α θ(t)
(

cosh θ(t)− 1
)
.

(e) (7 points) For very small values of t, it is possible to use the first nonzero term of a
power-series expansion to express θ as a function of t, and then a as a function of t.
Give the expression for a(t) in this approximation. The approximation will be valid
for t� t∗. Estimate the value of t∗.

Answer:

The key to this problem is the use of power series expansions. When this problem
appeared as a quiz problem in 1992, I was rather surprised to find that many of the
students seemed very inexperienced in this technique. It is a very useful method of
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approximation, so I strongly urge you to learn it if you don’t know it already. In
general, any sufficiently smooth function f(x) can be expanded about the point x0
by the series

f(x) = f(x0) +
1

1!
f ′(x0)(x− x0) +

1

2!
f ′′(x0)(x− x0)2

+
1

3!
f ′′′(x0)(x− x0)3 + . . . ,

where the prime is used to denote a derivative. In particular, the exponential, sinh,
and cosh functions can be expanded about θ = 0 by the formulas

eθ = 1 +
θ

1!
+
θ2

2!
+
θ3

3!
+ . . .

sinh θ = θ +
θ3

3!
+
θ5

5!
+
θ5

7!
. . .

cosh θ = 1 +
θ2

2!
+
θ4

4!
+
θ6

6!
+ . . . .

For this problem, we expand the parametric equations for a(θ) and t(θ), keeping the
first nonvanishing term in the power series expansions:

t =
α

c
(sinh θ − θ) =

α

c

(
θ3

3!
+ . . .

)
a = α

√
κ(cosh θ − 1) = α

√
κ

(
θ2

2!
+ . . .

)
.

The first expression can be solved for θ, giving

θ ≈
(

6ct

α

)1/3

,

which can be substituted into the second expression to give

a ≈ 1

2
α
√
κ

(
6ct

α

)2/3

.

The power series expansions for the sinh and cosh are valid whenever the terms left
out are much smaller than the last term kept, which happens when θ � 1. Given
the above relation between θ and t, this condition is equivalent to

t� α

6c
.
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Thus,

t∗ ≈ α

6c
, or t∗ ≈ α

c
.

Since there is no precise meaning to the statement that an approximation is valid,
there is no precise value for t∗.

(f) (7 points) Even though these equations describe an open universe, one still finds that
Ω approaches one for very early times. For t� t∗ (where t∗ is defined in part (e)),
the quantity 1 − Ω behaves as a power of t. Find the expression for 1 − Ω in this
approximation.

Answer:

From part (c), the expression for Ω is given by

Ω =
2

cosh θ + 1
.

So,

1− Ω = 1− 2

cosh θ + 1
=

cosh θ − 1

cosh θ + 1
.

Expanding numerator and denominator in power series,

1− Ω ≈
θ2

2! + θ4

4! + . . .

2 + θ2

2! + . . .
.

Keeping only the leading terms,

1− Ω ≈
θ2

2

2
=

1

4
θ2 ,

so

1− Ω ≈ 1

4

(
6ct

α

)2/3

.

This result shows that the deviation of Ω from 1 is amplified with time. This fact
leads to a conundrum called the “flatness problem”, which will be discussed later in
the course.

A common mistake (very minor) was to keep extra terms, especially in the denom-
inator. Keeping extra terms allows a higher degree of accuracy, so there is nothing
wrong with it. However, one should always be sure to keep all terms of a given order,
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since keeping only a subset of terms may or may not increase the accuracy. In this
case, an extra term in the denominator can be rewritten as a term in the numerator:

θ2

2!

2 + θ2

2!

=
1

4

θ2

1 + θ2

4

=
1

4
θ2
(

1− θ2

4
+ . . .

)
=

1

4
θ2 − 1

16
θ4 + . . . ,

where I used the expansion

1

1 + x
= 1− x+ x2 − x3 + x4 + . . . .

Thus, the extra term in the denominator is equivalent to a term in the numerator
of order θ4, but other terms proportional to θ4 have been dropped. So, it is not
worthwhile to keep the 2nd term in the expansion of the denominator.

