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REVIEW PROBLEMS FOR QUIZ 1∗

QUIZ DATE: Wednesday, September 30, 2020.

QUIZ COVERAGE

As described on Problem Set 3: Lecture Notes 1, 2, and 3; Problem Sets 1, 2,
and 3; Weinberg, Chapters 1, 2, and 3; Ryden, Chapters 1, 2, and 3. While all
of Ryden’s Chapter 3 has been assigned, questions on the quiz will be limited to
Sections 3.1 (The Way of Newton) and 3.3 (The General Way of Einstein). Section
3.2 (The Special Way of Einstein) describes special relativity. Ryden’s approach is
somewhat different from our Lecture Notes 1 — for the quiz, you will be responsible
only for the issues discussed in Lecture Notes 1. The material in Sections 3.4–3.6
will be discussed in lecture later in the course, and you will not be responsible for it
until then.

New information: One of the problems on the quiz will be taken verbatim
(or at least almost verbatim) from either the homework assignments, or
from the starred problems from this set of Review Problems. The starred
problems are the ones that I recommend that you review most carefully: Problems
2, 3, 11, 12, 16, and 19. The starred problems do not include any reading questions,
but parts of the reading questions in these Review Problems may also recur on the
upcoming quiz. For the homework problems, extra credit problems are eligible to be
the problem used on the quiz.

QUIZ LOGISTICS (as described on Problem Set 3): The quiz will be closed
book, no calculators, no internet, and 85 minutes long. I assume that most of you
will take it during our regular class time on September 30, but you will have the
option of starting it any time during a 24-hour window from 11:05 am EDT on
September 30 to 11:05 am EDT on Thursday, October 1. If you want to start later
than 11:05 am 9/30/2020, you should email me your choice of starting time by 11:59
pm on 9/29/2020. The quiz will be contained in a PDF file, which I am planning to
distribute by email. You will each be expected to spend up to 85 minutes working on
it, and then you will upload your answers to Canvas as a PDF file. I won’t place any
precise time limit on scanning or photographing and uploading, because the time
needed for that can vary. If you have questions about the meaning of the questions,
I will be available on Zoom during the September 30 class time, and we will arrange
for either Bruno or me to be available by email as much as possible during the other

* Revised 9/27/20 to fix the stars shown with the problems. The list of starred prob-
lems in the preamble — 2, 3, 11, 12, 16, and 19 — has not been changed; the stars on
the problems are now consistent with this list.
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quiz times. If you have any special circumstances that might make this procedure
difficult, or if you need a postponement beyond the 24-hour window, please let me
(guth@ctp.mit.edu) know.

PURPOSE OF THE REVIEW PROBLEMS: These review problems are not to be
handed in, but are being made available to help you study. They come mainly from
quizzes in previous years. Except for a few parts which are clearly marked, they
are all problems that I would consider fair for the coming quiz. In some cases the
number of points assigned to the problem on the quiz is listed — in all such cases it
is based on 100 points for the full quiz.

In addition to this set of problems, you will find on the course web page the actual
quizzes that were given in 1994, 1996, 1998, 2000, 2002, 2004, 2005, 2007, 2009, 2011,
2013, 2016, and 2018. The relevant problems from those quizzes have mostly been
incorporated into these review problems, but you still may be interested in looking
at the original quizzes, just to see how much material has been included in each quiz.
Since the schedule and the number of quizzes has varied over the years, the coverage
of this quiz will not necessarily be the same as Quiz 1 from all previous years. In
fact, however, the first quiz this year covers essentially the same material as the first
quiz in any year from 2009 onwards.

REVIEW SESSION: To help you study for the quiz, there will be a review session led
by Bruno Scheihing. The date and time will be announced shortly.

FUTURE QUIZZES: The other quiz dates this term will be Wednesday, October 28,
and Wednesday, December 2, 2020.
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INFORMATION TO BE GIVEN ON QUIZ:

Each quiz in this course will have a section of “useful information” at the back of
the quiz. For the first quiz, this useful information will be the following:

DOPPLER SHIFT (Definition:)

1 + z ≡ ∆tobserver

∆tsource
=
λobserver

λsource
,

where ∆tobserver and ∆tsource are the period of the wave as measured by
the observer and by the source, respectively, and λobserver and λsource

are the wavelength of the wave, as measured by the observer and by
the source, respectively.

DOPPLER SHIFT (For motion along a line):

Nonrelativistic, u = wave speed, source moving at speed v away from
observer:

z = v/u

Nonrelativistic, observer moving at speed v away from source:

z =
v/u

1− v/u

Doppler shift for light (special relativity), β ≡ v/c, where c is the speed
of light and v is the velocity of recession, as measured by either the
source or the observer:

z =

√
1 + β

1− β
− 1

COSMOLOGICAL REDSHIFT:

1 + z =
a(tobserver)

a(tsource)

SPECIAL RELATIVITY:

Time Dilation. A clock that is moving at speed v relative to an inertial
reference frame appears to be running slowly, as measured in that
frame, by a factor γ:

γ ≡ 1√
1− β2

, β ≡ v/c
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Lorentz-Fitzgerald Contraction. A rod that is moving along its length,
relative to an inertial frame, appears to be contracted, as measured in
that frame, by the same factor:

γ ≡ 1√
1− β2

Relativity of Simultaneity. If two clocks that are synchronized in their
own reference frame, and separated by a distance `0 in their own frame,
are moving together, in the direction of the line separating them, at
speed v relative to an inertial frame, then measurements in the inertial
frame will show the trailing clock reading later by an amount

∆t =
β`0
c

KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-
VERSE:

Hubble’s Law: v = Hr ,
where v = recession velocity of a distant object, H = Hubble
expansion rate, and r = distance to the distant object.

Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1

Scale Factor: `p(t) = a(t)`c ,
where `p(t) is the physical distance between any two objects at
time t, a(t) is the scale factor, and `c is the coordinate distance
between the objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.

Light Rays in Comoving Coordinates: Light rays travel in straight lines
with coordinate speed

dx

dt
=

c

a(t)
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EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
Gρa ,

ρ(t) =
a3(ti)

a3(t)
ρ(ti)

Ω ≡ ρ/ρc , where ρc =
3H2

8πG
,

where H is the Hubble expansion rate, a(t) is the scale factor, an
overdot (as in ȧ) denotes a derivative with respect to cosmic time t,
G is Newton’s gravitational constant, ρ(t) is the mass density, ρc(t) is
the critical density, and k is a constant. Here ti is “initial” time at
which we defined the properties of the model universe, but any time
can be taken as the initial time ti; the equation for ρ(t) on the second
line above holds for any two times t and ti.

For a flat (k = 0) universe,

a(t) ∝ t2/3 , Ω = 1 .
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PROBLEM 1: DID YOU DO THE READING (2018)? (30 points)

(a) (5 points) After telescopes became available, more and more extended objects in
the sky, called nebulae, were discovered, but those were thought as members of our
galaxy. Who is the person who first proposed that some of the nebulae are galaxies
like our own located outside our galaxy?

(i) Isaac Newton

(ii) Immanuel Kant

(iii) Edwin Hubble

(iv) Albert Einstein

(b) (5 points) Before 1923, questions of the nature of the spiral and elliptical nebulae
could not be settled without some reliable method of determining how far away they
are. In 1923, Edwin Hubble was for the first time able to resolve the Andromeda
Nebula (galaxy) into separate stars and estimated the distance to the Andromeda
Nebula. What observational quantity did he measure to estimate the distance?

(i) the radial velocity of individual stars in the Adromeda Nebula

(ii) the radial velocity of the Andromeda Nebula itself

(iii) the periods of variation of a class of stars in the Andromeda Nebula

(iv) the parallax of bright stars in the Adromeda Nebula

(c) (5 points) In 1917, a year after the completion of Einstein’s general theory of rel-
ativity, looked specifically for a solution that would be homogeneous,
isotropic, and static, and thus was forced to mutilate the equations by introducing
a term, the so-called cosmological constant. In the same year, another solution of
the modified theory was found by the Dutch astronomer . Although this
solution appeared to be static, it had the remarkable property of predicting a red-
shift proportional to the distance. In 1922, the general homogeneous and isotropic
solution of the original Einstein equations was found by the Russian mathemati-
cian , which provides a mathematical background for the most modern
cosmological theories. Which is the right answer to fill in the blanks in turn?

(i) Friedmann — Einstein — de Sitter

(ii) Friedmann — de Sitter — Einstein

(iii) Einstein — Friedmann — de Sitter

(iv) Einstein — de Sitter — Friedmann

(v) de Sitter — Einstein — Friedmann

(vi) de Sitter — Friedmann — Einstein
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(d) (5 points) After radio noises with the equivalent temperature of about 3.5◦ K were

detected, Penzias, Wilson, Dicke, Peebles, Roll, and Wilkinson decided to publish a

pair of companion letters in the Astrophysical Journal, in which Penzias and Wilson

would announce their observations, and Dicke, Peebles, Roll, and Wilkinson would

explain the cosmological interpretation. What is the title of the paper written by

Penzias and Wilson?

(i) “A Measurement of Excess Antenna Temperature at 4,080 Mc/s”

(ii) “Cosmic Black-Body Radiation”

(iii) “Origin of the Microwave Radio Background”

(iv) “Three Degrees Above Zero: Bell Labs in the Information Age”

(e) (5 points) The universe contains different types of particles. Which of the following

statements is NOT true?

(i) A baryon is defined as a particle made of three quarks.

(ii) Electrons and neutrinos are leptons.

(iii) There are three types of neutrinos and they all have zero charge.

(iv) The component of the universe made of ions, atoms, and molecules is generally

referred to as baryonic matter, since only the baryons (protons and neutrons)

contribute significantly to the mass density.

(v) About three-fourths of the baryonic matter in the universe is currently in the

form of helium.

(f) (5 points) If one averages over sufficiently large scales, the universe appears to be

homogeneous and isotropic. How large must the averaging scale be before this ho-

mogeneity and isotropy set in?

(i) 1000 Mpc. (1 Mpc = 106 pc, 1 pc = 3.086× 1016 m = 3.262 light-year).

(ii) 100 Mpc.

(iii) 1 Mpc.

(iv) 100 kpc (1 kpc = 1000 pc).

(v) 1 AU (1 AU = 1.496× 1011 m).
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∗PROBLEM 2: LIGHT RAYS TRAVELING THROUGH A MATTER-
DOMINATED FLAT UNIVERSE (40 points)

Consider a flat, matter-dominated universe, with a scale factor given by

a(t) = bt2/3 ,

where b is a constant. Now consider a galaxy G in this universe which at time t1 emits
two photons, with an angular separation θ between their paths, as shown in the diagram:

(a) (10 points) At cosmic time t (for t > t1), what is the physical distance `1,phys(t) of
each of these photons from the galaxy G?

(b) (5 points) If the frequency of the photons was ν1 when they were emitted, what is
their frequency ν(t) at cosmic time t (for t > t1)? ν(t) should be the frequency as it
would be measured by a comoving observer, i.e. an observer at rest with respect to
the matter at the same location.

(c) (10 points) What is the physical distance `2,phys(t) between the two photons at time
t (for t > t1)?

Now consider a different situation, but in the same universe. This time we consider a
photon that travels past the galaxy G, traveling in the x direction, in the x-y plane, as
shown in the diagram below. We are told that the photon crosses the y axis at time t2,
and at that time the photon is a physical distance h from the galaxy.
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(d) (10 points) What is the physical distance `3,phys(t) between the photon and the
galaxy G at arbitrary time t, which might be earlier or later than t2?

(e) (5 points) At time t2, what is the recessional speed d`3,phys(t)/dt of the photon from
the galaxy. Hint: if you are clever, this can be done with very little calculation.

∗PROBLEM 3: THE STEADY-STATE UNIVERSE THEORY (30 points)

The following problem was Problem 2, Quiz 1, 2000, and also Problem 3, Quiz 1, 2018.

The steady-state theory of the universe was proposed in the late 1940s by Hermann
Bondi, Thomas Gold, and Fred Hoyle, and was considered a viable model for the universe
until the cosmic background radiation was discovered and its properties were confirmed.
As the name suggests, this theory is based on the hypothesis that the large-scale properties
of the universe do not change with time. The expansion of the universe was an established
fact when the steady-state theory was invented, but the steady-state theory reconciles the
expansion with a steady-state density of matter by proposing that new matter is created
as the universe expands, so that the matter density does not fall. Like the conventional
theory, the steady-state theory describes a homogeneous, isotropic, expanding universe,
so the same comoving coordinate formulation can be used.

a) (15 points) The steady-state theory proposes that the Hubble constant, like other
cosmological parameters, does not change with time, so H(t) = H0. Find the most
general form for the scale factor function a(t) which is consistent with this hypothesis.

b) (15 points) Suppose that the mass density of the universe is ρ0, which of course does
not change with time. In terms of the general form for a(t) that you found in part
(a), calculate the rate at which new matter must be created for ρ0 to remain constant
as the universe expands. Your answer should have the units of mass per unit volume
per unit time. [If you failed to answer part (a), you will still receive full credit here
if you correctly answer the question for an arbitrary scale factor function a(t).]

PROBLEM 4: DID YOU DO THE READING (2016)?

The following problem was taken from Quiz 1, 2016, where it counted 35 points.

(a) (5 points) The Milky Way has been known since ancient times as a band of light
stretching across the sky. We now recognize the Milky Way as the galaxy of stars
in which we live, with a large collection of stars, including our sun, arranged in a
giant disk. Since the individual stars are mostly too small for our eyes to resolve, we
observe the collective light from these stars, concentrated in the plane of the disk.
The idea that the Milky Way is actually a disk of stars was proposed by

(i) Claudius Ptolemy, in the 2nd century AD.

(ii) Johannes Kepler, in 1610.

(iii) Isaac Newton, in 1695.
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(iv) Thomas Wright, in 1750.

(v) Immanuel Kant, in 1755.

(vi) Edwin Hubble, in 1923.

(b) (5 points) Once it was recognized that we live in a galaxy, it was initially assumed
that ours was the only galaxy. The suggestion that some of the patches of light
known as nebulae might actually be other galaxies like our own was made by

(i) Claudius Ptolemy, in the 2nd century AD.

(ii) Johannes Kepler, in 1610.

(iii) Isaac Newton, in 1695.

(iv) Thomas Wright, in 1750.

(v) Immanuel Kant, in 1755.

(vi) Edwin Hubble, in 1923.

(c) (5 points) The first firm evidence that there is more than one galaxy stemmed from
the ability to observe the Andromeda Nebula with high enough resolution to distin-
guish its individual stars. In particular, the observation of Cepheid variable stars in
Andromeda allowed a distance estimate that place it well outside the Milky Way.
The observation of Cepheid variable stars in Andromeda was first made by

(i) Johannes Kepler, in 1610.

(ii) Isaac Newton, in 1695.

(iii Thomas Wright, in 1750.

(iv) Immanuel Kant, in 1755.

(v) Henrietta Swan Leavitt and Harlow Shapley in 1915.

(vi) Edwin Hubble, in 1923.

(d) (5 points) The first hint that the universe is filled with radiation with an effective
temperature near 3 K, although not recognized at the time, was an observation of
absorption lines in cyanogen (CN) by Adams and McKellar in 1941. They observed
dark spectral lines which they interpreted as absorption by the cyanogen of light
coming from the star behind the gas cloud. Explain in a few sentences how these ab-
sorption lines can be used to make inferences about the cosmic background radiation
bathing the cyanogen gas cloud.
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(e) (5 points) As the universe expands, the temperature of the cosmic microwave back-
ground

(i) goes up in proportion to the scale factor a(t).

(ii) stays constant.

(iii) goes down in proportion to 1/a(t).

(iv) goes down in proportion to 1/a2(t).

(f) (5 points) When Hubble measured the value of his constant, he found H−1 ≈ 100
million years, 2 billion years, 10 billion years, or 20 billion years?

(g) (5 points) Explain in a few sentences what is meant by the equivalence principle?

PROBLEM 5: OBSERVING A DISTANT GALAXY IN A MATTER-
DOMINATED FLAT UNIVERSE

The following problem was taken from Quiz 1, 2016, where it counted 40 points.

Suppose that we are living in a matter-dominated flat universe, with a scale factor
given by

a(t) = bt2/3 ,

where b is a constant. The present time is denoted by t0.

(a) (5 points) If we measure time in seconds, distance in meters, and coordinate distances
in notches, what are the units of b?

(b) (5 points) Suppose that we observe a distant galaxy which is one half of a “Hubble
length” away, which means that the physical distance today is `p = 1

2cH
−1
0 , where c

is the speed of light and H0 is the present value of the Hubble expansion rate. What

is the proper velocity vp ≡ d`p(t)
dt of this galaxy relative to us?

(c) (5 points) What is the coordinate distance `c between us and the distant galaxy?

If you did not answer the previous part, you may still continue with the following parts,
using the symbol `c for the coordinate distance to the galaxy.

(d) (5 points) At what time te was the light that we are now receiving from the galaxy
emitted?

(e) (5 points) What is the redshift z of the light that we are now receiving from the
distant galaxy?

(f) (10 points) Consider a light pulse that leaves the distant galaxy at time te, as cal-
culated in part (d), and arrives here at the present time, t0. Calculate the physical
distance rp(t) between the light pulse and us. Find rp(t) as a function of t for all t
between te and t0.

(g) (5 points) If we send a radio message now to the distant galaxy, at what time tr will
it be received?
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PROBLEM 6: A RADIATION-DOMINATED FLAT UNIVERSE

We have learned that a matter-dominated homogeneous and isotropic universe can
be described by a scale factor a(t) obeying the equation(

ȧ

a

)2

=
8π

3
Gρ− kc2

a2
.

This equation in fact applies to any form of mass density, so we can apply it to a universe
in which the mass density is dominated by the energy of photons. Recall that the mass
density of nonrelativistic matter falls off as 1/a3(t) as the universe expands; the mass of
each particle remains constant, and the density of particles falls off as 1/a3(t) because
the volume increases as a3(t). For the photon-dominated universe, the density of photons
falls of as 1/a3(t), but in addition the frequency (and hence the energy) of each photon
redshifts in proportion to 1/a(t). Since mass and energy are equivalent, the mass density
of the gas of photons falls off as 1/a4(t).

For a flat (i.e., k = 0) matter-dominated universe we learned that the scale factor
a(t) is proportional to t2/3. How does a(t) behave for a photon-dominated universe?

PROBLEM 7: DID YOU DO THE READING? (25 points)

The following problem appeared on Quiz 1 of 2011.

(a) (10 points) Hubble’s law relates the distance of galaxies to their velocity. The
Doppler effect provides an accurate tool to measure velocity, while the measure
of cosmic distances is more problematic. Explain briefly the method that Hubble
used to estimate the distance of galaxies in deriving his law.

(b) (5 points) One expects Hubble’s law to hold as a consequence of the Cosmological
Principle. What does the Cosmological Principle state?

(c) (10 points) Give a brief definition for the words homogeneity and isotropy. Then say
for each of the following two statements whether it is true or false. If true explain
briefly why. If false give a counter-example. You should assume Euclidean geometry
(which Weinberg implicitly assumed in his discussion).

(i) If the universe is isotropic around one point then it has to be homogeneous.

(ii) If the universe is isotropic around two or more distinct points then it has to be
homogeneous.

(d) Bonus question: (2 points extra credit) If we allow curved (i.e., non-Euclidean) spaces,
is it true that a universe which is isotropic around two distinct points has to be
homogeneous? If true explain briefly why, and otherwise give a counter-example.
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PROBLEM 8: THE TRAJECTORY OF A PHOTON ORIGINATING AT
THE HORIZON (25 points)

The following problem appeared on Quiz 1 of 2011.

Consider again a flat matter-dominated universe, with a scale factor given by

a(t) = bt2/3 ,

where b is a constant. Let t0 denote the current time.

(a) (5 points) What is the current value of the physical horizon distance `p,horizon(t0)?
That is, what is the present distance of the most distant matter that can be seen,
limited only by the speed of light.

(b) (5 points) Consider a photon that is arriving now from an object that is just at the
horizon. Our goal is to trace the trajectory of this object. Suppose that we set up
a coordinate system with us at the origin, and the source of the photon along the
positive x-axis. What is the coordinate x0 of the photon at t = 0?

(c) (5 points) As the photon travels from the source to us, what is its coordinate x(t)
as a function of time?

(d) (5 points) What is the physical distance `p(t) between the photon and us as a function
of time?

(e) (5 points) What is the maximum physical distance `p,max(t) between the photon and
us, and at what time tmax does it occur?

PROBLEM 9: SIGNAL PROPAGATION IN A FLAT MATTER-
DOMINATED UNIVERSE (55 points)

The following problem was on Quiz 1, 2009.

Consider a flat, matter-dominated universe, with scale factor

a(t) = bt2/3 ,

where b is an arbitrary constant. For the following questions, the answer to any part may
contain symbols representing the answers to previous parts, whether or not the previous
part was answered correctly.

(a) (10 points) At time t = t1, a light signal is sent from galaxy A. Let `p,sA(t) denote
the physical distance of the signal from A at time t. (Note that t = 0 corresponds to
the origin of the universe, not to the emission of the signal.) (i) Find the speed of
separation of the light signal from A, defined as d`p,sA/dt. What is the value of this
speed (ii) at the time of emission, t1, and (iii) what is its limiting value at arbitrarily
late times?
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(b) (5 points) Suppose that there is a second galaxy, galaxy B, that is located at a
physical distance cH−1 from A at time t1, where H(t) denotes the Hubble expansion
rate and c is the speed of light. (cH−1 is called the Hubble length.) Suppose that the
light signal described above, which is emitted from galaxy A at time t1, is directed
toward galaxy B. At what time t2 does it arrive at galaxy B?

(c) (10 points) Let `p,sB(t) denote the physical distance of the light signal from galaxy
B at time t. (i) Find the speed of approach of the light signal towards B, defined as
−d`p,sB/dt. What is the value of this speed (ii) at the time of emission, t1, and (iii)
at the time of reception, t2?

(d) (10 points) If an astronomer on galaxy A observes the light arriving from galaxy B
at time t1, what is its redshift zBA?

(e) (10 points) Suppose that there is another galaxy, galaxy C, also
located at a physical distance cH−1 from A at time t1, but in
a direction orthogonal to that of B. If galaxy B is observed
from galaxy C at time t1, what is the observed redshift zBC?
Recall that this universe is flat, so Euclidean geometry applies.

(f) (10 points) Suppose that galaxy A, at time t1, emits electromagnetic radiation spher-
ically symmetrically, with power output P . (P might be measured, for example, in
watts, where 1 watt = 1 joule/second.) What is the radiation energy flux J that is
received by galaxy B at time t2, when the radiation reaches galaxy B? (J might be
measured, for example, in watts per meter2. Units are mentioned here only to help
clarify the meaning of these quantities — your answer should have no explicit units,
but should be expressed in terms of any or all of the given quantities t1, P , and c,
plus perhaps symbols representing the answers to previous parts.)

PROBLEM 10: DID YOU DO THE READING (2007)? (25 points)

The following problem was Problem 1 on Quiz 1, 2007, where each of the 5 questions was
worth 5 points:

(a) In the 1940’s, three astrophysicists proposed a “steady state” theory of cosmology,
in which the universe has always looked about the same as it does now. State the
last name of at least one of these authors. (Bonus points: you can earn 1 point each
for naming the other two authors, and hence up to 2 additional points, but 1 point
will be taken off for each incorrect answer.)

(b) In 1917, a Dutch astronomer named Willem de Sitter did which one of the following
accomplishments:
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(i) measured the size of the Milky Way galaxy, finding it to be about one billion
light-years in diameter.

(ii) resolved Cepheid variable stars in Andromeda and thereby obtained persua-
sive evidence that Andromeda is not within our own galaxy, but is apparently
another galaxy like our own.

(iii) published a catalog, Nebulae and Star Clusters, listing 103 objects that as-
tronomers should avoid when looking for comets.

(iv) published a model for the universe, based on general relativity, which appeared
to be static but which produced a redshift proportional to the distance.

(v) discovered that the orbital periods of the planets are proportional to the 3/2
power of the semi-major axis of their elliptical orbits.

(c) In 1964–65, Arno A. Penzias and Robert W. Wilson observed a flux of microwave
radiation coming from all directions in the sky, which was interpreted by a group of
physicists at a neighboring institution as the cosmic background radiation left over
from the big bang. Circle the two items on the following list that were not part of
the story behind this spectacular discovery:

(i) Bell Telephone Laboratory (ii) MIT (iii) Princeton University
(iv) pigeons (v) ground hogs (vi) Hubble’s constant
(vii) liquid helium (viii) 7.35 cm

(Grading: 3 pts for 1 correct answer, 5 for 2 correct answers, and -2 for each incorrect
answer, but the minimum score is zero.)

(d) Important predictions of the Copernican theory were confirmed by the discovery
of the aberration of starlight (which showed that the velocity of the Earth has the
time-dependence expected for rotation about the Sun) and by the behavior of the
Foucault pendulum (which showed that the Earth rotates). These discoveries were
made

(i) during Copernicus’ lifetime.

(ii) approximately two and three decades after Copernicus’ death, respectively.

(iii) about one hundred years after Copernicus’ death.

(iv) approximately two and three centuries after Copernicus’ death, respectively.

(e) If one averages over sufficiently large scales, the universe appears to be homogeneous
and isotropic. How large must the averaging scale be before this homogeneity and
isotropy set in?

(i) 1 AU (1 AU = 1.496× 1011 m).
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(ii) 100 kpc (1 kpc = 1000 pc, 1 pc = 3.086× 1016 m = 3.262 light-year).

(iii) 1 Mpc (1 Mpc = 106 pc).

(iv) 10 Mpc.

(v) 100 Mpc.

(vi) 1000 Mpc.

∗PROBLEM 11: A TWO-LEVEL HIGH-SPEED MERRY-GO-ROUND (15
points)

This problem was Problem 3 on Quiz 1, 2007.

Consider a high-speed merry-go-round which is similar to the one discussed in Prob-
lem 3 of Problem Set 1, but which has two levels. That is, there are four evenly spaced
cars which travel around a central hub at speed v at a distance R from a central hub,
and also another four cars that are attached to extensions of the four radial arms, each
moving at a speed 2v at a distance 2R from the center. In this problem we will consider
only light waves, not sound waves, and we will assume that v is not negligible compared
to c, but that 2v < c.

We learned in Problem Set 1 that there is no redshift when light from one car at radius
R is received by an observer on another car at radius R.

(a) (5 points) Suppose that cars 5–8 are all emitting light waves in all directions. If an
observer in car 1 receives light waves from each of these cars, what redshift z does
she observe for each of the four signals?

(b) (10 points) Suppose that a spaceship is receding to the right at a relativistic speed
u along a line through the hub, as shown in the diagram. Suppose that an observer
in car 6 receives a radio signal from the spaceship, at the time when the car is in the
position shown in the diagram. What redshift z is observed?
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∗PROBLEM 12: AN EXPONENTIALLY EXPANDING UNIVERSE (20
points)

The following problem was Problem 2, Quiz 2, 1994, and had also appeared on the 1994
Review Problems. As is the case this year, it was announced that one of the problems
on the quiz would come from either the homework or the Review Problems. The problem
also appeared as Problem 2 on Quiz 1, 2007.

Consider a flat (i.e., a k = 0, or a Euclidean) universe with scale factor given by

a(t) = a0e
χt ,

where a0 and χ are constants.

(a) (5 points) Find the Hubble constant H at an arbitrary time t.

(b) (5 points) Let (x, y, z, t) be the coordinates of a comoving coordinate system. Sup-
pose that at t = 0 a galaxy located at the origin of this system emits a light pulse
along the positive x-axis. Find the trajectory x(t) which the light pulse follows.

(c) (5 points) Suppose that we are living on a galaxy along the positive x-axis, and that
we receive this light pulse at some later time. We analyze the spectrum of the pulse
and determine the redshift z. Express the time tr at which we receive the pulse in
terms of z, χ, and any relevant physical constants.

(d) (5 points) At the time of reception, what is the physical distance between our galaxy
and the galaxy which emitted the pulse? Express your answer in terms of z, χ, and
any relevant physical constants.

PROBLEM 13: DID YOU DO THE READING (2005)?

The following question was taken from Problem 1, Quiz 1, 2005, where it counted 25
points.

(a) (4 points) What was the first external galaxy that was shown to be at a distance
significantly greater than the most distant known objects in our galaxy? How was
the distance estimated?

(b) (5 points) What is recombination? Did galaxies begin to form before or after recom-
bination? Why?

(c) (4 points) In Chapter IV of his book, Weinberg develops a “recipe for a hot universe,”
in which the matter of the universe is described as a gas in thermal equilbrium at
a very high temperature, in the vicinity of 109 K (several thousand million degrees
Kelvin). Such a thermal equilibrium gas is completely described by specifying its
temperature and the density of the conserved quantities. Which of the following is
on this list of conserved quantities? Circle as many as apply.
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(i) baryon number (ii) energy per particle (iii) proton number

(iv) electric charge (v) pressure

(d) (4 points) The wavelength corresponding to the mean energy of a CMB (cosmic mi-
crowave background) photon today is approximately equal to which of the following
quantities? (You may wish to look up the values of various physical constants at the
end of the quiz.)

(i) 2 fm (2× 10−15 m)

(ii) 2 microns (2× 10−6 m)

(iii) 2 mm (2× 10−3 m)

(iv) 2 m.

(e) (4 points) What is the equivalence principle?

(f) (4 points) Why is it difficult for Earth-based experiments to look at the small wave-
length portion of the graph of CMB energy density per wavelength vs. wavelength?

PROBLEM 14: TRACING A LIGHT PULSE THROUGH A RADIATION-
DOMINATED UNIVERSE

The following problem was taken from Problem 3, Quiz 1, 2005, where it counted 25
points.

Consider a flat universe that expands with a scale factor

a(t) = bt1/2 ,

where b is a constant. We will learn later that this is the behavior of the scale factor for
a radiation-dominated universe.

(a) (5 points) At an arbitrary time t = tf , what is the physical horizon distance? (By
“physical,” I mean as usual the distance in physical units, such as meters or cen-
timeters, as measured by a sequence of rulers, each of which is at rest relative to the
comoving matter in its vicinity.)

(b) (3 points) Suppose that a photon arrives at the origin, at time tf , from a distant
piece of matter that is precisely at the horizon distance at time tf . What is the time
te at which the photon was emitted?

(c) (2 points) What is the coordinate distance from the origin to the point from which
the photon was emitted?

(d) (10 points) For an arbitrary time t in the interval te ≤ t ≤ tf , while the photon is
traveling, what is the physical distance `p(t) from the origin to the location of the
photon?

(e) (5 points) At what time tmax is the physical distance of the photon from the origin
at its largest value?
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PROBLEM 15: TRANSVERSE DOPPLER SHIFTS

The following problem was taken from Problem 4, Quiz 1, 2005, where it counted 20
points.

(a) (8 points) Suppose the spaceship Xanthu
is at rest at location (x=0, y=a, z=0) in
a Cartesian coordinate system. (We as-
sume that the space is Euclidean, and
that the distance scales in the problem
are small enough so that the expansion
of the universe can be neglected.) The
spaceship Emmerac is moving at speed
v0 along the x-axis in the positive direc-
tion, as shown in the diagram, where v0

is comparable to the speed of light. As
the Emmerac crosses the origin, it re-
ceives a radio signal that had been sent
some time earlier from the Xanthu. Is

the radiation received redshifted or blueshifted? What is the redshift z (where neg-
ative values of z can be used to describe blueshifts)?

(b) (7 points) Now suppose that the Em-
merac is at rest at the origin, while
the Xanthu is moving in the negative x-
direction, at y = a and z = 0, as shown
in the diagram. That is, the trajectory of
the Xanthu can be taken as

(x=− v0t, y=a, z=0) .

At t = 0 the Xanthu crosses the y-axis,
and at that instant it emits a radio sig-
nal along the y-axis, directed at the ori-
gin. The radiation is received some time
later by the Emmerac. In this case, is

the radiation received redshifted or blueshifted? What is the redshift z (where again
negative values of z can be used to describe blueshifts)?

(c) (5 points) Is the sequence of events described in (b) physically distinct from the
sequence described in (a), or is it really the same sequence of events described in
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a reference frame that is moving relative to the reference frame used in part (a)?
Explain your reasoning in a sentence or two. (Hint: note that there are three objects
in the problem: Xanthu, Emmerac, and the photons of the radio signal.)

∗PROBLEM 16: SPECIAL RELATIVITY DOPPLER SHIFT

The following problem was taken from Problem 2, Quiz 1, 2004, where it counted 20
points.

Consider the Doppler shift of radio waves, for a case in which both the source and the
observer are moving. Suppose the source is a spaceship moving with a speed vs relative
to the space station Alpha-7, while the observer is on another spaceship, moving in the
opposite direction from Alpha-7 with speed vo relative to Alpha-7.

(a) (10 points) Calculate the Doppler shift z of the radio wave as received by the observer.
(Recall that radio waves are electromagnetic waves, just like light except that the
wavelength is longer.)

(b) (10 points) Use the results of part (a) to determine vtot, the velocity of the source
spaceship as it would be measured by the observer spaceship. (8 points will be given
for the basic idea, whether or not you have the right answer for part (a), and 2 points
will be given for the algebra.)

PROBLEM 17: DID YOU DO THE READING?

The following problem was taken from Problem 1, Quiz 1, 2004, where each part counted
5 points, for a total of 25 points. The reading assignment included the first three chapters
of Ryden, Introduction to Cosmology, and the first three chapters of Weinberg, The
First Three Minutes.

(a) In 1826, the astronomer Heinrich Olber wrote a paper on a paradox regarding the
night sky. What is Olber’s paradox? What is the primary resolution of it?

(b) What is the value of the Newtonian gravitational constant G in Planck units? The
Planck length is of the order of 10−35 m, 10−15 m, 1015 m, or 1035 m?

(c) What is the Cosmological Principle? Is the Hubble expansion of the universe con-
sistent with it? (For the latter question, a simple “yes” or “no” will suffice.)
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(d) In the “Standard Model” of the universe, when the universe cooled to about 3× 10a

K, it became transparent to photons, and today we observe these as the Cosmic
Microwave Background (CMB) at a temperature of about 3× 10b K. What are the
integers a and b?

(e) What did the universe primarily consist of at about 1/100th of a second after the
Big Bang? Include any constituent that is believed to have made up more than 1%
of the mass density of the universe.

PROBLEM 18: DID YOU DO THE READING (2000)? (35 points)

The following problem was Problem 1, Quiz 1, 2000. The parts were each worth 5 points.

a) The Doppler effect for both sound and light waves is named for Johann Christian
Doppler, a professor of mathematics at the Realschule in Prague. He predicted the
effect for both types of waves in xx42. What are the two digits xx?

b) When the sky is very clear (as it almost never is in Boston), one can see a band
of light across the night sky that has been known since ancient times as the Milky
Way. Explain in a sentence or two how this band of light is related to the shape of
the galaxy in which we live, which is also called the Milky Way.

c) The statement that the distant galaxies are on average receding from us with a speed
proportional to their distance was first published by Edwin Hubble in 1929, and has
become known as Hubble’s law. Was Hubble’s original paper based on the study of
2, 18, 180, or 1,800 galaxies?

d) The following diagram, labeled Homogeneity and the Hubble Law, was used by Wein-
berg to explain how Hubble’s law is consistent with the homogeneity of the universe:

The arrows and labels from the “Velocities seen by B” and the “Velocities seen by
C” rows have been deleted from this copy of the figure, and it is your job to sketch
the figure in your exam book with these arrows and labels included. (Actually, in
Weinberg’s diagram these arrows were not labeled, but the labels are required here
so that the grader does not have to judge the precise length of hand-drawn arrows.)

e) The horizon is the present distance of the most distant objects from which light has
had time to reach us since the beginning of the universe. The horizon changes with
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time, but of course so does the size of the universe as a whole. During a time interval
in which the linear size of the universe grows by 1%, does the horizon distance

(i) grow by more than 1%, or

(ii) grow by less than 1%, or

(iii) grow by the same 1%?

f) Name the two men who in 1964 discovered the cosmic background radiation. With
what institution were they affiliated?

g) At a temperature of 3000 K, the nuclei and electrons that filled the universe com-
bined to form neutral atoms, which interact very weakly with the photons of the
background radiation. After this process, known as “recombination,” the background
radiation expanded freely. Since recombination, how have each of the following quan-
tities varied as the size of the universe has changed? (Your answers should resemble
statements such as “proportional to the size of the universe,” or “inversely propor-
tional to the square of the size of the universe”. The word “size” will be interpreted
to mean linear size, not volume.)

(i) the average distance between photons

(ii) the typical wavelength of the radiation

(iii) the number density of photons in the radiation

(iv) the energy density of the radiation

(v) the temperature of the radiation

∗PROBLEM 19: A FLAT UNIVERSE WITH AN UNUSUAL TIME EVO-
LUTION (40 points)

The following problem was Problem 3, Quiz 1, 2000.

Consider a flat universe which is filled with some peculiar form of matter, so that
the Robertson–Walker scale factor behaves as

a(t) = btγ ,

where b and γ are constants. [This universe differs from the matter-dominated universe
described in the lecture notes in that ρ is not proportional to 1/a3(t). Such behavior is
possible when pressures are large, because a gas expanding under pressure can lose energy
(and hence mass) during the expansion.] For the following questions, any of the answers
may depend on γ, whether it is mentioned explicitly or not.

a) (5 points) Let t0 denote the present time, and let te denote the time at which the
light that we are currently receiving was emitted by a distant object. In terms of
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these quantities, find the value of the redshift parameter z with which the light is
received.

b) (5 points) Find the “look-back” time as a function of z and t0. The look-back time
is defined as the length of the interval in cosmic time between the emission and
observation of the light.

c) (10 points) Express the present value of the physical distance to the object as a
function of H0, z, and γ, where H0 is the present value of the Hubble expansion
rate.

d) (10 points) At the time of emission, the distant object had a power output P (mea-
sured, say, in ergs/sec) which was radiated uniformly in all directions, in the form
of photons. What is the radiation energy flux J from this object at the earth to-
day? Express your answer in terms of P , H0, z, and γ. [Energy flux (which might
be measured in erg-cm−2-sec−1) is defined as the energy per unit area per unit time
striking a surface that is orthogonal to the direction of energy flow.]

e) (10 points) Suppose that the distant object is a galaxy, moving with the Hubble
expansion. Within the galaxy a supernova explosion has hurled a jet of material
directly towards Earth with a speed v, measured relative to the galaxy, which is
comparable to the speed of light c. Assume, however, that the distance the jet has
traveled from the galaxy is so small that it can be neglected. With what redshift zJ
would we observe the light coming from this jet? Express your answer in terms of
all or some of the variables v, z (the redshift of the galaxy), t0, H0, and γ, and the
constant c.

PROBLEM 20: DID YOU DO THE READING (1998)? (20 points)

The following questions were taken from Problem 1, Quiz 1, 1998:

The following questions are worth 5 points each.

a) In 1917, Einstein introduced a model of the universe which was based on his newly
developed general relativity, but which contained an extra term in the equations
which he called the “cosmological term.” (The coefficient of this term is called the
“cosmological constant.”) What was Einstein’s motivation for introducing this term?

b) When the redshift of distant galaxies was first discovered, the earliest observations
were analyzed according to a cosmological model invented by the Dutch astronomer
W. de Sitter in 1917. At the time of its discovery, was this model thought to be static
or expanding? From the modern perspective, is the model thought to be static or
expanding?

c) The early universe is believed to have been filled with thermal, or black-body, radi-
ation. For such radiation the number density of photons and the energy density are
each proportional to powers of the absolute temperature T . Say

Number density ∝ Tn1

Energy density ∝ Tn2
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Give the values of the exponents n1 and n2.

d) At about 3,000 K the matter in the universe underwent a certain chemical change
in its form, a change that was necessary to allow the differentiation of matter into
galaxies and stars. What was the nature of this change?

PROBLEM 21: ANOTHER FLAT UNIVERSE WITH UNUSUAL TIME
EVOLUTION

The following problem was Problem 3, Quiz 2, 1988:

Consider a flat universe filled with a new and peculiar form of matter, with a
Robertson–Walker scale factor that behaves as

a(t) = bt1/3 .

Here b denotes a constant.

(a) If a light pulse is emitted at time te and observed at time to, find the physical
separation `p(to) between the emitter and the observer, at the time of observation.

(b) Again assuming that te and to are given, find the observed redshift z.

(c) Find the physical distance `p(to) which separates the emitter and observer at the
time of observation, expressed in terms of c, to, and z (i.e., without te appearing).

(d) At an arbitrary time t in the interval te < t < to, find the physical distance `p(t)
between the light pulse and the observer. Express your answer in terms of c, t, and
to.

PROBLEM 22: A FLAT UNIVERSE WITH a(t) ∝ t3/5 (40 points)

The following was Problem 3, Quiz 1, 1998:

Consider a flat universe which is filled with some peculiar form of matter, so that
the Robertson–Walker scale factor behaves as

a(t) = bt3/5 ,

where b is a constant.

a) (5 points) Find the Hubble constant H at an arbitrary time t.

b) (10 points) Suppose a message is transmitted by radio signal (traveling at the speed
of light c) from galaxy A to galaxy B. The message is sent at cosmic time t1, when the
physical distance between the galaxies is `0. At what cosmic time t2 is the message
received at galaxy B? (Express your answer in terms of `0, t1, and c.)
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c) (5 points) Upon receipt of the message, the creatures on galaxy B immediately send
back an acknowledgement, by radio signal, that the message has been received. At
what cosmic time t3 is the acknowledgment received on galaxy A? (Express your
answer in terms of `0, t1, t2, and c.)

d) (10 points) The creatures on galaxy B spend some time trying to decode the message,
finally deciding that it is an advertisement for Kellogg’s Corn Flakes (whatever that
is). At a time ∆t after the receipt of the message, as measured on their clocks, they
send back a response, requesting further explanation. At what cosmic time t4 is the
response received on galaxy A? In answering this part, you should not assume that
∆t is necessarily small. (Express your answer in terms of `0, t1, t2, t3, ∆t, and c.)

e) (5 points) When the response is received by galaxy A, the radio waves will be red-
shifted by a factor 1 + z. Give an expression for z. (Express your answer in terms
of `0, t1, t2, t3, t4, ∆t, and c.)

f) (5 points; No partial credit) If the time ∆t introduced in part (d) is small, the time
difference t4− t3 can be expanded to first order in ∆t. Calculate t4− t3 to first order
accuracy in ∆t. (Express your answer in terms of `0, t1, t2, t3, t4, ∆t, and c.) [Hint:
while this part can be answered by using brute force to expand the answer in part
(d), there is an easier way.]

PROBLEM 23: DID YOU DO THE READING (1996)? (25 points)

The following problem was Problem 1, Quiz 1, 1996:

The following questions are worth 5 points each.

a) In 1814-1815, the Munich optician Joseph Frauenhofer allowed light from the sun
to pass through a slit and then through a glass prism. The light was spread into a
spectrum of colors, showing lines that could be identified with known elements —
sodium, iron, magnesium, calcium, and chromium. Were these lines dark, or bright
(2 points)? Why (3 points)?

b) The Andromeda Nebula was shown conclusively to lie outside our own galaxy when
astronomers acquired telescopes powerful enough to resolve the individual stars of
Andromeda. Was this feat accomplished by Galileo in 1609, by Immanuel Kant in
1755, by Henrietta Swan Leavitt in 1912, by Edwin Hubble in 1923, or by Walter
Baade and Allan Sandage in the 1950s?

c) Some of the earliest measurements of the cosmic background radiation were made
indirectly, by observing interstellar clouds of a molecule called cyanogen (CN). State
whether each of the following statements is true or false (1 point each):

(i) The first measurements of the temperature of the interstellar cyanogen were
made over twenty years before the cosmic background radiation was directly
observed.
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(ii) Cyanogen helps to measure the cosmic background radiation by reflecting it
toward the earth, so that it can be received with microwave detectors.

(iii) One reason why the cyanogen observations were important was that they gave
the first measurements of the equivalent temperature of the cosmic background
radiation at wavelengths shorter than the peak of the black-body spectrum.

(iv) By measuring the spectrum of visible starlight that passes through the cyanogen
clouds, astronomers can infer the intensity of the microwave radiation that
bathes the clouds.

(v) By observing chemical reactions in the cyanogen clouds, astronomers can infer
the temperature of the microwave radiation in which they are bathed.

d) In about 280 B.C., a Greek philosopher proposed that the Earth and the other
planets revolve around the sun. What was the name of this person? [Note for 2011:
this question was based on readings from Joseph Silk’s The Big Bang, and therefore
is not appropriate for Quiz 1 of this year.]

e) In 1832 Heinrich Wilhelm Olbers presented what we now know as “Olbers’ Paradox,”
although a similar argument had been discussed as early as 1610 by Johannes Kepler.
Olbers argued that if the universe were transparent, static, infinitely old, and was
populated by a uniform density of stars similar to our sun, then one of the following
consequences would result:

(i) The brightness of the night sky would be infinite.

(ii) Any patch of the night sky would look as bright as the surface of the sun.

(iii) The total energy flux from the night sky would be about equal to the total
energy flux from the sun.

(iv) Any patch of the night sky would look as bright as the surface of the moon.

Which one of these statements is the correct statement of Olbers’ paradox?

PROBLEM 24: THE DECELERATION PARAMETER

The following problem was Problem 2, Quiz 2, 1992, where it counted 10 points out of
100.

Many standard references in cosmology define a quantity called the deceleration
parameter q, which is a direct measure of the slowing down of the cosmic expansion.
The parameter is defined by

q ≡ −ä(t)
a(t)

ȧ2(t)
.

Find the relationship between q and Ω for a matter-dominated universe. [In case you
have forgotten, Ω is defined by

Ω = ρ/ρc ,

where ρ is the mass density and ρc is the critical mass density (i.e., that mass density
which corresponds to k = 0).]
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SOLUTIONS

PROBLEM 1: DID YOU DO THE READING (2018)? (30 points)

(a) (5 points) After telescopes became available, more and more extended objects in
the sky, called nebulae, were discovered, but those were thought as members of our
galaxy. Who is the person who first proposed that some of the nebulae are galaxies
like our own located outside our galaxy?

(i) Isaac Newton

(ii) Immanuel Kant

(iii) Edwin Hubble

(iv) Albert Einstein

(b) (5 points) Before 1923, questions of the nature of the spiral and elliptical nebulae
could not be settled without some reliable method of determining how far away they
are. In 1923, Edwin Hubble was for the first time able to resolve the Andromeda
Nebula (galaxy) into separate stars and estimated the distance to the Andromeda
Nebula. What observational quantity did he measure to estimate the distance?

(i) the radial velocity of individual stars in the Adromeda Nebula

(ii) the radial velocity of the Andromeda Nebula itself

(iii) the periods of variation of a class of stars in the Andromeda Nebula

(iv) the parallax of bright stars in the Adromeda Nebula

[Comment: Hubble used Cepheid variables to estimate the distance to the Andromeda
Nebula (galaxy) with a tight relation between the observed periods of variation of the
Cepheids and their absolute luminosities provided by Henrietta Swan Leavitt and Harlow
Shapley.]

(c) (5 points) In 1917, a year after the completion of Einstein’s general theory of rel-
ativity, looked specifically for a solution that would be homogeneous,
isotropic, and static, and thus was forced to mutilate the equations by introducing
a term, the so-called cosmological constant. In the same year, another solution of
the modified theory was found by the Dutch astronomer . Although this
solution appeared to be static, it had the remarkable property of predicting a red-
shift proportional to the distance. In 1922, the general homogeneous and isotropic
solution of the original Einstein equations was found by the Russian mathemati-
cian , which provides a mathematical background for the most modern
cosmological theories. Which is the right answer to fill in the blanks in turn?

(i) Friedmann — Einstein — de Sitter
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(ii) Friedmann — de Sitter — Einstein

(iii) Einstein — Friedmann — de Sitter

(iv) Einstein — de Sitter — Friedmann

(v) de Sitter — Einstein — Friedmann

(vi) de Sitter — Friedmann — Einstein

(d) (5 points) After radio noises with the equivalent temperature of about 3.5◦ K were
detected, Penzias, Wilson, Dicke, Peebles, Roll, and Wilkinson decided to publish a
pair of companion letters in the Astrophysical Journal, in which Penzias and Wilson
would announce their observations, and Dicke, Peebles, Roll, and Wilkinson would
explain the cosmological interpretation. What is the title of the paper written by
Penzias and Wilson?

(i) “A Measurement of Excess Antenna Temperature at 4,080 Mc/s”

(ii) “Cosmic Black-Body Radiation”

(iii) “Origin of the Microwave Radio Background”

(iv) “Three Degrees Above Zero: Bell Labs in the Information Age”

[Comment: (ii) is the title of the companion letter by Dicke, Peebles, Roll, and Wilkinson;
(iii) is the title of a paper written by Peebles and Dicke in 1966, in which they refuted
a suggestion by Michele Kaufman that the background radiation was emitted by ionized
intergalactic hydrogen; and (iv) is the title of a book written by Jeremy Bernstein.]

(e) (5 points) The universe contains different types of particles. Which of the following
statements is NOT true?

(i) A baryon is defined as a particle made of three quarks.

(ii) Electrons and neutrinos are leptons.

(iii) There are three types of neutrinos and they all have zero charge.

(iv) The component of the universe made of ions, atoms, and molecules is generally
referred to as baryonic matter, since only the baryons (protons and neutrons)
contribute significantly to the mass density.

(v) About three-fourths of the baryonic matter in the universe is currently in the
form of helium.

[Comment: about three-fourths of the baryonic matter in the universe is currently in the
form of hydrogen.]

(f) (5 points) If one averages over sufficiently large scales, the universe appears to be
homogeneous and isotropic. How large must the averaging scale be before this ho-
mogeneity and isotropy set in?
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(i) 1000 Mpc. (1 Mpc = 106 pc, 1 pc = 3.086× 1016 m = 3.262 light-year).

(ii) 100 Mpc.

(iii) 1 Mpc.

(iv) 100 kpc (1 kpc = 1000 pc).

(v) 1 AU (1 AU = 1.496× 1011 m).

PROBLEM 2: LIGHT RAYS TRAVELING THROUGH A MATTER-
DOMINATED FLAT UNIVERSE (40 points)

Consider a flat, matter-dominated universe, with a scale factor given by

a(t) = bt2/3 ,

where b is a constant. Now consider a galaxy G in this universe which at time t1 emits
two photons, with an angular separation θ between their paths, as shown in the diagram:

(a) (10 points) At cosmic time t (for t > t1), what is the physical distance `1,phys(t) of
each of these photons from the galaxy G?

Answer:

The coordinate speed of light is c/a(t), so the coordinate distance traveled is

`1,c(t) =

∫ t

t1

c

a(t′)
dt′

=

(
3c

b

)
t1/3

∣∣∣t
t1

=

(
3c

b

)
t1/3

[
1−

(
t1
t

)1/3
]
.
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The physical distance is then

`1,phys(t) = a(t)`1,c(t) = bt2/3`1,c(t)

= 3ct

[
1−

(
t1
t

)1/3
]
.

(b) (5 points) If the frequency of the photons was ν1 when they were emitted, what is
their frequency ν(t) at cosmic time t (for t > t1)? ν(t) should be the frequency as it
would be measured by a comoving observer, i.e. an observer at rest with respect to
the matter at the same location.

Answer:

The wavelength of a photon is stretched in proportion to the scale factor, so the
frequency is inversely proportional to the scale factor. So

ν(t) =
a(t1)

a(t)
ν1 =

(
t1
t

)2/3

ν1 .

(c) (10 points) What is the physical distance `2,phys(t) between the two photons at time
t (for t > t1)?

Answer:

Since the universe is flat, we can use ordinary Euclidean geometry, as shown in the
diagram:

The coordinate distance between the two photons is then given by

`2,c = 2`1,c sin
θ

2
.
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The physical distance is then

`2,phys = 2a(t)`1,c sin
θ

2

= 2bt2/3
(

3c

b

)
t1/3

[
1−

(
t1
t

)1/3
]

sin
θ

2

= 6ct

[
1−

(
t1
t

)1/3
]

sin
θ

2
.

Now consider a different situation, but in the same universe. This time we consider a
photon that travels past the galaxy G, traveling in the x direction, in the x-y plane, as
shown in the diagram below. We are told that the photon crosses the y axis at time t2,
and at that time the photon is a physical distance h from the galaxy.

(d) (10 points) What is the physical distance `3,phys(t) between the photon and the
galaxy G at arbitrary time t, which might be earlier or later than t2?

Answer:

It is important to recognize here that the coordinates shown are comoving coordi-
nates, or map coordinates, so that physical distances are obtained by multiplying by
the scale factor. (If these coordinates represented physical distances from the origin,
then the Hubble expansion would be driving all particles outward, and the photon
trajectory would not be a straight line.) So, if the physical distance between the
photon and the galaxy is equal to h at time t2, then the y coordinate of the photon
is equal to

y =
h

a(t2)
.
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The x coordinate is determined by the fact that it vanishes at time t2, and then
moves toward positive values at the coordinate speed of light,

dx

dt
=

c

a(t)
.

Thus,

x(t) =

∫ t

t2

c

bt′2/3
dt′ =

3c

b
t1/3

[
1−

(
t2
t

)1/3
]
.

The coordinate distance from the origin is then given by the Pythagorean theorem,

`3,c(t) =
[
x2(t) + y2(t)

]1/2
,

so

`3,phys(t) = bt2/3
[
x2(t) + y2(t)

]1/2

=

9c2t2

[
1−

(
t2
t

)1/3
]2

+

(
t

t2

)4/3

h2


1/2

.

(e) (5 points) At time t2, what is the recessional speed d`3,phys(t)/dt of the photon from
the galaxy. Hint: if you are clever, this can be done with very little calculation.

Answer:

Note, first of all, that one cannot blindly assume that the photon obeys Hubble’s law,
since Hubble’s law applies only to the comoving matter in the model universe, which
is undergoing uniform expansion. It does not apply to objects, such as photons,
that are moving relative to the comoving matter. (Motion relative to the comoving
matter is called proper motion.)

The answer can be obtained by simply differentiating the above expression for
`3,phys(t) with respect to t, and then setting t = t2, but there is a shorter way.
If we go back to

`3,phys(t) = a(t)`3,c(t) ,

we note that, unlike the the description of uniform Hubble expansion, in this case
the coordinate distance `3,c depends on time. The coordinate distance between two
pieces of comoving matter (i.e., matter expanding with the universe) does not change
with time, but here we have the distance between a galaxy (at fixed coordinates)
and a photon (which is traveling). However, we can easily see from the diagram that
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at time t2, the coordinate distance `3,c(t) is at its minimum, and therefore its time
derivative at t2 must be zero. Therefore,

d`3,phys

dt

∣∣∣∣
t2

= ȧ(t2)`3,c(t2)

=

(
ȧ

a

)
[a`3,c(t2)] = H(t2)`3,phys(t2)

=

(
2

3t2

)
h .

The average grade on this problem was only 2.8/5, or 55%, which was the lowest for
any problem on the quiz. Many students assumed that Hubble’s law applied to the
photon. This assumption leads to the correct answer at time t2, when the photon
proper velocity is perpendicular to the direction from the photon to the galaxy, but
not at other times. Students who gave the correct answer, but attributed it to
Hubble’s law, were given 4 points out of 5. Another common error was to assert
that the speed of light is always measured as c, so d`3,phys(t)/dt = c. The correct
description of the invariance of the speed of light is to say that any inertial observer
(which includes all comoving observers) will measure the speed of a photon that
passes him as being equal to c. But if the photon is at a different location, then
one has to take into account the expansion of the universe, which is done by basing
all calculations on the principle that the coordinate speed of light is always equal to
c/a(t).

PROBLEM 3: THE STEADY-STATE UNIVERSE THEORY (30 points)

The steady-state theory of the universe was proposed in the late 1940s by Hermann
Bondi, Thomas Gold, and Fred Hoyle, and was considered a viable model for the universe
until the cosmic background radiation was discovered and its properties were confirmed.
As the name suggests, this theory is based on the hypothesis that the large-scale properties
of the universe do not change with time. The expansion of the universe was an established
fact when the steady-state theory was invented, but the steady-state theory reconciles the
expansion with a steady-state density of matter by proposing that new matter is created
as the universe expands, so that the matter density does not fall. Like the conventional
theory, the steady-state theory describes a homogeneous, isotropic, expanding universe,
so the same comoving coordinate formulation can be used.

a) (15 points) The steady-state theory proposes that the Hubble constant, like other
cosmological parameters, does not change with time, so H(t) = H0. Find the most
general form for the scale factor function a(t) which is consistent with this hypothesis.
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Answer:

The Hubble expansion rate is related to a(t) by

H(t) =
1

a(t)

da

dt
,

so in this case
1

a(t)

da

dt
= H0 ,

which can be rewritten as
da

a
= H0 dt .

Integrating,

ln a = H0 t+ c ,

where c is a constant of integration. Exponentiating,

a = beH0 t ,

where b = ec is an arbitrary constant.

b) (15 points) Suppose that the mass density of the universe is ρ0, which of course does
not change with time. In terms of the general form for a(t) that you found in part
(a), calculate the rate at which new matter must be created for ρ0 to remain constant
as the universe expands. Your answer should have the units of mass per unit volume
per unit time. [If you failed to answer part (a), you will still receive full credit here
if you correctly answer the question for an arbitrary scale factor function a(t).]

Answer:

Consider a cube of side `c drawn on the comoving coordinate system diagram. The
physical length of each side is then a(t) `c, so the physical volume is

V (t) = a3(t) `3c .

Since the mass density is fixed at ρ = ρ0, the total mass inside this cube at any given
time is given by

M(t) = a3(t) `3c ρ0 .

In the absence of matter creation the total mass within a comoving volume would not
change, so the increase in mass described by the above equation must be attributed
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to matter creation. The rate of matter creation per unit time per unit volume is
then given by

Rate =
1

V (t)

dM

dt

=
1

a3(t) `3c
3a2(t)

da

dt
`3c ρ0

=
3

a

da

dt
ρ0

= 3H0 ρ0 .

You were not asked to insert numbers, but it is worthwhile to consider the numerical
value after the exam, to see what this answer is telling us. Suppose we take H0 = 70
km-sec−1-Mpc−1, and take ρ0 to be the critical density, ρc = 3H2

0/8πG. Then

To put this number into more meaningful terms, note that the mass of a hydrogen
atom is 1.67 × 10−27 kg, and that 1 year = 3.156 × 107 s. The rate of matter
production required for the steady-state universe theory can then be expressed as
roughly one hydrogen atom per cubic meter per billion years! Needless to say, such a
rate of matter production is totally undetectable, so the steady-state theory cannot
be ruled out by the failure to detect matter production.

PROBLEM 4: DID YOU DO THE READING (2016)? (35 points)

(a) (5 points) The Milky Way has been known since ancient times as a band of light
stretching across the sky. We now recognize the Milky Way as the galaxy of stars
in which we live, with a large collection of stars, including our sun, arranged in a
giant disk. Since the individual stars are mostly too small for our eyes to resolve, we
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observe the collective light from these stars, concentrated in the plane of the disk.
The idea that the Milky Way is actually a disk of stars was proposed by

(i) Claudius Ptolemy, in the 2nd century AD.

(ii) Johannes Kepler, in 1610.

(iii) Isaac Newton, in 1695.

(iv) Thomas Wright, in 1750.

(v) Immanuel Kant, in 1755.

(vi) Edwin Hubble, in 1923.

(b) (5 points) Once it was recognized that we live in a galaxy, it was initially assumed
that ours was the only galaxy. The suggestion that some of the patches of light
known as nebulae might actually be other galaxies like our own was made by

(i) Claudius Ptolemy, in the 2nd century AD.

(ii) Johannes Kepler, in 1610.

(iii) Isaac Newton, in 1695.

(iv) Thomas Wright, in 1750.

(v) Immanuel Kant, in 1755.

(vi) Edwin Hubble, in 1923.

(c) (5 points) The first firm evidence that there is more than one galaxy stemmed from
the ability to observe the Andromeda Nebula with high enough resolution to distin-
guish its individual stars. In particular, the observation of Cepheid variable stars in
Andromeda allowed a distance estimate that placed it well outside the Milky Way.
The observation of Cepheid variable stars in Andromeda was first made by

(i) Johannes Kepler, in 1610.

(ii) Isaac Newton, in 1695.

(iii Thomas Wright, in 1750.

(iv) Immanuel Kant, in 1755.

(v) Henrietta Swan Leavitt and Harlow Shapley in 1915.

(vi) Edwin Hubble, in 1923.

(d) (5 points) The first hint that the universe is filled with radiation with an effective
temperature near 3 K, although not recognized at the time, was an observation of
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absorption lines in cyanogen (CN) by Adams and McKellar in 1941. They observed
dark spectral lines which they interpreted as absorption by the cyanogen of light
coming from the star behind the gas cloud. Explain in a few sentences how these ab-
sorption lines can be used to make inferences about the cosmic background radiation
bathing the cyanogen gas cloud.

Answer:

When an atom absorbs a photon, it is excited from its initial state to some
final state, and the energy of the photon must match the energy difference
betwen the two states. One of the observed cyanogen lines was associated
with a transition starting in the ground state, and two other observed lines
were associated with transitions starting from an excited state. By compar-
ing the intensities of these absorption lines, the astronomers could infer the
relative abundance of ground state and excited cyanogen molecules, which
in turn allowed them to infer the temperature of the gas cloud. They found
a temperature of 2.2 K.

(e) (5 points) As the universe expands, the temperature of the cosmic microwave back-
ground

(i) goes up in proportion to the scale factor a(t).

(ii) stays constant.

(iii) goes down in proportion to 1/a(t).

(iv) goes down in proportion to 1/a2(t).

(f) (5 points) When Hubble measured the value of his constant, he found H−1 ≈ 100

million years, 2 billion years, 10 billion years, or 20 billion years?

(g) (5 points) Explain in a few sentences what is meant by the equivalence principle?

Answer:

Ryden states that the equivalence principle is the fact that the gravitational
mass of any object is equal to its inertial mass. It would also be correct to
say that the graviational mass is proportional to the inertial mass. (If they
are proportional, there is always a value of G which makes them equal.)
The equivalence principle can also be described more generally by saying
that gravity is equivalent to acceleration, so that within a small volume the
effects of gravity can be removed by describing the system in an accelerating
coordinate system.
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PROBLEM 5: OBSERVING A DISTANT GALAXY IN A MATTER-
DOMINATED FLAT UNIVERSE (40 points)

Suppose that we are living in a matter-dominated flat universe, with a scale factor
given by

a(t) = bt2/3 ,

where b is a constant. The present time is denoted by t0.

(a) (5 points) If we measure time in seconds, distance in meters, and coordinate distances
in notches, what are the units of b?

Answer:

a(t) would be measured in meters/notch, and t would be measured in sec-
onds. So

[b] =
[a(t)]

[t]2/3
=

m

notch-s2/3
.

(b) (5 points) Suppose that we observe a distant galaxy which is one half of a “Hubble
length” away, which means that the physical distance today is `p = 1

2cH
−1
0 , where c

is the speed of light and H0 is the present value of the Hubble expansion rate. What

is the proper velocity vp ≡ d`p(t)
dt of this galaxy relative to us?

Answer:

By Hubble’s law, the velocity of recession is equal to H0 times the physical
distance, so

vp = H0

[
1

2
cH−1

0

]
=

1

2
c .

A common error in this part was to use

H0 =
ȧ

a
=

2

3

bt
−1/3
0

bt
2/3
0

=
2

3t0

to write

`p =
3

4
ct0 ,

and then to differentiate this expression with respect to t0, finding vp =
3c/4. The problem with this approach is that it assumes that the relation
`p = 1

2cH
−1 holds for all t, so that one can differentiate it to find the

velocity. But an object that is at distance 1
2cH

−1 does not remain at a
distance 1

2cH
−1 as time progresses. It is the coordinate distance `c, and not

the physical distance measured in Hubble lengths, that remains constant
as the universe expands.

(c) (5 points) What is the coordinate distance `c between us and the distant galaxy?
Express your answer in terms of b, t0, and c (but not H0).
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Answer:

We know that `p(t) = a(t)`c, so

`c =
`p(t0)

a(t0)
=

c

2bH0t
2/3
0

.

To eliminate H0, which is not allowed in the answer, we can use

H0 =
1

a(t0)

da(t0)

dt0
=

1

bt
2/3
0

[
2

3
bt
−1/3
0

]
=

2

3t0
.

Inserting the result into the line above,

`c =
3

4

ct
1/3
0

b
.

If you did not answer the previous part, you may still continue with the following parts,
using the symbol `c for the coordinate distance to the galaxy.

(d) (5 points) At what time te was the light that we are now receiving from the galaxy
emitted?

Answer:

We know that the coordinate velocity of light is

dx

dt
=

c

a(t)
=

c

bt2/3
.

We can find te by the requirement that the coordinate distance that light
travels between te and t0 must be equal to `c found in part (c):∫ t0

te

c

bt′2/3
dt′ =

3

4

ct
1/3
0

b
.

Integrating,

3c

b

[
t
1/3
0 − t1/3e

]
=

3

4

ct
1/3
0

b
.

With a little algebra we see

t1/3e =
3

4
t
1/3
0 =⇒ te =

27

64
t0 .
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(e) (5 points) What is the redshift z of the light that we are now receiving from the
distant galaxy?

Answer:

The redshift is related to the scale factor by

1 + z =
a(t0)

a(te)
=

(
t0
te

)2/3

=

(
64

27

)2/3

=
16

9
,

so

z =
7

9
.

(f) (10 points) Consider a light pulse that leaves the distant galaxy at time te, as cal-
culated in part (d), and arrives here at the present time, t0. Calculate the physical
distance rp(t) between the light pulse and us. Find rp(t) as a function of t for all t
between te and t0.

Answer:

We first calculate the coordinate separation rc(t) between the light pulse
and us, as a function of t. At time te it is equal to the value of `c found in
part (c), and from that time onward it is reduced by the coordinate distance
that light can travel between times te and t. Therefore,

rc(t) =
3

4

ct
1/3
0

b
−
∫ t

te

c

b t′2/3
dt′

=
3

4

ct
1/3
0

b
− 3c

b

[
t1/3 − t1/3e

]
=

3

4

ct
1/3
0

b
− 3c

b

[
t1/3 − 3

4
t
1/3
0

]
=

3c

b

[
t
1/3
0 − t1/3

]
.

The physical distance is then

rp(t) = bt2/3 rc(t) = 3c
[
t
1/3
0 t2/3 − t

]
= 3ct

[(
t0
t

)1/3

− 1

]
.
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(g) (5 points) If we send a radio message now to the distant galaxy, at what time tr will
it be received?

Answer:

We calculate the time tr by which a light ray, starting at t0, can travel a
coordinate distance equal to the value we found in part (c):∫ tr

t0

c

b t′2/3
dt′ = `c =

3

4

ct
1/3
0

b
.

Integrating,

3c

b

[
t1/3r − t1/30

]
=

3

4

ct
1/3
0

b
,

from which we find

t1/3r =
5

4
t
1/3
0 =⇒ tr =

125

64
t0 .

PROBLEM 6: A RADIATION-DOMINATED FLAT UNIVERSE

The flatness of the model universe means that k = 0, so(
ȧ

a

)2

=
8π

3
Gρ .

Since

ρ(t) ∝ 1

a4(t)
,

it follows that
da

dt
=

const

a
.

Rewriting this as
a da = const dt ,

the indefinite integral becomes

1

2
a2 = (const)t+ c′ ,

where c′ is a constant of integration. Different choices for c′ correspond to dif-
ferent choices for the definition of t = 0. We will follow the standard convention
of choosing c′ = 0, which sets t = 0 to be the time when a = 0. Thus the above
equation implies that a2 ∝ t, and therefore

a(t) ∝ t1/2

for a photon-dominated flat universe.
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PROBLEM 7: DID YOU DO THE READING (2011)? (25 points)†

†Solution written by Daniele Bertolini.

(a) (10 points) To determine the distance of the galaxies he was observing
Hubble used so called standard candles. Standard candles are astronomical
objects whose intrinsic luminosity is known and whose distance is inferred
by measuring their apparent luminosity. First, he used as standard candles
variable stars, whose intrinsic luminosity can be related to the period of
variation. Quoting Weinberg’s The First Three Minutes, chapter 2, pages
19-20:

In 1923 Edwin Hubble was for the first time able to resolve the Andromeda
Nebula into separate stars. He found that its spiral arms included a few
bright variable stars, with the same sort of periodic variation of luminosity
as was already familiar for a class of stars in our galaxy known as Cepheid
variables. The reason this was so important was that in the preceding decade
the work of Henrietta Swan Leavitt and Harlow Shapley of the Harvard Col-
lege Observatory had provided a tight relation between the observed periods
of variation of the Cepheids and their absolute luminosities. (Absolute lu-
minosity is the total radiant power emitted by an astronomical object in all
directions. Apparent luminosity is the radiant power received by us in each
square centimeter of our telescope mirror. It is the apparent rather than the
absolute luminosity that determines the subjective degree of brightness of as-
tronomical objects. Of course, the apparent luminosity depends not only on
the absolute luminosity, but also on the distance; thus, knowing both the ab-
solute and the apparent luminosities of an astronomical body, we can infer
its distance.) Hubble, observing the apparent luminosity of the Cepheids in
the Andromeda Nebula, and estimating their absolute luminosity from their
periods, could immediately calculate their distance, and hence the distance
of the Andromeda Nebula, using the simple rule that apparent luminosity
is proportional to the absolute luminosity and inversely proportional to the
square of the distance.

He also used particularly bright stars as standard candles, as we deduce
from page 25:

Returning now to 1929: Hubble estimated the distance to 18 galaxies from
the apparent luminosity of their brighest stars, and compared these distances
with the galaxies’ respective velocities, determined spectroscopically from
their Doppler shifts.

Note: since from reading just the first part of Weinberg’s discussion one
could be induced to think that Hubble used just Cepheids as standard
candles, students who mentioned only Cepheids got 9 points out of 10. In
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fact, however, Hubble was able to identify Cepheid variables in only a few
galaxies. The Cepheids were crucial, because they served as a calibration
for the larger distances, but they were not in themselves sufficient.

(b) (5 points) Quoting Weinberg’s The First Three Minutes, chapter 2, page
21:

We would expect intuitively that at any given time the universe ought to look
the same to observers in all typical galaxies, and in whatever directions they
look. (Here, and below, I will use the label “typical” to indicate galaxies
that do not have any large peculiar motion of their own, but are simply
carried along with the general cosmic flow of galaxies.) This hypothesis is so
natural (at least since Copernicus) that it has been called the Cosmological
Principle by the English astrophysicist Edward Arthur Milne.

So the Cosmological principle basically states that the universe appears as
homogeneous and isotropic (on scales of distance large enough) to any typ-
ical observer, where typical is referred to observers with small local motion
compared to the expansion flow. Ryden gives a more general definition of
Cosmological Principle, which is valid as well. Quoting Ryden’s Introduc-
tion to Cosmology, chapter 2, page 11 or 14 (depending on which version):

However, modern cosmologists have adopted the cosmological principle,
which states: There is nothing special about our location in the universe.
The cosmological principle holds true only on large scales (of 100 Mpc or
more).

(c) (10 points) Quoting again Ryden’s Introduction to Cosmology, chapter 2,
page 9 or 11:

Saying that the universe is isotropic means that there are no preferred
directions in the universe; it looks the same no matter which way you point
your telescope. Saying that the universe is homogeneous means that there
are no preferred locations in the universe; it looks the same no matter where
you set up your telescope.

(i) False. If the universe is isotropic around one point it does not need to
be homogeneous. A counter-example is a distribution of matter with
spherical symmetry, that is, with a density which is only a function of
the radius but does not depend on the direction: ρ(r, θ, φ) ≡ ρ(r). In
this case for an observer at the center of the distribution the universe
looks isotropic but it is not homogeneous.

(ii) True. For the case of Euclidean geometry isotropy around two or
more distinct points does imply homogeneity. Weinberg shows this in
chapter 2, page 24. Consider two observers, and two arbitrary points
A and B which we would like to prove equivalent. Consider a circle



8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2020 p. 45

through point A, centered on observer 1, and another circle through
point B, centered on observer 2. If C is a point on the intersection
of the two circles, then isotropy about the two observers implies that
A = C and B = C, and hence A = B. (This argument was good
enough for Weinberg and hence good enough to deserve full credit, but
it is actually incomplete: one can find points A and B for which the
two circles will not intersect. On your next problem set you will have
a chance to invent a better proof.)

(d) (2 points extra credit) False. If we relax the hypothesis of Euclidean geom-
etry, then isotropy around two points does not necessarily imply homogene-
ity. A counter-example we mentioned in class is a two-dimensional universe
consisting of the surface of a sphere. Think of the sphere in three Euclidean
dimensions, but the model “universe” consists only of its two-dimensional
surface. Imagine latitude and longitude lines to give coordinates to the sur-
face, and imagine a matter distribution that depends only on latitude. This
would not be homogeneous, but it would look isotropic to observers at both
the north and south poles. While this example describes a two-dimensional
universe, which therefore cannot be our universe, we will learn shortly how
to construct a three-dimensional non-Euclidean universe with these same
properties.

PROBLEM 8: THE TRAJECTORY OF A PHOTON ORIGINAT-
ING AT THE HORIZON (25 points)

(a) They key idea is that the coordinate speed of light is given by

dx

dt
=

c

a(t)
,

so the coordinate distance (in notches) that light can travel between t = 0
and now (t = t0) is given by

`c =

∫ t0

0

cdt

a(t)
.

The corresponding physical distance is the horizon distance:

`p,horizon(t0) = a(t0)

∫ t0

0

cdt

a(t)
.

Evaluating,

`p,horizon(t0) = bt
2/3
0

∫ t0

0

cdt

bt2/3
= t

2/3
0

[
3ct

1/3
0

]
= 3ct0 .
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(b) As stated in part (a), the coordinate distance that light can travel between
t = 0 and t = t0 is given by

`c =

∫ t0

0

cdt

a(t)
=

3ct
1/3
0

b
.

Thus, if we are at the origin, at t = 0 the photon must have been at

x0 =
3ct

1/3
0

b
.

(c) The photon starts at x = x0 at t = 0, and then travels in the negative
x-direction at speed c/a(t). Thus, it’s position at time t is given by

x(t) = x0 −
∫ t

0

cdt′

a(t′)
=

3ct
1/3
0

b
− 3ct1/3

b
=

3c

b

(
t
1/3
0 − t1/3

)
.

(d) Since the coordinate distance between us and the photon is x(t), measured
in notches, the physical distance (in, for example, meters) is just a(t) times
x(t). Thus.

`p(t) = a(t)x(t) = 3ct2/3
(
t
1/3
0 − t1/3

)
.

(e) To find the maximum of `p(t), we set the derivative equal to zero:

d`p(t)

dt
=

d

dt

[
3c
(
t2/3t

1/3
0 − t

)]
= 3c

[
2

3

(
t0
t

)1/3

− 1

]
= 0 ,

so (
t0
tmax

)1/3

=
3

2
=⇒ tmax =

(
2

3

)3

t0 =
8

27
t0 .

The maximum distance is then

`p,max = `p(tmax) = 3c

(
2

3

)2

t
2/3
0

[
t
1/3
0 −

(
2

3

)
t
1/3
0

]
= 3c

(
2

3

)2(
1

3

)
t0

=
4

9
ct0 .
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PROBLEM 9: SIGNAL PROPAGATION IN A FLAT MATTER-
DOMINATED UNIVERSE (55 points)

(a)-(i) If we let `c(t) denote the coordinate distance of the light signal from A,
then we can make use of Eq. (3.8) from the lecture notes for the coordinate
velocity of light:

d`c
dt

=
c

a(t)
. (20.1)

Integrating the velocity,

`c(t) =

∫ t

t1

cdt′

a(t′)
=
c

b

∫ t

t1

dt′

t′2/3

=
3c

b

[
t1/3 − t1/31

]
.

(20.2)

The physical distance is then

`p,sA(t) = a(t)`c(t) = bt2/3
3c

b

[
t1/3 − t1/31

]
= 3c

(
t− t2/3t1/31

)
= 3ct

[
1−

(
t1
t

)1/3
]
.

(20.3)

We now need to differentiate, which is done most easily with the middle
line of the above equation:

d`p,sA
dt

= c

[
3− 2

(
t1
t

)1/3
]
. (20.4)

(ii) At t = t1, the time of emission, the above formula gives

d`p,sA
dt

= c . (20.5)

This is what should be expected, since the speed of separation of the light
signal at the time of emission is really just a local measurement of the speed
of light, which should always give the standard value c.
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(iii) At arbitrarily late times, the second term in brackets in Eq. (20.4) becomes
negligible, so

d`p,sA
dt

→ 3c . (20.6)

Although this answer is larger than c, it does not violate relativity. Once
the signal is far from its origin it is carried by the expansion of the universe,
and relativity places no speed limit on the expansion of the universe.

(b) This part of the problem involves H(t1), so we can start by evaluating it:

H(t) =
ȧ(t)

a(t)
=

d
dt (bt

2/3)

bt2/3
=

2

3t
. (20.7)

Thus, the physical distance from A to B at time t1 is

`p,BA =
3

2
ct1 . (20.8)

The coordinate distance is the physical distance divided by the scale factor,
so

`c,BA =
cH−1(t1)

a(t1)
=

3
2ct1

bt
2/3
1

=
3c

2b
t
1/3
1 . (20.9)

Since light travels at a coordinate speed c/a(t), the light signal will reach
galaxy B at time t2 if

`c,BA =

∫ t2

t1

c

bt′2/3
dt′

=
3c

b

[
t
1/3
2 − t1/31

]
.

(20.10)

Setting the expressions (20.9) and (20.10) for `c,BA equal to each other, one
finds

1

2
t
1/3
1 = t

1/3
2 − t1/31 =⇒ t

1/3
2 =

3

2
t
1/3
1 =⇒ t2 =

27

8
t1 . (20.11)

(c)-(i) Physical distances are additive, so if one adds the distance from A and the
light signal to the distance from the light signal to B, one gets the distance
from A to B:

`p,sA + `p,sB = `p,BA . (20.12)
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But `p,BA(t) is just the scale factor times the coordinate separation,
a(t)`c,BA. Using the previous relations (20.3) and (20.9) for `p,sA(t) and
`c,BA, we find

3ct

[
1−

(
t1
t

)1/3
]

+ `p,sB(t) =
3

2
ct

1/3
1 t2/3 , (20.13)

so

`p,sB(t) =
9

2
ct

1/3
1 t2/3 − 3ct = 3ct

[
3

2

(
t1
t

)1/3

− 1

]
. (20.14)

As a check, one can verify that this expression vanishes for t = t2 =
(27/8) t1, and that it equals (3/2)ct1 at t = t1. But we are asked to find
the speed of approach, the negative of the derivative of Eq. (20.14):

Speed of approach = −d`p,sB
dt

= −3ct
1/3
1 t−1/3 + 3c

= 3c

[
1−

(
t1
t

)1/3
]
.

(20.15)

(ii) At the time of emission, t = t1, Eq. (20.15) gives

Speed of approach = 0 . (20.16)

This makes sense, since at t = t1 galaxy B is one Hubble length from
galaxy A, which means that its recession velocity is exactly c. The recession
velocity of the light signal leaving A is also c, so the rate of change of the
distance from the light signal to B is initially zero.

(iii) At the time of reception, t = t2 = (27/8) t1, Eq. (20.15) gives

Speed of approach = c , (20.17)

which is exactly what is expected. As in part (a)-(ii), this is a local mea-
surement of the speed of light.
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(d) To find the redshift, we first find the time tBA at which a light pulse must be
emitted from galaxy B so that it arrives at galaxy A at time t1. Using the
coordinate distance given by Eq. (20.9), the time of emission must satisfy

3c

2b
t
1/3
1 =

∫ t1

tBA

c

bt′2/3
dt′ =

3c

b

(
t
1/3
1 − t1/3BA

)
, (20.18)

which can be solved to give

tBA =
1

8
t1 . (20.19)

The redshift is given by

1 + zBA =
a(t1)

a(tBA)
=

(
t1
tBA

)2/3

= 4 . (20.20)

Thus,

zBA = 3 . (20.21)

(e) Applying Euclidean geometry to the triangle C-A-B shows that the physical
distance from C to B, at time t1, is

√
2cH−1. The coordinate distance is

also larger than the A-B separation by a factor of
√

2. Thus,

`c,BC =
3
√

2c

2b
t
1/3
1 . (20.22)

If we let tBC be the time at which a light pulse must be emitted from galaxy
B so that it arrives at galaxy C at time t1, we find

3
√

2c

2b
t
1/3
1 =

∫ t1

tBC

c

bt′2/3
dt′ =

3c

b

(
t
1/3
1 − t1/3BC

)
, (20.23)

which can be solved to find

tBC =

(
1−
√

2

2

)3

t1 . (20.24)

Then

1 + zBC =
a(t1)

a(tBC)
=

(
t1
tBC

)2/3

=
1(

1−
√

2
2

)2 , (20.25)
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and

zBC =
1(

1−
√

2
2

)2 − 1 . (20.26)

Full credit will be given for the answer in the form above, but it can be
simplified by rationalizing the fraction:

zBC =
1(

1−
√

2
2

)2

(
1 +

√
2

2

)2

(
1 +

√
2

2

)2 − 1

=
1 +
√

2 + 1
2

1
4

− 1

= 5 + 4
√

2 .

(20.27)

Numerically, zBC = 10.657.

(f) Following the solution to Problem 6 of Problem Set 2, we draw a diagram
in comoving coordinates, putting the source at the center of a sphere:

The energy from galaxy A will radiate uniformly over the sphere. If the
detector has physical area AD, then in the comoving coordinate picture it
has coordinate area AD/a

2(t2), since the detection occurs at time t2 The
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full coordinate area of the sphere is 4π`2c,BA, so the fraction of photons that

hit the detector is

fraction =

[
A/a(t2)2

]
4π`2c,BA

. (20.28)

As in Problem 6, the power hitting the detector is reduced by two factors

of (1 + z): one factor because the energy of each photon is proportional to

the frequency, and hence is reduced by the redshift, and one more factor

because the rate of arrival of photons is also reduced by the redshift factor

(1 + z). Thus,

Power hitting detector = P

[
A/a(t2)2

]
4π`2c,BA

1

(1 + z)2

= P

[
A/a(t2)2

]
4π`2c,BA

[
a(t1)

a(t2)

]2

= P
A

4π`2c,BA

a2(t1)

a4(t2)
.

(20.29)

The energy flux is given by

J =
Power hitting detector

A
, (20.30)

so

J =
P

4π`2c,BA

a2(t1)

a4(t2)
. (20.31)
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From here it is just algebra, using Eqs. (20.9) and (20.11), and a(t) = bt2/3:

J =
P

4π
[

3c
2b t

1/3
1

]2 b2t4/31

b4t
8/3
2

=
P

4π
[

3c
2b t

1/3
1

]2 b2t
4/3
1(

27
8

)8/3
b4t

8/3
1

=
P

4π
[

3c
2 t

1/3
1

]2 t
4/3
1(

3
2

)8
t
8/3
1

=
28

310π

P

c2t21

=
256

59, 049π

P

c2t21
.

(20.32)

It is debatable which of the last two expressions is the simplest, so I have boxed
both of them. One could also write

J = 1.380× 10−3 P

c2t21
. (20.33)

PROBLEM 10: DID YOU DO THE READING (2007)? (25 points)

The following 5 questions are each worth 5 points:

(a) In the 1940’s, three astrophysicists proposed a “steady state” theory of
cosmology, in which the universe has always looked about the same as it
does now. State the last name of at least one of these authors. (Bonus
points: you can earn 1 point each for naming the other two authors, and
hence up to 2 additional points, but 1 point will be taken off for each
incorrect answer.)

Ans: (Weinberg, page 8, or Ryden, page 16): Hermann Bondi, Thomas
Gold, and Fred Hoyle.

(b) In 1917, a Dutch astronomer named Willem de Sitter did which one of the
following accomplishments:
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(i) measured the size of the Milky Way galaxy, finding it to be about one
billion light-years in diameter.

(ii) resolved Cepheid variable stars in Andromeda and thereby obtained
persuasive evidence that Andromeda is not within our own galaxy, but
is apparently another galaxy like our own.

(iii) published a catalog, Nebulae and Star Clusters, listing 103 objects that
astronomers should avoid when looking for comets.

(iv) published a model for the universe, based on general relativity, which

appeared to be static but which produced a redshift proportional to
the distance.

(v) discovered that the orbital periods of the planets are proportional to
the 3/2 power of the semi-major axis of their elliptical orbits.

Discussion: (i) is false in part because de Sitter was not involved in the
measurement of the size of the Milky Way, but the most obvious error is
in the size of the Milky Way. Its actual diameter is reported by Weinberg
(p. 16) to be about 100,000 light-years, although now it is believed to be
about twice that large. (ii) is an accurate description of an observation by
Edwin Hubble in 1923 (Weinberg, pp. 19-20). (iii) describes the work of
Charles Messier in 1781 (Weinberg, p. 17). (v) is of course one of Kepler’s
laws of planetary motion.

(c) In 1964–65, Arno A. Penzias and Robert W. Wilson observed a flux of
microwave radiation coming from all directions in the sky, which was inter-
preted by a group of physicists at a neighboring institution as the cosmic
background radiation left over from the big bang. Circle the two items on
the following list that were not part of the story behind this spectacular
discovery:

(i) Bell Telephone Laboratory (ii) MIT (iii) Princeton University

(iv) pigeons (v) ground hogs (vi) Hubble’s constant

(vii) liquid helium (viii) 7.35 cm

(Grading: 3 pts for 1 correct answer, 5 for 2 correct answers, and -2 for
each incorrect answer, but the minimum score is zero.)

Discussion: The discovery of the cosmic background radiation was described
in some detail by Weinberg in Chapter 3. The observation was done at Bell
Telephone Laboratories, in Holmdel, New Jersey. The detector was cooled
with liquid helium to minimize electrical noise, and the measurements were
made at a wavelength of 7.35 cm. During the course of the experiment
the astronomers had to eject a pair of pigeons who were roosting in the
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antenna. Penzias and Wilson were not initially aware that the radiation

they discovered might have come from the big bang, but Bernard Burke

of MIT put them in touch with a group at Princeton University (Robert

Dicke, James Peebles, P.G. Roll, and David Wilkinson) who were actively

working on this hypothesis.

(d) Important predictions of the Copernican theory were confirmed by the dis-

covery of the aberration of starlight (which showed that the velocity of the

Earth has the time-dependence expected for rotation about the Sun) and

by the behavior of the Foucault pendulum (which showed that the Earth

rotates). These discoveries were made

(i) during Copernicus’ lifetime.

(ii) approximately two and three decades after Copernicus’ death, respec-

tively.

(iii) about one hundred years after Copernicus’ death.

(iv) approximately two and three centuries after Copernicus’ death, respec-

tively.

Ryden discusses this on p. 5. The aberration of starlight was discovered in

1728, while the Foucault pendulum was invented in 1851.

(e) If one averages over sufficiently large scales, the universe appears to be

homogeneous and isotropic. How large must the averaging scale be before

this homogeneity and isotropy set in?

(i) 1 AU (1 AU = 1.496× 1011 m).

(ii) 100 kpc (1 kpc = 1000 pc, 1 pc = 3.086× 1016 m = 3.262 light-year).

(iii) 1 Mpc (1 Mpc = 106 pc).

(iv) 10 Mpc.

(v) 100 Mpc.

(vi) 1000 Mpc.

This issue is discussed in Ryden’s book on p. 11.
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PROBLEM 11: A TWO-LEVEL HIGH-SPEED MERRY-GO-
ROUND (15 points)

(a) Since the relative positions of all the cars remain fixed as the merry-go-
round rotates, each successive pulse from any given car to any other car
takes the same amount of time to complete its trip. Thus there will be no
Doppler shift caused by pulses taking different amounts of time; the only
Doppler shift will come from time dilation.

We will describe the events from the point of view of an inertial reference
frame at rest relative to the hub of the merry-go-round, which we will call
the laboratory frame. This is the frame in which the problem is described,
in which the inner cars are moving at speed v, and the outer cars are moving
at speed 2v. In the laboratory frame, the time interval between the wave
crests emitted by the source ∆tLab

S will be exactly equal to the time interval
∆tLab

O between two crests reaching the observer:

∆tLab
O = ∆tLab

S .

The clocks on the merry-go-round cars are moving relative to the laboratory
frame, so they will appear to be running slowly by the factor

γ1 =
1√

1− v2/c2

for the inner cars, and by the factor

γ2 =
1√

1− 4v2/c2

for the outer cars. Thus, if we let ∆tS denote the time between crests as
measured by a clock on the source, and ∆tO as the time between crests as
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measured by a clock moving with the observer, then these quantities are
related to the laboratory frame times by

γ2∆tS = ∆tLab
S and γ1∆tO = ∆tLab

O .

To make sure that the γ-factors are on the right side of the equation, you
should keep in mind that any time interval should be measured as shorter
on the moving clocks than on the lab clocks, since these clocks appear to
run slowly. Putting together the equations above, one has immediately that

∆tO =
γ2

γ1
∆tS .

The redshift z is defined by

∆tO ≡ (1 + z) ∆tS ,

so

z =
γ2

γ1
− 1 =

√
1− v2

c2

1− 4v2

c2

− 1 .

(b) For this part of the problem is useful to imagine a relay station located just
to the right of car 6 in the diagram, at rest in the laboratory frame. The
relay station rebroadcasts the waves as it receives them, and hence has no
effect on the frequency received by the observer, but serves the purpose of
allowing us to clearly separate the problem into two parts.

The first part of the discussion concerns the redshift of the signal as mea-
sured by the relay station. This calculation would involve both the time
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dilation and a change in path lengths between successive pulses, but we
do not need to do it. It is the standard situation of a source and observer
moving directly away from each other, as discussed at the end of Lecture
Notes 1. The Doppler shift is given by Eq. (1.33), which was included in
the formula sheet. Writing the formula for a recession speed u, it becomes

(1 + z)|relay =

√
1 + u

c

1− u
c

.

If we again use the symbol ∆tS for the time between wave crests as measured
by a clock on the source, then the time between the receipt of wave crests
as measured by the relay station is

∆tR =

√
1 + u

c

1− u
c

∆tS .

The second part of the discussion concerns the transmission from the relay
station to car 6. The velocity of car 6 is perpendicular to the direction from
which the pulse is being received, so this is a transverse Doppler shift. Any
change in path length between successive pulses is second order in ∆t, so it
can be ignored. The only effect is therefore the time dilation. As described
in the laboratory frame, the time separation between crests reaching the
observer is the same as the time separation measured by the relay station:

∆tLab
O = ∆tR .

As in part (a), the time dilation implies that

γ2∆tO = ∆tLab
O .

Combining the formulas above,

∆O =
1

γ2

√
1 + u

c

1− u
c

∆tS .

Again ∆tO ≡ (1 + z) ∆tS , so

z =
1

γ2

√
1 + u

c

1− u
c

− 1 =

√(
1− 4v2

c2

) (
1 + u

c

)
1− u

c

− 1 .
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PROBLEM 12: AN EXPONENTIALLY EXPANDING UNIVERSE

(a) According to Eq. (3.7), the Hubble constant is related to the scale factor
by

H = ȧ/a .

So

H =
χa0e

χt

a0eχt
= χ .

(b) According to Eq. (3.8), the coordinate velocity of light is given by

dx

dt
=

c

a(t)
=

c

a0
e−χt .

Integrating,

x(t) =
c

a0

∫ t

0

e−χt
′
dt′

=
c

a0

[
− 1

χ
e−χt

′
]t

0

=
c

χa0

[
1− e−χt

]
.

(c) From Eq. (3.11), or from the front of the quiz, one has

1 + z =
a(tr)

a(te)
.

Here te = 0, so

1 + z =
a0e

χtr

a0

=⇒ eχtr = 1 + z

=⇒ tr =
1

χ
ln(1 + z) .
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(d) The coordinate distance is x(tr), where x(t) is the function found in part
(b), and tr is the time found in part (c). So

eχtr = 1 + z ,

and
x(tr) =

c

χa0

[
1− e−χtr

]
=

c

χa0

[
1− 1

1 + z

]
=

cZ

χa0(1 + z) .

The physical distance at the time of reception is found by multiplying by
the scale factor at the time of reception, so

`p(tr) = a(tr)x(tr) =
czeχtr

χ(1 + z)
=

cz

χ
.

PROBLEM 13: DID YOU DO THE READING (2005)? (25 points)

(a) (4 points) What was the first external galaxy that was shown to be at a
distance significantly greater than the most distant known objects in our
galaxy? How was the distance estimated?

Ans: (Weinberg, page 20) The first galaxy shown to be at a distance be-
yond the size of our galaxy was Andromeda, also known by its Messier
number, M31. It is the nearest spiral galaxy to our galaxy. The distance
was determined (by Hubble) using Cepheid variable stars, for which the
absolute luminosity is proportional to the period. A measurement of a par-
ticular Cepheid’s period determines the star’s absolute luminosity, which,
compared to the measured luminosity, determines the distance to the star.
(Hubble’s initial measurement of the distance to Andromeda used a badly-
calibrated version of this period-luminosity relationship and consequently
underestimated the distance by more than a factor of two; nonetheless, the
initial measurement still showed that the Andromeda Nebula was an order
of magnitude more distant than the most distant known objects in our own
galaxy.)

(b) (5 points) What is recombination? Did galaxies begin to form before or
after recombination? Why?
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Ans: (Weinberg, pages 64 and 73) Recombination refers to the formation
of neutral atoms out of charged nuclei and electrons. Galaxies began to
form after recombination. Prior to recombination, the strong electromag-
netic interactions between photons and matter produced a high pressure
which effectively counteracted the gravitational attraction between parti-
cles. Once the universe became transparent to radiation, the matter no
longer interacted significantly with the photons and consequently began to
undergo gravitational collapse into large clumps.

(c) (4 points) In Chapter IV of his book, Weinberg develops a “recipe for a
hot universe,” in which the matter of the universe is described as a gas
in thermal equilbrium at a very high temperature, in the vicinity of 109 K
(several thousand million degrees Kelvin). Such a thermal equilibrium gas
is completely described by specifying its temperature and the density of
the conserved quantities. Which of the following is on this list of conserved
quantities? Circle as many as apply.

(i) baryon number (ii) energy per particle (iii) proton number

(iv) electric charge (v) pressure

Ans: (Weinberg, page 91) The correct answers are (i) and (iv). A third
conserved quantity, lepton number, was not included in the multiple-choice
options.

(d) (4 points) The wavelength corresponding to the mean energy of a CMB
(cosmic microwave background) photon today is approximately equal to
which of the following quantities? (You may wish to look up the values of
various physical constants at the end of the quiz.)

(i) 2 fm (2× 10−15 m)

(ii) 2 microns (2× 10−6 m)

(iii) 2 mm (2× 10−3 m)

(iv) 2 m.

Ans: (Ryden, page 23) The correct answer is (iii).

If you did not remember this number, you could estimate the answer by
remembering that the characteristic temperature of the cosmic microwave
background is approximately 3 Kelvin. The typical photon energy is then
on the order of kT , from which we can find the frequency as E = hν.
The wavelength of the photon is then λ = ν/c. This approximation gives
λ = 5.3 mm, which is not equal to the correct answer, but it is much closer
to the correct answer than to any of the other choices.

(e) (4 points) What is the equivalence principle?
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Ans: (Ryden, page 27) In its simplest form, the equivalence principle says
that the gravitational mass of an object is identical to its inertial mass. This
equality implies the equivalent statement that it is impossible to distinguish
(without additional information) between an observer in a reference frame
accelerating with acceleration ~a and an observer in an inertial reference
frame subject to a gravitational force −mobs~a.

(Actually, what the equivalence principle really says is that the ratio of the
gravitational to inertial masses mg/mi is universal, that is, independent
of the material properties of the object in question. The ratio does not
necessarily need to be 1. However, once we know that the two types of
masses are proportional, we can simply define the gravitational coupling
G to make them equal. To see this, consider a theory of gravity where
mg/mi = q. Then the gravitational force law is

mia = −GMmg

r2
,

or

a = −GqM
r2

.

At this point, if we define G′ = Gq, we have a gravitational theory with
gravitational coupling G′ and inertial mass equal to gravitational mass.)

(f) (4 points) Why is it difficult for Earth-based experiments to look at the
small wavelength portion of the graph of CMB energy density per wave-
length vs. wavelength?

Ans: (Weinberg, page 67) The Earth’s atmosphere is increasingly opaque
for wavelength shorter than .3 cm. Therefore, radiation at these wave-
lengths will be absorbed and rescattered by the Earth’s atmosphere; obser-
vations of the cosmic microwave background at small wavelengths must be
performed above the Earth’s atmosphere.

PROBLEM 14: TRACING A LIGHT PULSE THROUGH A
RADIATION-DOMINATED UNIVERSE

(a) The physical horizon distance is given in general by

`p,horizon = a(t)

∫ tf

0

c

a(t)
dt ,

so in this case

`p,horizon = bt1/2
∫ tf

0

c

bt1/2
dt = 2ctf .
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(b) If the source is at the horizon distance, it means that a photon leaving the

source at t = 0 would just be reaching the origin at tf . So, te = 0 .

(c) The coordinate distance between the source and the origin is the coordinate
horizon distance, given by

`c,horizon =

∫ tf

0

c

bt1/2
dt =

2ct
1/2
f

b
.

(d) The photon starts at coordinate distance 2c
√
tf/b, and by time t it will

have traveled a coordinate distance∫ t

0

c

bt′1/2
dt′ =

2c
√
t

b

toward the origin. Thus the photon will be at coordinate distance

`c =
2c

b

(√
tf −

√
t
)

from the origin, and hence a physical distance

`p(t) = a(t)`c = 2c
(√

t tf − t
)
.

(e) To find the maximum of `p(t), we differentiate it and set the derivative to
zero:

d`p
dt

=

(√
tf
t
− 2

)
c ,

so the maximum occurs when √
tf
tmax

= 2 ,

or

tmax =
1

4
tf .
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PROBLEM 15: TRANSVERSE DOPPLER SHIFTS

(a) Describing the events in the coordinate system shown, the Xanthu is at
rest, so its clocks run at the same speed as the coordinate system time
variable, t. The emission of the wavecrests of the radio signal are therefore
separated by a time interval equal to the time interval as measured by the
source, the Xanthu:

∆t = ∆ts .

Since the Emmerac is moving perpendicular to the path of the radio waves,
at the moment of reception its distance from the Xanthu is at a minimum,
and hence its rate of change is zero. Hence successive wavecrests will travel
the same distance, as long as c∆t� a. Since the wavecrests travel the same
distance, the time separation of their arrival at the Emmerac is ∆t, the
same as the time separation of their emission. The clocks on the Emmerac,
however, and running slowly by a factor of

γ =
1√

1− v2

c2

.

The time interval between wave crests as measured by the receiver, on the
Emmerac, is therefore smaller by a factor of γ,

∆tr =
∆ts
γ

.

Thus, there is a blueshift. The redshift parameter z is defined by

∆tr
∆ts

= 1 + z ,

so
1

γ
= 1 + z ,

or

z =
1− γ
γ

.

Recall that γ > 1, so z is negative.

(b) Describing this situation in the coordinate system shown, this time the
source on the Xanthu is moving, so the clocks at the source are running
slowly. The time between wavecrests, measured in coordinate time t, is
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therefore larger by a factor of γ than ∆ts, the time as measured by the
clock on the source:

∆t = γ∆ts .

Since the radio signal is emitted when the Xanthu is at its minimum sepa-
ration from the Emmerac, the rate of change of the separation is zero, so
each wavecrest travels the same distance (again assuming that c∆t � a).
Since the Emmerac is at rest, its clocks run at the same speed as the coor-
dinate time t, and hence the time interval between crests, as measured by
the receiver, is

∆tr = ∆t = γ∆ts .

Thus the time interval as measured by the receiver is longer than that

measured by the source, and hence it is a redshift. The redshift parameter
z is given by

1 + z =
∆tr
∆ts

= γ ,

so

z = γ − 1 .

(c) The events described in (a) can be made to look a lot like the events de-
scribed in (b) by transforming to a frame of reference that is moving to the
right at speed v0 — i.e., by transforming to the rest frame of the Emmerac.
In this frame the Emmerac is of course at rest, and the Xanthu is traveling
on the trajectory

(x=− v0t, y=a, z=0) ,

as in part (b). However, just as the transformation causes the x-component
of the velocity of the Xanthu to change from zero to a negative value, so the
x-component of the velocity of the radio signal will be transformed from
zero to a negative value. Thus in this frame the radio signal will not be
traveling along the y-axis, so the events will not match those described in
(b). The situations described in (a) and (b) are therefore physically distinct
(which they must be if the redshifts are different, as we calculated above).

PROBLEM 16: SPECIAL RELATIVITY DOPPLER SHIFT (20
points)

(a) The easiest way to solve this problem is by a double application of the
standard special-relativity Doppler shift formula, which was given on the
front of the exam:

z =

√
1 + β

1− β
− 1 , (18.1)
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where β = v/c. Remembering that the wavelength is stretched by a factor
1 + z, we find immediately that the wavelength of the radio wave received
at Alpha-7 is given by

λAlpha−7 =

√
1 + vs/c

1− vs/c
λemitted . (18.2)

The photons that are received by the observer are in fact never received
by Alpha-7, but the wavelength found by the observer will be the same as
if Alpha-7 acted as a relay station, receiving the photons and retransmit-
ting them at the received wavelength. So, applying Eq. (18.1) again, the
wavelength seen by the observer can be written as

λobserved =

√
1 + vo/c

1− vo/c
λAlpha−7 . (18.3)

Combining Eqs. (18.2) and (18.3),

λobserved =

√
1 + vo/c

1− vo/c

√
1 + vs/c

1− vs/c
λemitted , (18.4)

so finally

z =

√
1 + vo/c

1− vo/c

√
1 + vs/c

1− vs/c
− 1 . (18.5)

(b) Although we used the presence of Alpha-7 in determining the redshift z
of Eq. (18.5), the redshift is not actually affected by the space station.
So the special-relativity Doppler shift formula, Eq. (18.1), must directly
describe the redshift resulting from the relative motion of the source and
the observer. Thus√

1 + vtot/c

1− vtot/c
− 1 =

√
1 + vo/c

1− vo/c

√
1 + vs/c

1− vs/c
− 1 . (18.6)

The equation above determines vtot in terms of vo and vs, so the rest is
just algebra. To simplify the notation, let βtot ≡ vtot/c, βo ≡ vo/c, and
βs ≡ vs/c. Then

1 + βtot =
1 + βo
1− βo

1 + βs
1− βs

(1− βtot)
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βtot

[
1 +

1 + βo
1− βo

1 + βs
1− βs

]
=

1 + βo
1− βo

1 + βs
1− βs

− 1

βtot

[
(1− βo − βs + βoβs) + (1 + βo + βs + βoβs)

(1− βo)(1− βs)

]
=

(1 + βo + βs + βoβs)− (1− βo − βs + βoβs)

(1− βo)(1− βs)

βtot[2(1 + βoβs)] = 2(βo + βs)

βtot =
βo + βs
1 + βoβs

vtot =
vo + vs

1 +
vovs
c2

. (18.7)

The final formula is the relativistic expression for the addition of velocities.
Note that it guarantees that |vtot| ≤ c as long as |vo| ≤ c and |vs| ≤ c.

PROBLEM 17: DID YOU DO THE READING (2004)? (25 points)

(a) In 1826, the astronomer Heinrich Olber wrote a paper on a paradox regard-
ing the night sky. What is Olber’s paradox? What is the primary resolution
of it?

(Ryden, Chapter 2, Pages 6-8)

Ans: Olber’s paradox is that the night sky appears to be dark, instead of
being uniformly bright. The primary resolution is that the universe has a
finite age, and so the light from stars beyond the horizon distance has not
reached us yet. (However, even in the steady-state model of the universe,
the paradox is resolved because the light from distant stars will be red-
shifted beyond the visible spectrum).

(b) What is the value of the Newtonian gravitational constant G in Planck
units? The Planck length is of the order of 10−35 m, 10−15 m, 1015 m, or
1035 m?

(Ryden, Chapter 1, Page 3)

Ans: G = 1 in Planck units, by definition.

The Planck length is of the order of 10−35 m. (Note that this answer could
be obtained by a process of elimination as long as you remember that the
Planck length is much smaller than 10−15 m, which is the typical size of a
nucleus).
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(c) What is the Cosmological Principle? Is the Hubble expansion of the uni-
verse consistent with it?

(Weinberg, Chapter 2, Pages 21-23; Ryden, Chapter 2, Page 11)

Ans: The Cosmological Principle states that there is nothing special about
our location in the universe, i.e. the universe is homogeneous and isotropic.

Yes, the Hubble expansion is consistent with it (since there is no center of
expansion).

(d) In the “Standard Model” of the universe, when the universe cooled to about
3 × 10a K, it became transparent to photons, and today we observe these
as the Cosmic Microwave Background (CMB) at a temperature of about
3× 10b K. What are the integers a and b?

(Weinberg, Chapter 3; Ryden, Chapter 2, Page 22)

a = 3, b = 0.

(e) What did the universe primarily consist of at about 1/100th of a second
after the Big Bang? Include any constituent that is believed to have made
up more than 1% of the mass density of the universe.

(Weinberg, Chapter 1, Page 5)

Ans: Electrons, positrons, neutrinos, and photons.

PROBLEM 18: DID YOU DO THE READING (2000)? (35 points)

a) Doppler predicted the Doppler effect in 1842.

b) Most of the stars of our galaxy, including our sun, lie in a flat disk. We
therefore see much more light when we look out from earth along the plane
of the disk than when we look in any other direction.

c) Hubble’s original paper on the expansion of the universe was based on a

study of only 18 galaxies. Well, at least Weinberg’s book says 18 galaxies.

For my own book I made a copy of Hubble’s original graph, which seems to
show 24 black dots, each of which represents a galaxy, as reproduced below.
The vertical axis shows the recession velocity, in kilometers per second. The
solid line shows the best fit to the black dots, each of which represents a
galaxy. Each open circle represents a group of the galaxies shown as black
dots, selected by their proximity in direction and distance; the broken line
is the best fit to these points. The cross shows a statistical analysis of 22
galaxies for which individual distance measurements were not available. I
am not sure why Weinberg refers to 18 galaxies, but it is possible that the
text of Hubble’s article indicated that 18 of these galaxies were measured
with more reliability than the rest.
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d)

e) During a time interval in which the linear size of the universe grows by

1%, the horizon distance grows by more than 1%. To see why, note that
the horizon distance is equal to the scale factor times the comoving horizon
distance. The scale factor grows by 1% during this time interval, but the
comoving horizon distance also grows, since light from the distant galaxies
has had more time to reach us.

f) Arno A. Penzias and Robert W. Wilson, Bell Telephone Laboratories.

g) (i) the average distance between photons: proportional to the size of

the universe (Photons are neither created nor destroyed, so the only
effect is that the average distance between them is stretched with the
expansion. Since the universe expands uniformly, all distances grow
by the same factor.)

(ii) the typical wavelength of the radiation: proportional to the size of

the universe (See Lecture Notes 3.)
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(iii) the number density of photons in the radiation: inversely propor-

tional to the cube of the size of the universe (From (i), the average
distance between photons grows in proportion to the size of the uni-
verse. Since the volume of a cube is proportional to the cube of the
length of a side, the average volume occupied by a photon grows as the
cube of the size of the universe. The number density is the inverse of
the average volume occupied by a photon.)

(iv) the energy density of the radiation: inversely proportional to the

fourth power of the size of the universe (The energy of each photon

is proportional to its frequency, and hence inversely proportional to its
wavelength. So from (ii) the energy of each photon is inversely propor-
tional to the size of the universe, and from (iii) the number density is
inversely proportional to the cube of the size.)

(v) the temperature of the radiation: inversely proportional to the size

of the universe (The temperature is directly proportional to the av-
erage energy of a photon, which according to (iv) is inversely propor-
tional to the size of the universe.)

PROBLEM 19: A FLAT UNIVERSE WITH AN UNUSUAL TIME
EVOLUTION (40 points)

a) (5 points) The cosmological redshift is given by the usual form,

1 + z =
a(t0)

a(te)
.

For light emitted by an object at time te, the redshift of the received light
is

1 + z =
a(t0)

a(te)
=

(
t0
te

)γ
.

So,

z =

(
t0
te

)γ
− 1 .

b) (5 points) The coordinates t0 and te are cosmic time coordinates. The
“look-back” time as defined in the exam is then the interval t0 − te. We
can write this as

t0 − te = t0

(
1− te

t0

)
.
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We can use the result of part (a) to eliminate te/t0 in favor of z. From (a),

te
t0

= (1 + z)−1/γ .

Therefore,

t0 − te = t0

[
1− (1 + z)−1/γ

]
.

c) (10 points) The present value of the physical distance to the object, `p(t0),
is found from

`p(t0) = a(t0)

∫ t0

te

c

a(t)
dt .

Calculating this integral gives

`p(t0) =
ctγ0

1− γ

[
1

tγ−1
0

− 1

tγ−1
e

]
.

Factoring tγ−1
0 out of the parentheses gives

`p(t0) =
ct0

1− γ

[
1−

(
t0
te

)γ−1
]

.

This can be rewritten in terms of z and H0 using the result of part (a) as
well as,

H0 =
ȧ(t0)

a(t0)
=
γ

t0
.

Finally then,

`p(t0) = cH−1
0

γ

1− γ

[
1− (1 + z)

γ−1
γ

]
.

d) (10 points) A nearly identical problem was worked through in Problem 8
of Problem Set 1.

The energy of the observed photons will be redshifted by a factor of (1+z).
In addition the rate of arrival of photons will be redshifted relative to the
rate of photon emmission, reducing the flux by another factor of (1 + z).
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Consequently, the observed power will be redshifted by two factors of (1+z)
to P/(1 + z)2.

Imagine a hypothetical sphere in comoving coordinates as drawn above,
centered on the radiating object, with radius equal to the comoving distance
`c. Now consider the photons passing through a patch of the sphere with
physical area A. In comoving coordinates the present area of the patch is
A/a(t0)2. Since the object radiates uniformly in all directions, the patch
will intercept a fraction (A/a(t0)2)/(4π`2c) of the photons passing through
the sphere. Thus the power hitting the area A is

(A/a(t0)2)

4π`2c

P

(1 + z)2
.

The radiation energy flux J , which is the received power per area, reaching
the earth is then given by

J =
1

4π`p(t0)2

P

(1 + z)2

where we used `p(t0) = a(t0)`c. Using the result of part (c) to write J in
terms of P,H0, z, and γ gives,

J =
H2

0

4πc2

(
1− γ
γ

)2
P

(1 + z)2
[
1− (1 + z)

γ−1
γ

]2 .
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e) (10 points) Following the solution of Problem 1 of Problem Set 1, we can
introduce a fictitious relay station that is at rest relative to the galaxy, but
located just next to the jet, between the jet and Earth. As in the previous
solution, the relay station simply rebroadcasts the signal it receives from
the source, at exactly the instant that it receives it. The relay station
therefore has no effect on the signal received by the observer, but allows us
to divide the problem into two simple parts.

The distance between the jet and the relay station is very short compared
to cosmological scales, so the effect of the expansion of the universe is
negligible. For this part of the problem we can use special relativity, which
says that the period with which the relay station measures the received
radiation is given by

∆trelay station =

√
1− v

c

1 + v
c

×∆tsource .

Note that I have used the formula from the front of the exam, but I have
changed the size of v, since the source in this case is moving toward the
relay station, so the light is blue-shifted. To observers on Earth, the relay
station is just a source at rest in the comoving coordinate system, so

∆tobserved = (1 + z)∆trelay station .

Thus,

1 + zJ ≡
∆tobserved

∆tsource
=

∆tobserved

∆trelay station

∆trelay station

∆tsource

= (1 + z)|cosmological × (1 + z)|special relativity

= (1 + z)

√
1− v

c

1 + v
c

.

Thus,

zJ = (1 + z)

√
1− v

c

1 + v
c

− 1 .

Note added: In looking over the solutions to this problem, I found that
a substantial number of students wrote solutions based on the incorrect
assumption that the Doppler shift could be treated as if it were entirely
due to motion. These students used the special relativity Doppler shift
formula to convert the redshift z of the galaxy to a velocity of recession, then
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subtracted from this the speed v of the jet, and then again used the special
relativity Doppler shift formula to find the Doppler shift corresponding to
this composite velocity. However, as discussed at the end of Lecture Notes
3, the cosmological Doppler shift is given by

1 + z ≡ ∆to
∆te

=
a(to)

a(te)
, (3.11)

and is not purely an effect caused by motion. It is really the combined
effect of the motion of the distant galaxies and the gravitational field that
exists between the galaxies, so the special relativity formula relating z to v
does not apply.

PROBLEM 20: DID YOU DO THE READING (1998)?

a) Einstein believed that the universe was static, and the cosmological term
was necessary to prevent a static universe from collapsing under the attrac-
tive force of normal gravity. [The repulsive effect of a cosmological constant
grows linearly with distance, so if the coefficient is small it is important only
when the separations are very large. Such a term can be important cosmo-
logically while still being too small to be detected by observations of the
solar system or even the galaxy. Recent measurements of distant super-
novas (z ≈ 1), which you may have read about in the newspapers, make it
look like maybe there is a cosmological constant after all! Since the cosmo-
logical constant is the hot issue in cosmology this season, we will want to
look at it more carefully. The best time will be after Lecture Notes 7.]

b) At the time of its discovery, de Sitter’s model was thought to be static
[although it was known that the model predicted a redshift which, at least
for nearby galaxies, was proportional to the distance]. From a modern
perspective the model is thought to be expanding.

[It seems strange that physicists in 1917 could not correctly determine
if the theory described a universe that was static or expanding, but the
mathematical formalism of general relativity can be rather confusing. The
basic problem is that when space is not Euclidean there is no simple way
to assign coordinates to it. The mathematics of general relativity is de-
signed to be valid for any coordinate system, but the underlying physics
can sometimes be obscured by a peculiar choice of coordinates. A change
of coordinates can not only distort the apparent geometry of space, but
it can also mix up space and time. The de Sitter model was first written
down in coordinates that made it look static, so everyone believed it was.
Later Arthur Eddington and Hermann Weyl (independently) calculated the
trajectories of test particles, discovering that they flew apart.]
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c) n1 = 3, and n2 = 4.

d) Above 3,000 K the universe was so hot that the atoms were ionized, disso-
ciated into nuclei and free electrons. At about this temperature, however,
the universe was cool enough so that the nuclei and electrons combined to
form neutral atoms.

[This process is usually called “recombination,” although the prefix
“re-” is totally inaccurate, since in the big bang theory these constituents
had never been previously combined. As far as I know the word was first
used in this context by P.J.E. Peebles, so I once asked him why the prefix
was used. He replied that this word is standard terminology in plasma
physics, and was carried over into cosmology.]

[Regardless of its name, recombination was crucial for the clumping
of matter into galaxies and stars, because the pressure of the photons in
the early universe was enormous. When the matter was ionized, the free
electrons interacted strongly with the photons, so the pressure of these pho-
tons prevented the matter from clumping. After recombination, however,
the matter became very transparent to radiation, and the pressure of the
radiation became ineffective.]

[Incidentally, at roughly the same time as recombination (with big un-
certainties), the mass density of the universe changed from being dominated
by radiation (photons and neutrinos) to being dominated by nonrelativis-
tic matter. There is no known underlying connection between these two
events, and it seems to be something of a coincidence that they occurred at
about the same time. The transition from radiation-domination to matter-
domination also helped to promote the clumping of matter, but the effect
was much weaker than the effect of recombination— because of the very
high velocity of photons and neutrinos, their pressure remained a signifi-
cant force even after their mass density became much smaller than that of
matter.]

PROBLEM 21: ANOTHER FLAT UNIVERSE WITH UNUSUAL
TIME EVOLUTION

The key to this problem is to work in comoving coordinates.

[Some students have asked me why one cannot use “physical” coordinates,
for which the coordinates really measure the physical distances. In principle
one can use any coordinate system on likes, but the comoving coordinates are
the simplest. In any other system it is difficult to write down the trajectory of
either a particle or a light-beam. In comoving coordinates it is easy to write
the trajectory of either a light beam, or a particle which is moving with the
expansion of the universe (and hence standing still in the comoving coordinates).
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Note, by the way, that when one says that a particle is standing still in comoving

coordinates, one has not really said very much about it’s trajectory. One has

said that it is moving with the matter which fills the universe, but one has not

said, for example, how the distance between the particle and origin varies with

time. The answer to this latter question is then determined by the evolution of

the scale factor, a(t).]

(a) The physical separation at to is given by the scale factor times the co-

ordinate distance. The coordinate distance is found by integrating the

coordinate velocity, so

`p(to) = a(to)

∫ to

te

c dt′

a(t′)
= bt1/3o

∫ to

te

c dt′

bt′1/3
=

3

2
ct1/3o

[
t2/3o − t2/3e

]

=
3

2
cto

[
1− (te/to)

2/3
]
.

(b) From the front of the exam,

1 + z =
a(to)

a(te)
=

(
to
te

)1/3

=⇒ z =

(
to
te

)1/3

− 1 .

(c) By combining the answers to (a) and (b), one has

`p(to) =
3

2
cto

[
1− 1

(1 + z)2

]
.

(d) The physical distance of the light pulse at time t is equal to a(t) times

the coordinate distance. The coordinate distance at time t is equal to the

starting coordinate distance, `c(te), minus the coordinate distance that the
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light pulse travels between time te and time t. Thus,

`p(t) = a(t)

[
`c(te)−

∫ t

te

c dt′

a(t′)

]

= a(t)

[∫ to

te

c dt′

a(t′)
−
∫ t

te

c dt′

a(t′)

]

= a(t)

∫ to

t

c dt′

a(t′)

= bt1/3
∫ to

t

c dt′

bt′1/3
=

3

2
ct1/3

[
t2/3o − t2/3

]

=
3

2
ct

[(
to
t

)2/3

− 1

]
.

PROBLEM 22: A FLAT UNIVERSE WITH a(t) ∝ t3/5

a) According to Eq. (3.7) of the Lecture Notes,

H(t) =
1

a(t)

da

dt
.

For the special case of a(t) = bt3/5, this gives

H(t) =
1

bt3/5
3

5
bt−2/5 =

3

5t
.

b) According to Eq. (3.8) of the Lecture Notes, the coordinate velocity of light
(in comoving coordinates) is given by

dx

dt
=

c

a(t)
.

Since galaxies A and B have physical separation `0 at time t1, their coor-
dinate separation is given by

`c =
`0

bt
3/5
1

.
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The radio signal must cover this coordinate distance in the time interval
from t1 to t2, which implies that∫ t2

t1

c

a(t)
dt =

`0

bt
3/5
1

.

Using the expression for a(t) and integrating,

5c

2b

(
t
2/5
2 − t2/51

)
=

`0

bt
3/5
1

,

which can be solved for t2 to give

t2 =

(
1 +

2`0
5ct1

)5/2

t1 .

c) The method is the same as in part (b). The coordinate distance between
the two galaxies is unchanged, but this time the distance must be traversed
in the time interval from t2 to t3. So,∫ t3

t2

c

a(t)
dt =

`0

bt
3/5
1

,

which leads to
5c

2b

(
t
2/5
3 − t2/52

)
=

`0

bt
3/5
1

.

Solving for t3 gives

t3 =

[(
t2
t1

)2/5

+
2`0
5ct1

]5/2

t1 .

The above answer is perfectly acceptable, but one could also replace t2 by
using the answer to part (b), which gives

t3 =

(
1 +

4`0
5ct1

)5/2

t1 .
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[Alternatively, one could have begun the problem by considering the
full round trip of the radio signal, which travels a coordinate distance 2`c
during the time interval from t1 to t3. The problem then becomes identical
to part (b), except that the coordinate distance `c is replaced by 2`c, and
t2 is replaced by t3. One is led immediately to the answer in the form of
the previous equation.]

d) Cosmic time is defined by the reading of suitably synchronized clocks which
are each at rest with respect to the matter of the universe at the same
location. (For this problem we will not need to think about the method of
synchronization.) Thus, the cosmic time interval between the receipt of the
message and the response is the same as what is measured on the galaxy B
clocks, which is ∆t. The response is therefore sent at cosmic time t2 + ∆t.
The coordinate distance between the galaxies is still `0/a(t1), so∫ t4

t2+∆t

c

a(t)
dt =

`0

bt
3/5
1

.

Integration gives

5c

2b

[
t
2/5
4 − (t2 + ∆t)

2/5
]

=
`0

bt
3/5
1

,

which can be solved for t4 to give

t4 =

[(
t2 + ∆t

t1

)2/5

+
2`0
5ct1

]5/2

t1 .

e) From the formula at the front of the exam,

1 + z =
a(tobserved)

a(temitted)
=

a(t4)

a(t2 + ∆t)
=

(
t4

t2 + ∆t

)3/5

.

So,

z =
a(tobserved)

a(temitted)
=

a(t4)

a(t2 + ∆t)
=

(
t4

t2 + ∆t

)3/5

− 1 .

f) If ∆t is small compared to the time that it takes a(t) to change significantly,
then the interval between a signal sent at t3 and a signal sent at t3 + ∆t
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will be received with a redshift identical to that observed between two
successive crests of a wave. Thus, the separation between the receipt of the
acknowledgement and the receipt of the response will be a factor (1 + z)
times longer than the time interval between the sending of the two signals,
and therefore

t4 − t3 = (1 + z)∆t+O(∆t2)

=

(
t4

t2 + ∆t

)3/5

∆t+O(∆t2) .

Since the answer contains an explicit factor of ∆t, the other factors can be
evaluated to zeroth order in ∆t:

t4 − t3 =

(
t4
t2

)3/5

∆t+O(∆t2) ,

where to first order in ∆t the t4 in the numerator could equally well have
been replaced by t3.

For those who prefer the brute force approach, the answer to part (d)
can be Taylor expanded in powers of ∆t. To first order one has

t4 = t3 +
∂t4
∂∆t

∣∣∣∣
∆t=0

∆t+O(∆t2) .

Evaluating the necessary derivative gives

∂t4
∂∆t

=

[(
t2 + ∆t

t1

)2/5

+
2`0
5ct1

]3/2 (
t2 + ∆t

t1

)−3/5

,

which when specialized to ∆t = 0 becomes

∂t4
∂∆t

∣∣∣∣
∆t=0

=

[(
t2
t1

)2/5

+
2`0
5ct1

]3/2 (
t2
t1

)−3/5

.

Using the first boxed answer to part (c), this can be simplified to

∂t4
∂∆t

∣∣∣∣
∆t=0

=

(
t3
t1

)3/5 (
t2
t1

)−3/5

=

(
t3
t2

)3/5

.

Putting this back into the Taylor series gives

t4 − t3 =

(
t3
t2

)3/5

∆t+O(∆t2) ,

in agreement with the previous answer.



8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2020 p. 81

PROBLEM 23: DID YOU DO THE READING (1996)?

a) The lines were dark, caused by absorption of the radiation in the cooler,
outer layers of the sun.

b) Individual stars in the Andromeda Nebula were resolved by Hubble in 1923.

[The other names and dates are not without significance. In 1609 Galileo
built his first telescope; during 1609-10 he resolved the individual stars
of the Milky Way, and also discovered that the surface of the moon is
irregular, that Jupiter has moons of its own, that Saturn has handles (later
recognized as rings), that the sun has spots, and that Venus has phases. In
1755 Immanuel Kant published his Universal Natural History and Theory
of the Heavens, in which he suggested that at least some of the nebulae are
galaxies like our own. In 1912 Henrietta Leavitt discovered the relationship
between the period and luminosity of Cepheid variable stars. In the 1950s
Walter Baade and Allan Sandage recalibrated the extra-galactic distance
scale, reducing the accepted value of the Hubble constant by about a factor
of 10.]

c)

(i) True. [In 1941, A. McKellar discovered that cyanogen clouds behave
as if they are bathed in microwave radiation at a temperature of about
2.3◦K, but no connection was made with cosmology.]

(ii) False. [Any radiation reflected by the clouds is far too weak to be
detected. It is the bright starlight shining through the cloud that is
detectable.]

(iii) True. [Electromagnetic waves at these wavelengths are mostly blocked
by the Earth’s atmosphere, so they could not be detected directly until
high altitude balloons and rockets were introduced into cosmic back-
ground radiation research in the 1970s. Precise data was not obtained
until the COBE satellite, in 1990.]

(iv) True. [The microwave radiation can boost the CN molecule from its
ground state to a low-lying excited state, a state in which the C and N
atoms rotate about each other. The population of this low-lying state
is therefore determined by the intensity of the microwave radiation.
This population is measured by observing the absorption of starlight
passing through the clouds, since there are absorption lines in the vis-
ible spectrum caused by transitions between the low-lying state and
higher energy excited states.]

(v) False. [No chemical reactions are seen.]
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d) Aristarchus. [The heliocentric picture was never accepted by other Greek
philosophers, however, and was not revived until the publication of De
Revolutionibus Orbium Coelestium (On the Revolutions of the Celestial
Spheres) by Copernicus in 1543.]

e) (ii) Any patch of the night sky would look as bright as the surface of the
sun. [Explanation: The crux of the argument is that the brightness of an
object, measured for example by the power per area (i.e., flux) hitting the
retina of your eye, does not change as the object is moved further away.
The power falls off with the square of the distance, but so does the area
of the image on your retina — so the power per area is independent of
distance. Under the assumptions stated, your line of sight will eventually
hit a star no matter what direction you are looking. The energy flux on
your retina will therefore be the same as in the image of the sun, so the
entire sky will appear as bright as the surface of the sun.]

PROBLEM 24: THE DECELERATION PARAMETER

From the front of the exam, we are reminded that

ä = −4π

3
Gρa

and (
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
,

where a dot denotes a derivative with respect to time t. The critical mass density
ρc is defined to be the mass density that corresponds to a flat (k = 0) universe,
so from the equation above it follows that(

ȧ

a

)2

=
8π

3
Gρc .

Substituting into the definition of q, we find

q = −ä(t)
a(t)

ȧ2(t)
= − ä

a

(a
ȧ

)2

=

(
4π

3
Gρ

)(
3

8πGρc

)
=

1

2

ρ

ρc
=

1

2
Ω .



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

Physics 8.286: The Early Universe September 30, 2020
Prof. Alan Guth

QUIZ 1

PROBLEM 1: DID YOU DO THE READING? (30 points)

(a) (5 points) In what way do spectral lines help us understand the properties of nearby
stars? Consider the following options:

(A) We can determine their chemical composition.

(B) We can determine their speed relative to us.

(C) We can determine their acceleration relative to us.

(D) We can determine their mass.

(E) We can determine their volume.

Which one of the following combinations is correct:

(i) (A) and (B)

(ii) (A) and (C)

(iii) (B) and (C)

(iv) (D) and (E)

(v) (A), (B), (C), (D), and (E)

(b) (5 points) What is the cosmological principle?

(i) We live in the center of the universe.

(ii) The universe is homogeneous and isotropic on large distance scales.

(iii) The universe is isotropic.

(iv) All galaxies are evenly spaced throughout the universe.

(v) Newtonian gravity applies on large distance scales.

(c) (5 points) Roughly, what is the size of the Milky Way? And, at what length scale
does the cosmological principle become valid?

(i) 107 light years and 100 Mpc

(ii) 105 light years and 1 Mpc

(iii) 105 light years and 100 Mpc

(iv) 103 light years and 1 Mpc

(v) 103 light years and 100 Mpc
— Problem 1 continues on next page. —
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(d) (5 points) Which one of the following statements is a valid description of the history
of what is now known as the “Cosmic Microwave Background”?

(i) The CMB radiation initially had a temperature less than 2.7 degrees Kelvin,
but it increased gradually to its current value as it absorbed the energy of the
light from stars.

(ii) Plasma instabilities in the early universe generated large fluctuations in elec-
tromagnetic radiation, which we now see as a “background” to astronomical
observations.

(iii) The universe was originally filled with microwave radiation, and it persists until
today.

(iv) It is a primordial kind of radiation with a blackbody spectrum of 2.7 degrees
Kelvin at the time it was generated.

(v) At some point in the history of our universe, photons, which were once in ther-
mal equilibrium with other particles, stopped interacting because electrons and
atomic nuclei combined into atoms. The photons then free-streamed throughout
the universe, from then until now.

(e) (5 points) Why is the night sky not uniformly bright due to the universe being ho-
mogeneously populated with stars (or other bright objects)? Consider the following
options:

(A) Space is not transparent.

(B) The universe is not infinitely large.

(C) The universe is not infinitely old.

(D) The absolute brightness of stars depends on their distance away from us.

(E) The cosmological redshift makes stars look dimmer and dimmer as they are
further away from us.

Which one of the following combinations is correct?

(i) (A) and (C)

(ii) (B) and (D)

(iii) (C) and (E)

(iv) (A), (C), and (E)

(v) (B), (C), and (D)

— Problem 1 continues on next page. —



8.286 QUIZ 1, FALL 2020 p. 3

(f) (5 points) Which of the following statements best describes Einstein’s equivalence
principle?

(i) Physical laws do not depend on the place of the universe where we make mea-
surements.

(ii) General relativity is equivalent to special relativity when only massless particles
are considered.

(iii) An observer on the surface of the Earth experiences the same external forces as
a free-falling observer.

(iv) An observer on the surface of the Earth, without looking through a window,
cannot tell whether they are actually on Earth or if they are on a rocket ship
accelerating at 9.8 m/s2 in empty space.

(v) Any calculation done in the framework of General Relativity must be equivalent
to another in Newtonian gravity in the appropriate limit.
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PROBLEM 2: INTERGALACTIC SIGNALING AND TRAVEL (30 points)

Consider a flat, matter-dominated universe, with a scale factor

a(t) = bt2/3 ,

where b is a constant. Suppose that galaxy G1 is located at comoving coordinates
(x, y, z) = (r1, 0, 0) and galaxy G2 is located at (x, y, z) = (r2, 0, 0), as shown in the
following diagram:

(a) (10 points) At cosmic time t = t1, a light signal is sent from G1, in the direction
of G2. At what time t2 does the light signal reach G2? Your answer should be
expressed in terms of some or all of the given variables t1, b, r1, r2, and the speed
of light c.

(b) (6 points) When the light signal arrives at G2, what is its redshift z? Your answer
can be expressed in terms of any or all of the variables mentioned in part (a), and
also t2, the answer to part (a).

(c) (7 points) Now suppose that at time t1, the galaxy G1 also launches a starship
towards G2. This is a science-fiction starship, which moves at speed 1

2c relative to
the comoving observers. That is, it moves at speed 1

2c relative to the observers who
are at rest in the comoving coordinate system. For simplicity, we will assume that
the starship takes no time to reach its cruising velocity, and no time to decelerate at
the end of its journey. At what time t3 does the starship arrive at G2? Your answer
may depend on any of the allowed variables in part (b).

(d) (7 points) We have not discussed how the clocks on such a starship would behave,
but general relativity implies that, as the starship passes any comoving observer,
the comoving observer would measure the clocks on the starship to be time-dilated
exactly as they would be in special relativity, for the same relative velocity. Given
this fact, what time will the clocks on the starship read when the ship arrives at G2?
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PROBLEM 3: A POSSIBLE MODIFICATION OF NEWTON’S LAW OF
GRAVITY (30 points)

The following problem was Problem 4 on Problem Set 3.

In Lecture Notes 3 we developed a Newtonian model of cosmology, by considering a
uniform sphere of mass, centered at the origin, with initial mass density ρi and an initial
pattern of velocities corresponding to Hubble expansion: ~vi = Hi~r:

We denoted the radius at time t of a particle which started at radius ri by the
function r(ri, t). Assuming Newton’s law of gravity, we concluded that each particle
would experience an acceleration given by

~g = −GM(ri)

r2(ri, t)
r̂ ,

where M(ri) denotes the total mass contained initially in the region r < ri, given by

M(ri) =
4π

3
r3i ρi .

Suppose that the law of gravity is modified to contain a new, repulsive term, pro-
ducing an acceleration which grows as the nth power of the distance, with a strength
that is independent of the mass. That is, suppose ~g is given by

~g = −GM(ri)

r2(ri, t)
r̂ + γrn(ri, t) r̂ ,

where γ is a constant. The function r(ri, t) then obeys the differential equation

r̈ = −GM(ri)

r2(ri, t)
+ γrn(ri, t) .

— Problem 3 continues on next page. —
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(a) (7 points) As done in the lecture notes, we define

u(ri, t) ≡ r(ri, t)/ri .

Write the differential equation obeyed by u. (Hint: be sure that u is the only time-
dependent quantity in your equation; r, ρ, etc. must be rewritten in terms of u, ρi,
etc.)

(b) (6 points) For what value of the power n is the differential equation found in part
(a) independent of ri?

(c) (7 points) Write the initial conditions for u which, when combined with the differ-
ential equation found in (a), uniquely determine the function u.

(d) (10 points) If all is going well, then you have learned that for a certain value of n,
the function u(ri, t) will in fact not depend on ri, so we can define

a(t) ≡ u(ri, t) .

Show, for this value of n, that the differential equation for a can be integrated once
to obtain an equation related to the conservation of energy. The desired equation
should include terms depending on a and ȧ, but not ä or any higher derivatives.
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PROBLEM 4: THE NONRELATIVISTIC TRANSVERSE DOPPLER
SHIFT (10 points)

At time t = 0, a source of sound waves is located at the origin of a coordinate
system, and an observer is located at a distance h along the positive x axis, as shown in
the diagram below. The source is moving at constant speed vS along the positive y axis,
and the observer is moving at constant speed vO along the positive x axis. Denote the
speed of sound by u.

(a) (6 points) At t = 0, the sound source emits a wave crest. At what time t1 does it
arrive at the observer?

(b) (4 points) Under the usual assumption that the wavelength of the wave is very short
compared to any other distance, what is the Doppler shift of the sound wave, as
received by the observer?

Problem Maximum Score Initials

1 30

2 30

3 30

4 10

TOTAL 100
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QUIZ 1 SOLUTIONS

Quiz Date: September 30, 2020

PROBLEM 1: DID YOU DO THE READING? (30 points)

(a) (5 points) In what way do spectral lines help us understand the properties of nearby
stars? Consider the following options:

(A) We can determine their chemical composition.

(B) We can determine their speed relative to us.

(C) We can determine their acceleration relative to us.

(D) We can determine their mass.

(E) We can determine their volume.

Which one of the following combinations is correct:

(i) (A) and (B)

(ii) (A) and (C)

(iii) (B) and (C)

(iv) (D) and (E)

(v) (A), (B), (C), (D), and (E)

[Comment: The redshift of the spectral lines determines the speed of the star relative
to us, and the presence and strengths of lines tells us about the composition. Although
this information can identify the type of star and thereby give some indirect information
about the mass and volume, the word “determine” does not really apply to the mass or
volume.]

(b) (5 points) What is the cosmological principle?

(i) We live in the center of the universe.

(ii) The universe is homogeneous and isotropic on large distance scales.

(iii) The universe is isotropic.

(iv) All galaxies are evenly spaced throughout the universe.

(v) Newtonian gravity applies on large distance scales.



(c) (5 points) Roughly, what is the size of the Milky Way? And, at what length scale
does the cosmological principle become valid?

(i) 107 light years and 100 Mpc

(ii) 105 light years and 1 Mpc

(iii) 105 light years and 100 Mpc

(iv) 103 light years and 1 Mpc

(v) 103 light years and 100 Mpc

(d) (5 points) Which one of the following statements is a valid description of the history
of what is now known as the “Cosmic Microwave Background”?

(i) The CMB radiation initially had a temperature less than 2.7 degrees Kelvin,
but it increased gradually to its current value as it absorbed the energy of the
light from stars.

(ii) Plasma instabilities in the early universe generated large fluctuations in elec-
tromagnetic radiation, which we now see as a “background” to astronomical
observations.

(iii) The universe was originally filled with microwave radiation, and it persists until
today.

(iv) It is a primordial kind of radiation with a blackbody spectrum of 2.7 degrees
Kelvin at the time it was generated.

(v) At some point in the history of our universe, photons, which were once in ther-
mal equilibrium with other particles, stopped interacting because electrons and
atomic nuclei combined into atoms. The photons then free-streamed throughout
the universe, from then until now.

[Comment: Choices (i), (iii), and (iv) are all contradicted by the fact that the temper-
ature of the CMB has been cooling as the universe expands. 2.7 degrees is the current
temperature; in the past it was much hotter, and hence not in the microwave band. The
origin is not related to plasma instabilities, which are non-equilibrium phenomena which
would not be capable of producing the thermal spectrum of the CMB.]

2



(e) (5 points) Why is the night sky not uniformly bright due to the universe being ho-
mogeneously populated with stars (or other bright objects)? Consider the following
options:

(A) Space is not transparent.

(B) The universe is not infinitely large.

(C) The universe is not infinitely old.

(D) The absolute brightness of stars depends on their distance away from us.

(E) The cosmological redshift makes stars look dimmer and dimmer as they are
further away from us.

Which one of the following combinations is correct?

(i) (A) and (C) — accepted

(ii) (B) and (D) — accepted

(iii) (C) and (E) — preferred

(iv) (A), (C), and (E) — accepted

(v) (B), (C), and (D) — accepted

[Comment: When we (Alan and Bruno) wrote this problem we intended (iii) to be the
correct answer, but after the quiz we decided that all the answers are arguably correct,
so we decided to give full credit to everybody.

Despite the fact that this question is irrelevant to your grade, we hope you will find
the following discussion interesting and informative.

The question is complicated by the fact that we do not fully agree with Ryden’s
statement that “the primary resolution to Olbers’ paradox comes from the fact that the
universe has a finite age,” which corresponds to choice (C) in the problem statement.
She also mentions that “However, in an expanding universe, the surface brightness of
distant light sources is decreased relative to what you would see in a static universe,”
which is a way of describing choice (E). It’s hard to know what “primary resolution”
means, since these two explanations are both relevant and are somewhat intertwined. It
is clear that a finite age is not essential to resolving Olber’s paradox. In the steady-state
theory (discussed by Ryden on pp. 17 and 18), which was considered very plausible before
the discovery of the CMB, the age of the universe was infinite, but Olber’s paradox was
entirely avoided by the redshift effects.

Ryden was not quantitative when she spoke of the decrease in surface brightness, but
in fact you have already done the calculations to show this. You calculated on Problem 6
of Problem Set 2 that the power received from a distant source is reduced by a factor of
(1 + z)2, where one factor of (1 + z) came from the reduction in energy of each photon,
and the other factor came from the reduction in the arrival rate of photons. You also
found in Problem 5 that the angular size is enhanced by a factor of (1 + z), which means

3



that the solid angle is enhanced by a factor of (1 + z)2. This means that the surface
brightness, the amount of power that we receive per surface area on the sky, is actually
reduced by a factor of (1 + z)4. So as we look to very large redshifts, the stars contribute
very little to the brightness of the night sky.

The effect of the finite age means that we cannot see stars at distances larger than the
horizon distance, which (as discussed in Lecture Notes 4) is the present physical distance
of the furthest objects for which light has had time to reach us, since the beginning. The
light we receive from such objects left them at t = 0, when a(t) = 0, so the redshift is
infinite. Since the brightness of high z stars was suppressed by a factor of 1/(1 + z)4, the
fact that we see nothing beyond z = infinity does not seem as relevant. But the finite
age can still be considered relevant in the sense that if we considered a toy model of a
universe that was static, so there would be no redshift, Olber’s paradox could still be
resolved if the universe were not infinitely old.

Option (A): the lack of spatial transparency is not usually mentioned in discussions
of Olber’s paradox. From observations of the CMB, we know that the universe is highly
transparent, out to redshifts of about z ≈ 1000. From the point of view of Olber’s
paradox, however, z ≈ 1000 is very close. As Ryden explains, Olber’s paradox involves
thinking about distances of order 1018 Mpc, which is about 1014 times larger than the
horizon distance. At z ≈ 1000 we are looking so far back in time that we see the early
plasma phase of the universe, when space was very opaque (non-transparent). This region
is called the surface of last scattering, since most of the CMB photons were last scattered
in this region. The surface of last scattering is fairly close to the horizon distance, so the
lack of transparency in this region can be used as a variant to discussing the effects of
the horizon.

Ryden dismisses transparency as an explanation by pointing out that if the universe
is infinitely old, then eventually any light-absorbing material would be heated to the
temperature of the stars, and would glow brightly. But if the universe is not infinitely
old (as it does not appear to be), then this argument does not hold.

Option (B): the possibility that the universe has a finite size. Ryden points out that
our universe might not be infinite — we don’t know. If our universe has a finite size,
however, it would not have much relevance to Olber’s paradox, since the finite size would
have to be about equal to or larger than the horizon distance, or else we would probably
see evidence of it. In toy models of a universe, however, a finite size can serve as a way
to avoid Olber’s paradox.

Option (D): The validity of (D) as an explanation depends on the interpretation of
the words. At a fixed cosmic time, we believe that the universe is on average homogeneous,
so the absolute brightness of stars does not depend on their distance from us. However,
if the statement is assumed to refer to the absolute brightness of the stars at the time
that we see them, then of course we are seeing distant stars as they appeared long ago,
and the absolute brightness can be different. If we look so far back that there are no
stars, then the brightness would be zero. By this interpretation (D) can be valid, and is
really just another way of discussing the finite age.]
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(f) (5 points) Which of the following statements best describes Einstein’s equivalence
principle?

(i) Physical laws do not depend on the place of the universe where we make mea-
surements.

(ii) General relativity is equivalent to special relativity when only massless particles
are considered.

(iii) An observer on the surface of the Earth experiences the same external forces as
a free-falling observer.

(iv) An observer on the surface of the Earth, without looking through a window,
cannot tell whether they are actually on Earth or if they are on a rocket ship
accelerating at 9.8 m/s2 in empty space.

(v) Any calculation done in the framework of General Relativity must be equivalent
to another in Newtonian gravity in the appropriate limit.

PROBLEM 2: INTERGALACTIC SIGNALING AND TRAVEL (30 points)

Consider a flat, matter-dominated universe, with a scale factor

a(t) = bt2/3 ,

where b is a constant. Suppose that galaxy G1 is located at comoving coordinates
(x, y, z) = (r1, 0, 0) and galaxy G2 is located at (x, y, z) = (r2, 0, 0), as shown in the
following diagram:

(a) (10 points) At cosmic time t = t1, a light signal is sent from G1, in the direction
of G2. At what time t2 does the light signal reach G2? Your answer should be
expressed in terms of some or all of the given variables t1, b, r1, r2, and the speed
of light c.

Answer: The coordinate distance that must be traveled is r2 − r1, and the coordinate
speed of light is

dx

dt
=

c

a(t)
.

The integral of the coordinate speed over time is the coordinate distance traveled,
so ∫ t2

t1

cdt′

b t′2/3
= r2 − r1 . (2.1)
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Carrying out the integration,∫ t2

t1

cdt′

b t′2/3
= 3

c

b

[
t
1/3
2 − t1/3

1

]
= r2 − r1 . (2.2)

Solving for t2, one finds

t2 =

[
t
1/3
1 +

b

3c
(r2 − r1)

]3

. (2.3)

(b) (6 points) When the light signal arrives at G2, what is its redshift z? Your answer
can be expressed in terms of any or all of the variables mentioned in part (a), and
also t2, the answer to part (a).

Answer: This is an example of the cosmological redshift, given by

1 + z =
a(tobserver)

a(tsource)
=
a(t2)

a(t1)
, (2.4)

so

z =
a(t2)

a(t1)
− 1 =

(
t2
t1

)2/3

− 1 . (2.5)

The equation above is an acceptable answer, but one could also insert Eq. (2.3) for
t2:

z =

[
1 +

b

3ct
1/3
1

(r2 − r1)

]2

− 1 . (2.6)

(c) (7 points) Now suppose that at time t1, the galaxy G1 also launches a starship
towards G2. This is a science-fiction starship, which moves at speed 1

2c relative to
the comoving observers. That is, it moves at speed 1

2c relative to the observers who
are at rest in the comoving coordinate system. For simplicity, we will assume that
the starship takes no time to reach its cruising velocity, and no time to decelerate at
the end of its journey. At what time t3 does the starship arrive at G2? Your answer
may depend on any of the allowed variables in part (b).

Answer: This part is analogous to part (a), except that the trajectory has a physical
speed 1

2c instead of c, and hence a coordinate speed

dx

dt
=

c

2a(t)
. (2.7)
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The answer is then identical to Eq. (2.3), except that c is replaced by 1
2c:

t3 =

[
t
1/3
1 +

2b

3c
(r2 − r1)

]3

. (2.8)

(d) (7 points) We have not discussed how the clocks on such a starship would behave,
but general relativity implies that, as the starship passes any comoving observer,
the comoving observer would measure the clocks on the starship to be time-dilated
exactly as they would be in special relativity, for the same relative velocity. Given
this fact, what time will the clocks on the starship read when the ship arrives at G2?
Your answer may include any of the allowed variables in part (c), and also t3, the
answer to part (c).

Answer: The time dilation factor for v = 1
2c is

γ =
1√

1− v2

c2

=
2√
3
. (2.9)

When the starship clocks are passing the clocks of the comoving observers, they will
appear to be running slowly by this factor. During the starship voyage the comoving
clocks will advance from time t1 to t3, so the clocks on the starship will advance
from t1 to

tfinal,starship = t1 +

√
3

2
(t3 − t1) . (2.10)
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PROBLEM 3: A POSSIBLE MODIFICATION OF NEWTON’S LAW OF
GRAVITY (30 points)

The following problem was Problem 4 on Problem Set 3.

In Lecture Notes 3 we developed a Newtonian model of cosmology, by considering a
uniform sphere of mass, centered at the origin, with initial mass density ρi and an initial
pattern of velocities corresponding to Hubble expansion: ~vi = Hi~r:

We denoted the radius at time t of a particle which started at radius ri by the
function r(ri, t). Assuming Newton’s law of gravity, we concluded that each particle
would experience an acceleration given by

~g = −GM(ri)

r2(ri, t)
r̂ ,

where M(ri) denotes the total mass contained initially in the region r < ri, given by

M(ri) =
4π

3
r3
i ρi .

Suppose that the law of gravity is modified to contain a new, repulsive term, pro-
ducing an acceleration which grows as the nth power of the distance, with a strength
that is independent of the mass. That is, suppose ~g is given by

~g = −GM(ri)

r2(ri, t)
r̂ + γrn(ri, t) r̂ ,

where γ is a constant. The function r(ri, t) then obeys the differential equation

r̈ = −GM(ri)

r2(ri, t)
+ γrn(ri, t) .

(a) (7 points) As done in the lecture notes, we define

u(ri, t) ≡ r(ri, t)/ri .

8



Write the differential equation obeyed by u. (Hint: be sure that u is the only time-
dependent quantity in your equation; r, ρ, etc. must be rewritten in terms of u, ρi,
etc.)

Answer: Substituting the equation for M(ri), given on the quiz, into the differential
equation for r, also given on the quiz, one finds:

r̈ = −4π

3

Gr3
i ρi
r2

+ γrn .

Dividing both sides of the equation by ri, one has

r̈

ri
= −4π

3

Gr2
i ρi
r2

+ γ
rn

ri
.

Substituting u = r/ri, this becomes

ü = −4π

3

Gρi
u2

+ γunrn−1
i .

(b) (6 points) For what value of the power n is the differential equation found in part
(a) independent of ri?

Answer: The only dependence on ri occurs in the last term, which is proportional to
rn−1
i . This dependence disappears if n = 1 , since the zeroth power of any positive

number is 1.

(c) (7 points) Write the initial conditions for u which, when combined with the differ-
ential equation found in (a), uniquely determine the function u.

Answer: This is exactly the same as the case discussed in the lecture notes, since the
initial conditions do not depend on the differential equation. At t = 0,

r(ri, 0) = ri (definition of ri)
ṙ(ri, 0) = Hiri (since ~vi = Hi~r).

Dividing these equations by ri one has the intial conditions

u = 1

u̇ = Hi .

(d) (10 points) If all is going well, then you have learned that for a certain value of n,
the function u(ri, t) will in fact not depend on ri, so we can define

a(t) ≡ u(ri, t) .

9



Show, for this value of n, that the differential equation for a can be integrated once
to obtain an equation related to the conservation of energy. The desired equation
should include terms depending on a and ȧ, but not ä or any higher derivatives.

Answer: a(t) should obey the differential equation obtained in part (a) for u, for the
value of n that was obtained in part (b): n = 1. So,

ä = −4π

3

Gρi
a2

+ γa .

Multiplying the equation by ȧ ≡ da/dt, one finds

d2a

dt2
da

dt
=

{
−4π

3

Gρi
a2

+ γa

}
da

dt
,

which can be rewritten as

d

dt

{
1

2

(
da

dt

)2

− 4π

3

Gρi
a
− 1

2
γa2

}
= 0 .

Thus the quantity inside the curly brackets must be constant. Following the lecture
notes, I will call this constant E:

1

2

(
da

dt

)2

− 4π

3

Gρi
a
− 1

2
γa2 = E .

Or one can use the conventionally defined quantity

k = −2E

c2
,

in which case the equation can be written{
1

2

(
da

dt

)2

− 4π

3

Gρi
a
− 1

2
γa2

}
= −kc

2

2
.

One can then rewrite the equation in the more standard form

 ȧ
a

2

=
8π

3
Gρ+ γ − kc2

a2
,

where I have used ρ(t) = ρi/a
3(t).
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Additional Note: Historically, the constant γ corresponds to the “cosmological con-
stant” which was introduced by Albert Einstein in 1917 in an effort to build a static
model of the universe. The cosmological constant Λ, as defined by Einstein, is related
to γ by

γ =
1

3
Λc2 .

The differential equation can be rewritten as ȧ
a

2

=
8π

3
G

(
ρ+

Λc2

8πG

)
− kc2

a2
,

which shows that the cosmological constant contributes like a constant addition
to the mass density. Modern physicists interpret the cosmological constant as a
manifestation of the mass density of the vacuum. From the above equation, we can
see that the mass density of the vacuum is related to Einstein’s cosmological constant
Λ by

ρvac =
Λc2

8πG
.
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PROBLEM 4: THE NONRELATIVISTIC TRANSVERSE DOPPLER
SHIFT (10 points)

At time t = 0, a source of sound waves is located at the origin of a coordinate
system, and an observer is located at a distance h along the positive x axis, as shown in
the diagram below. The source is moving at constant speed vS along the positive y axis,
and the observer is moving at constant speed vO along the positive x axis. Denote the
speed of sound by u.

(a) (6 points) At t = 0, the sound source emits a wave crest. At what time t1 does it
arrive at the observer?

Answer: The wave crest follows the trajectory

xc = ut .

The motion of the observer is described by

xO = h+ vOt .

The intersection of these equations determines when the wave crest intersects the
observer:

xc = xO =⇒ ut1 = h+ vOt1 =⇒

t1 =
h

u− vO
.

(b) (4 points) Under the usual assumption that the wavelength of the wave is very short
compared to any other distance, what is the Doppler shift of the sound wave, as
received by the observer?

Answer: Since this is a nonrelativistic problem, there is no time dilation. Thus, the
Doppler shift is caused entirely by the rate of change of the path length `(t), the
length of the path of wave crests emitted at time t. Since the motion of the source
is perpendicular to the direction of the observer, it does not contribute to d`/dt.
Thus, the Doppler shift is given by the formula for the nonrelativistic Doppler shift
when the observer is moving along a line, away from the source, which is given in
the formula sheet:

z =
vO/u

1− vO/u
.

This was derived in Lecture Notes 1, as Eq. (1.8).
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Problem Maximum Score Initials

1 30

2 30

3 30

4 10

TOTAL 100
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REVIEW PROBLEMS FOR QUIZ 2
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QUIZ DATE: Wednesday, October 28, 2020.

COVERAGE: Lecture Notes 4, 5, and through the section on “Dynamics of a Flat
Radiation-Dominated Universe” of Lecture Notes 6; Problem Sets 4, 5, and 6; Wein-
berg, The First Three Minutes, Chapters 4 – 7; In Ryden’s Introduction to Cos-
mology, we have read Chapters 4 and Chapter 5 through Section 5.4.1 during this
period [First edition: Chapters 4, 5, and Section 6.1]. These chapters, however,
parallel what we have done or will be doing in lecture, so you should take them as
an aid to learning the lecture material; there will be no questions explicitly based
on these sections from Ryden. But we have also read Chapters 7 (Dark Matter)
and Chapter 9 (Nucleosynthesis and the Early Universe) in Ryden [First edition:
Chapters 8 and 10], and these are relevant material for the quiz, except for Sec. 9.3
(Deuterium Synthesis). I intend to post some notes to serve as background to this
section, but since I haven’t done that yet, this section will not be included in Quiz
2. You can also ignore Ryden’s Eqs. (9.11), (9.12), and (9.13) for now, but do not
ignore Eq. (9.14) [First edition: same numbers, but in Chapter 10]. Chapters 4 and
5 of Weinberg’s book are packed with numbers; you need not memorize these num-
bers, but you should be familiar with their orders of magnitude. We will not take off
for the spelling of names, as long as they are vaguely recognizable. For dates before
1900, it will be sufficient for you to know when things happened to within 100 years.
For dates after 1900, it will be sufficient if you can place events within 10 years. You
should expect one 25-point problem based on the readings, and several calculational
problems. One of the problems on the quiz will be taken verbatim (or at
least almost verbatim) from either the problem sets listed above (extra
credit problems included), or from the starred problems from this set of
Review Problems. The starred problems are the ones that I recommend that you
review most carefully: Problems 7, 8, 12, 14, 19, and 22.

QUIZ LOGISTICS: The logistics will be identical to Quiz 1, except of course for the
dates. The quiz will be closed book, no calculators, no internet, and 85 minutes
long. I assume that most of you will take it during our regular class time on October
28, but you will have the option of starting it any time during a 24-hour window
from 11:05 am EDT on October 28 to 11:05 am EDT on Thursday, October 29. If
you want to start later than 11:05 am 10/28/20, you should email me your choice
of starting time by 11:59 pm on 10/27/2020 (earlier is appreciated). The quiz will

* In the original 10/20/20 version, some of the problem solutions were misnumbered
and mislinked.
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be contained in a PDF file, which I am planning to distribute by email. You will
each be expected to spend up to 85 minutes working on it, and then you will upload
your answers to Canvas as a PDF file. I won’t place any precise time limit on the
uploading, because the time needed for scanning, photographing, or whatever kind
of processing you are doing can vary. If you have questions about the meaning of
the questions, I will be available on Zoom during the October 28 class time, and
we will arrange for either Bruno or me to be available by email as much as possible
during the other quiz times. If you have any special circumstances that might make
this procedure difficult, or if you need a postponement beyond the 24-hour window,
please let me (guth@ctp.mit.edu) know.

PURPOSE OF THE REVIEW PROBLEMS: These review problems are not to
be handed in, but are being made available to help you study. They come mainly
from quizzes in previous years. In some cases the number of points assigned to the
problem on the quiz is listed — in all such cases it is based on 100 points for the full
quiz.

QUIZZES FROM PREVIOUS YEARS: In addition to this set of problems, you
will find on the course web page the actual quizzes that were given in 1994, 1996,
1998, 2000, 2002, 2004, 2005, 2007, 2009, 2011, 2013, 2016, and 2018. The relevant
problems from those quizzes have mostly been incorporated into these review prob-
lems, but you still may be interested in looking at the quizzes, mainly to see how
much material has been included in each quiz. The coverage of the upcoming quiz
will not necessarily match exactly the coverage from all previous years, but I believe
that all these review problems would be fair problems for the upcoming quiz. The
coverage for each quiz in recent years is usually described at the start of the review
problems, as I did here. In 2016 we finished Weinberg’s book by the time of Quiz 2,
but otherwise the coverage has been the same since 2016.

REVIEW SESSION: To help you study for the quiz, Bruno Scheihing will hold a
review session, at a time and place to be announced.

FUTURE QUIZ: Quiz 3 will be given on Wednesday, December 2, 2020.
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INFORMATION TO BE GIVEN ON QUIZ:

Each quiz in this course will have a section of “useful information” for your reference.
For the second quiz, this useful information will be the following:

DOPPLER SHIFT (Definition:)

1 + z ≡ ∆tobserver

∆tsource
=
λobserver

λsource
,

where ∆tobserver and ∆tsource are the period of the wave as measured by
the observer and by the source, respectively, and λobserver and λsource

are the wavelength of the wave, as measured by the observer and by
the source, respectively.

DOPPLER SHIFT (For motion along a line):

Nonrelativistic, u = wave speed, source moving at speed v away from
observer:

z = v/u

Nonrelativistic, observer moving at speed v away from source:

z =
v/u

1− v/u

Doppler shift for light (special relativity), β ≡ v/c, where c is the speed
of light and v is the velocity of recession, as measured by either the
source or the observer:

z =

√
1 + β

1− β
− 1

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=
a(tobserved)

a(temitted)

SPECIAL RELATIVITY:

Time Dilation. A clock that is moving at speed v relative to an inertial
reference frame appears to be running slowly, as measured in that
frame, by a factor γ:

γ ≡ 1√
1− β2

, β ≡ v/c
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Lorentz-Fitzgerald Contraction. A rod that is moving along its length,
relative to an inertial frame, appears to be contracted, as measured in
that frame, by the same factor:

γ ≡ 1√
1− β2

Relativity of Simultaneity. If two clocks that are synchronized in their
own reference frame, and separated by a distance `0 in their own frame,
are moving together, in the direction of the line separating them, at
speed v relative to an inertial frame, then measurements in the inertial
frame will show the trailing clock reading later by an amount

∆t =
β`0
c

Energy-Momentum Four-Vector:

pµ =

(
E

c
, ~p

)
, ~p = γm0~v , E = γm0c

2 =

√
(m0c2)

2
+ |~p|2 c2 ,

p2 ≡ |~p|2 −
(
p0
)2

= |~p|2 − E2

c2
= − (m0c)

2
.

KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-
VERSE:

Hubble’s Law: v = Hr ,
where v = recession velocity of a distant object, H = Hubble
expansion rate, and r = distance to the distant object.

Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1

Scale Factor: `p(t) = a(t)`c ,
where `p(t) is the physical distance between any two objects, a(t)
is the scale factor, and `c is the coordinate distance between the
objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.
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Light Rays in Comoving Coordinates: Light rays travel in straight
lines with physical speed c relative to any observer. In Cartesian

coordinates, coordinate speed
dx

dt
=

c

a(t)
. In general, ds2 =

gµνdxµdxν = 0.

Horizon Distance:

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′

=

{
3ct (flat, matter-dominated),

2ct (flat, radiation-dominated).

COSMOLOGICAL EVOLUTION:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
G

(
ρ+

3p

c2

)
a ,

ρm(t) =
a3(ti)

a3(t)
ρm(ti) (matter), ρr(t) =

a4(ti)

a4(t)
ρr(ti) (radiation).

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.

EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Flat (k = 0): a(t) ∝ t2/3

Ω = 1 .

Closed (k > 0): ct = α(θ − sin θ) ,
a√
k

= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
a√
κ

= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
κ

)3

,

κ ≡ −k > 0 .
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MINKOWSKI METRIC (Special Relativity):

ds2 ≡ −c2 dτ2 = −c2dt2 + dx2 + dy2 + dz2 .

ROBERTSON-WALKER METRIC:

ds2 ≡ −c2 dτ2 = −c2 dt2+a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Alternatively, for k > 0, we can define r =
sinψ√
k

, and then

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + ã2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
k. For k < 0 we can define r =

sinhψ√
−k

, and then

ds2 ≡ −c2 dτ2 = −c2 dt2+ã2(t)
{

dψ2 + sinh2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
−k. Note that ã can be called a if there is no need

to relate it to the a(t) that appears in the first equation above.

SCHWARZSCHILD METRIC:

ds2 ≡ −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2(dθ2 + sin2 θ dφ2) ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
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8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2020 p. 8

PROBLEM 1: DID YOU DO THE READING? (2018) (25 points)

For clarity, part (b) has been slightly reworded from the original quiz.

(a) (4 points) Which of the following statements about deuterium is NOT true? Choose
one.

(i) The abundance of deuterium in the universe tends to decrease with time, because
deuterium is very easily destroyed in stars.

(ii) The most promising way to find the primordial value of deuterium abundance is
to look at the spectra of distant quasars to estimate the abundance of deuterium
within the quasar itself.

(iii) The Lyman-α transition in deuterium corresponds to a slightly different wave-
length than the Lyman-α transition in hydrogen.

(iv) Deuterium plays an important role in forming helium in the early universe
mainly by producing tritium or 3He.

(b) (6 points) In Chapter 5 of The First Three Minutes, Steven Weinberg describes the
first three minutes (or, more precisely, the first three and three quarter minutes)
of the history of the universe. Choose two correct statements about the first three
minutes. You can assume the fraction by weight of primordial helium is 26 percent.
(3 points for each right answer, no penalty for guessing.)

(i) When the temperature of the universe was about 1010 ◦K (t ∼ 1 sec), neutrinos
and antineutrinos started to behave as free particles, no longer having significant
interactions with electrons, positrons, or photons.

(ii) After the neutrinos decoupled from the photons, the temperature of the neutri-
nos was higher than that of the photons because neutrinos interacted less with
other particles as the universe expanded.

(iii) Most of the atoms heavier than helium were made through nucleosynthesis dur-
ing the first 3 3

4 minutes, and this is why we call this period the era of nucle-
osynthesis.

(iv) After the first 3 3
4 minutes, the neutron-proton balance was about 13% neutrons,

87% protons, and the ratio of protons to neutrons has been almost preserved
until today.

(v) The protons and neutrons became decoupled from the photons after the first 3 3
4

minutes, because the number densities of protons and neutrons were decreased
by the formation of helium, and so their interactions with photons became
negligible.

(vi) The observed abundance of helium in a galaxy today is much larger than the
abundance of primordial helium, because helium is continuously formed inside
stars by nuclear fusion.
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(c) (4 points) The cosmic microwave background radiation was first discovered by Pen-
zias and Wilson in 1964. However, according to Chapter 6 of The First Three
Minutes, a team at the MIT Radiation Laboratory led by Robert Dicke was able to
set an upper limit on any isotropic extraterrestrial radiation background, showing
that the equivalent temperature was less than 20 ◦K at wavelengths of 1.00, 1.25,
and 1.50 centimeters. This measurement was made in the

(i) 1920s (ii) 1930s (iii) 1940s (iv) 1950s (v) 1960s

(d) (5 points) A free neutron can radioactively decay into a proton, plus two other
particles. What are these particles? Give the charge, baryon number, and lepton
number for each of these particles, verifying that each of these quantities is conserved
in this process.

(e) (6 points) In Chapter 8 of Ryden’s Introduction to Cosmology, she discusses three
ways to measure the dark matter in clusters. Give a brief, qualitative description of
TWO of them. (If you give three descriptions, only the first two will be graded!)

PROBLEM 2: DID YOU DO THE READING? (2016) (25 points)

(a) (5 points) In Chapter 8 of Barbara Ryden’s Introduction to Cosmology, she estimates
the contribution to Ω from clusters of galaxies as

(i) 0.01 (ii) 0.05 (iii) 0.20 (iv) 0.60 (v) 1.00

(b) (4 points) One method of estimating the total mass of a cluster of galaxies is based
on the virial theorem. With this method, one estimates the mass by measuring

(i) the radius containing half the luminosity and also the temperature of the X-ray
emitting gas at the center of the galaxy.

(ii) the velocity dispersion perpendicular to the line of sight and also the radius
containing half of the luminosity of the cluster.

(iii) the velocity dispersion along the line of sight and also the radius containing half
of the luminosity of the cluster.

(iv) the velocity dispersion along the line of sight and also the redshift of the cluster.

(v) the velocity dispersion perpendicular to the line of sight and also the redshift of
the cluster.
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(c) (4 points) Another method of estimating the total mass of a cluster of galaxies is to

make detailed measurements of the x-rays emitted by the hot intracluster gas.

(i) By assuming that this gas is the dominant component of the mass of the cluster,

the mass of the cluster can be estimated.

(ii) By assuming that the hot gas comprises about a third of the mass of the cluster,

the total mass of the cluster can be estimated.

(iii) By assuming that the gas is heated by stars and supernovae that make up

most of the mass of the cluster, the mass of these stars and supernovae can be

estimated.

(iv) By assuming that the gas is heated by interactions with dark matter, which

dominates the mass of the cluster, the mass of the cluster can be estimated.

(v) By assuming that this gas is in hydrostatic equilibrium, the temperature, mass

density, and even the chemical composition of the cluster can be modeled.

(d) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg discusses three

reasons why the importance of a search for a 3◦K microwave radiation background

was not generally appreciated in the 1950s and early 1960s. Choose those three

reasons from the following list. (2 points for each right answer, circle at most 3.)

(i) The earliest calculations erroneously predicted a cosmic background tempera-

ture of only about 0.1◦K, and such a background would be too weak to detect.

(ii) There was a breakdown in communication between theorists and experimental-

ists.

(iii) It was not technologically possible to detect a signal as weak as a 3◦K microwave

background until about 1965.

(iv) Since almost all physicists at the time were persuaded by the steady state model,

the predictions of the big bang model were not taken seriously.

(v) It was extraordinarily difficult for physicists to take seriously any theory of the

early universe.

(vi) The early work on nucleosynthesis by Gamow, Alpher, Herman, and Follin, et

al., had attempted to explain the origin of all complex nuclei by reactions in the

early universe. This program was never very successful, and its credibility was

further undermined as improvements were made in the alternative theory, that

elements are synthesized in stars.
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(e) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predicting
a cosmic microwave background with a temperature of 5 K. The paper was based
on a cosmological model that they had developed with George Gamow, in which the
early universe was assumed to have been filled with hot neutrons. As the universe
expanded and cooled the neutrons underwent beta decay into protons, electrons, and
antineutrinos, until at some point the universe cooled enough for light elements to
be synthesized. Alpher and Herman found that to account for the observed present
abundances of light elements, the ratio of photons to nuclear particles must have
been about 109. Although the predicted temperature was very close to the actual
value of 2.7 K, the theory differed from our present theory in two ways. Circle the
two correct statements in the following list. (3 points for each right answer; circle at
most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but now
the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of protons
and neutrons, not all neutrons as Gamow, Alpher, and Herman assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not all
neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha particle is
the nucleus of a helium atom, composed of two protons and two neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice versa)
took place mainly through collisions with electrons, positrons, neutrinos, and
antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now believed
to have been about 103, not 109 as Alpher and Herman concluded.

PROBLEM 3: DID YOU DO THE READING? (2013) (25 points)

The following problem comes from Quiz 2, 2013.

(a) (6 points) The primary evidence for dark matter in galaxies comes from measuring
their rotation curves, i.e., the orbital velocity v as a function of radius R. If stars
contributed all, or most, of the mass in a galaxy, what would we expect for the
behavior of v(R) at large radii?

(b) (5 points) What is actually found for the behavior of v(R)?

(c) (7 points) An important tool for estimating the mass in a galaxy is the steady-state
virial theorem. What does this theorem state?

(d) (7 points) At the end of Chapter 10, Ryden writes “Thus, the very strong asymmetry
between baryons and antibaryons today and the large number of photons per baryon
are both products of a tiny asymmetry between quarks and anitquarks in the early
universe.” Explain in one or a few sentences how a tiny asymmetry between quarks
and anitquarks in the early universe results in a strong asymmetry between baryons
and antibaryons today.
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PROBLEM 4: DID YOU DO THE READING? (2011) (20 points)

The following problem comes from Quiz 2, 2011.

(a) (8 points) During nucleosynthesis, heavier nuclei form from protons and neutrons

through a series of two particle reactions.

(i) In The First Three Minutes, Weinberg discusses two chains of reactions that,

starting from protons and neutrons, end up with helium, He4. Describe at least

one of these two chains.

(ii) Explain briefly what is the deuterium bottleneck, and what is its role during

nucleosynthesis.

(b) (12 points) In Chapter 4 of The First Three Minutes, Steven Weinberg makes the

following statement regarding the radiation-dominated phase of the early universe:

The time that it takes for the universe to cool from one temperature to another is

proportional to the difference of the inverse squares of these temperatures.

In this part of the problem you will explore more quantitatively this statement.

(i) For a radiation-dominated universe the scale-factor a(t) ∝ t1/2. Find the cosmic

time t as a function of the Hubble expansion rate H.

(ii) The mass density stored in radiation ρr is proportional to the temperature T

to the fourth power: i.e., ρr ' αT 4, for some constant α. For a wide range of

temperatures we can take α ' 4.52 × 10−32 kg ·m−3 · K−4. If the temperature

is measured in degrees Kelvin (K), then ρr has the standard SI units, [ρr] =

kg ·m−3. Use the Friedmann equation for a flat universe (k = 0) with ρ = ρr
to express the Hubble expansion rate H in terms of the temperature T . You

will need the SI value of the gravitational constant G ' 6.67 × 10−11 N · m2 ·
kg−2. What is the Hubble expansion rate, in inverse seconds, at the start of

nucleosynthesis, when T = Tnucl ' 0.9× 109 K?

(iii) Using the results in (i) and (ii), express the cosmic time t as a function of the

temperature. Your result should agree with Weinberg’s claim above. What is

the cosmic time, in seconds, when T = Tnucl?

PROBLEM 5: DID YOU DO THE READING? (2007) (24 points)

The following problem was Problem 1 of Quiz 2 in 2007.
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(a) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predicting
a cosmic microwave background with a temperature of 5 K. The paper was based
on a cosmological model that they had developed with George Gamow, in which the
early universe was assumed to have been filled with hot neutrons. As the universe
expanded and cooled the neutrons underwent beta decay into protons, electrons, and
antineutrinos, until at some point the universe cooled enough for light elements to
be synthesized. Alpher and Herman found that to account for the observed present
abundances of light elements, the ratio of photons to nuclear particles must have
been about 109. Although the predicted temperature was very close to the actual
value of 2.7 K, the theory differed from our present theory in two ways. Circle the
two correct statements in the following list. (3 points for each right answer; circle at
most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but now
the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of protons
and neutrons, not all neutrons as Gamow, Alpher, and Herman assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not all
neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha particle is
the nucleus of a helium atom, composed of two protons and two neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice versa)
took place mainly through collisions with electrons, positrons, neutrinos, and
antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now believed
to have been about 103, not 109 as Alpher and Herman concluded.

(b) (6 points) In Weinberg’s “Recipe for a Hot Universe,” he described the primordial
composition of the universe in terms of three conserved quantities: electric charge,
baryon number, and lepton number. If electric charge is measured in units of the elec-
tron charge, then all three quantities are integers for which the number density can
be compared