— End of Problem 3. —
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PROBLEM 4: RADIAL GEODESICS IN A CLOSED UNIVERSE (20 points)

As shown in the formula sheets, we can describe a closed universe by choosing k = 1,
and then using coordinates (t, r, θ, φ), with metric

ds2 ≡ −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
, (4.1)

or by using coordinates (t, ψ, θ, φ), with metric

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + a2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
. (4.2)

The connection between the two coordinate systems is given by

r = sinψ . (4.3)

The general spacetime geodesic equation can be written as

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
. (4.4)

(a) (7 points) Using the coordinates (t, ψ, θ, φ) and the metric of Eq. (4.2), compute
explicitly the geodesic equation for µ = ψ. By “compute explicitly”, I mean that
gµν should be replaced by the relevant expressions from Eq. (4.2), and that the sums
over indices should be written out, including only the nonzero terms.

Answer:

Since the metric is diagonal, only ν = ψ contributes to the sum over ν. Similarly
λ must equal σ, and the only nonzero values of ∂ψgλσ are when λ = σ = θ and
λ = σ = φ. So Eq. (4.4) becomes

d

dτ

{
gψψ

dψ

dτ

}
=

1

2

[
∂gθθ
∂ψ

(
dθ

dτ

)2

+
∂gφφ
∂ψ

(
dφ

dτ

)2
]
.

Using gψψ = a2(t), gθθ = a2(t) sin2 ψ, and gφφ = a2(t) sin2 ψ sin2 θ, the equation
becomes

d

dτ

{
a2(t)

dψ

dτ

}
= a2(t) sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
. (4.5)
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You were not asked to expand the left-hand-side, but some of you did. If you do
expand the left-hand side, it is important to remember that a(t) depends on t and t
depends on τ , so the equation becomes

a2(t)
d2ψ

dτ2
+ 2aȧ

dt

dτ

dψ

dτ
= a2(t) sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
,

or
d2ψ

dτ2
+ 2

(
ȧ

a

)
dt

dτ

dψ

dτ
= sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

(b) (7 points) Using instead the coordinates (t, r, θ, φ), compute explicitly the geodesic
equation for µ = r.

Answer:

Again the equation simplifies significantly, since gµν is diagonal. On the right-hand
side, only 3 of the 4 possible values of λ = σ contribute, as ∂rgtt = 0. So,

d

dτ

{
grr

dr

dτ

}
=

1

2

[
∂grr
∂r

(
dr

dτ

)2

+
∂gθθ
∂r

(
dθ

dτ

)2

+
∂gφφ
∂r

(
dφ

dτ

)2
]
.

Now we use

grr =
a2(t)

1− r2
, gθθ = a2(t)r2 , gφφ = a2(t)r2 sin2 θ ,

which allows us to rewrite the equation as

d

dτ

{
a2(t)

1− r2
dr

dτ

}
=

1

2

[
2ra2(t)

(1− r2)2

(
dr

dτ

)2

+ 2ra2(t)

(
dθ

dτ

)2

+ 2ra2(t) sin2 θ

(
dφ

dτ

)2
]
,

or

d

dτ

{
a2(t)

1− r2
dr

dτ

}
= ra2(t)

[
1

(1− r2)2

(
dr

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

(4.6)
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Again you were not asked to expand the left-hand side, but if the left-hand side is
expanded, one must remember that a(t) and r both depend on τ . So

a2(t)

1− r2
d2r

dτ2
+

2ra2(t)

(1− r2)2

(
dr

dτ

)2

+
2aȧ

1− r2
dt

dτ

dr

dτ

= ra2(t)

[
1

(1− r2)2

(
dr

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

Rearranging terms, the equation can be simplified to

d2r

dτ2
+ 2

(
ȧ

a

)
dt

dτ

dr

dτ

= r

{
− 1

(1− r2)

(
dr

dτ

)2

+ (1− r2)

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]}

.

(c) (6 points) Are the results from parts (a) and (b) both valid, or is one valid and
the other not? If you believe that they are both valid, use Eq. (4.3) to show that
they are equivalent. If you believe that only one is valid, state which one is valid,
and explain why the other is not. (4 points will be given for showing the correct
understanding of this problem, with 2 points allocated to completing the algebra
needed to demonstrate your answer.)

Answer:

Both answers are valid, since they are both correct forms of the geodesic equation,
in different coordinate systems. To see that they are equivalent, we can start with
the equation for r, Eq. (4.6), and substitute

r = sinψ =⇒ dr

dτ
= cosψ

dψ

dτ
=⇒ 1

1− r2
dr

dτ
=

1

cosψ

dψ

dτ
.

So Eq. (4.6) becomes

d

dτ

{
a2(t)

cosψ

dψ

dt

}
= a2 sinψ

[
1

cos2 ψ

(
dψ

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

Partially expanding the left-hand side,

1

cosψ

d

dτ

{
a2(t)

dψ

dt

}
+

a2

cos2 ψ
sinψ

(
dψ

dτ

)2

= a2 sinψ

[
1

cos2 ψ

(
dψ

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.
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The terms proportional to (dψ/dτ)2 can be seen to cancel, and then multiplication
of the equation by cosψ gives

d

dτ

{
a2(t)

dψ

dτ

}
= a2(t) sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
,

which is identical to Eq. (4.5).

— End of Problem 4. —
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Problem Maximum Score Initials

1 25

2 20

3 35

4 20

TOTAL 100
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QUIZ 2 FORMULA SHEET

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved
λemitted

=
a(tobserved)

a(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β`0/c .

Energy-Momentum Four-Vector:

pµ =

(
E

c
, ~p

)
, ~p = γm0~v , E = γm0c

2 =

√
(m0c2)

2
+ |~p|2 c2 ,

p2 ≡ |~p|2 −
(
p0
)2

= |~p|2 − E2

c2
= − (m0c)

2
.
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KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-

VERSE:

Hubble’s Law: v = Hr ,

where v = recession velocity of a distant object, H = Hubble

expansion rate, and r = distance to the distant object.

Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1

Scale Factor: `p(t) = a(t)`c ,

where `p(t) is the physical distance between any two objects, a(t)

is the scale factor, and `c is the coordinate distance between the

objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.

Light Rays in Comoving Coordinates: Light rays travel in straight

lines with physical speed c relative to any observer. In Cartesian

coordinates, coordinate speed
dx

dt
=

c

a(t)
. In general, ds2 =

gµνdxµdxν = 0.

Horizon Distance:

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′

=

{
3ct (flat, matter-dominated),

2ct (flat, radiation-dominated).

COSMOLOGICAL EVOLUTION:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
G

(
ρ+

3p

c2

)
a ,

ρm(t) =
a3(ti)

a3(t)
ρm(ti) (matter), ρr(t) =

a4(ti)

a4(t)
ρr(ti) (radiation).

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.
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EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Flat (k = 0): a(t) ∝ t2/3

Ω = 1 .

Closed (k > 0): ct = α(θ − sin θ) ,
a√
k

= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
a√
κ

= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
κ

)3

,

κ ≡ −k > 0 .

MINKOWSKI METRIC (Special Relativity):

ds2 ≡ −c2 dτ2 = −c2dt2 + dx2 + dy2 + dz2 .

ROBERTSON-WALKER METRIC:

ds2 ≡ −c2 dτ2 = −c2 dt2+a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Alternatively, for k > 0, we can define r =
sinψ√
k

, and then

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + ã2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
k. For k < 0 we can define r =

sinhψ√
−k

, and then

ds2 ≡ −c2 dτ2 = −c2 dt2+ã2(t)
{

dψ2 + sinh2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
−k. Note that ã can be called a if there is no need

to relate it to the a(t) that appears in the first equation above.
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SCHWARZSCHILD METRIC:

ds2 ≡ −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1
dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ


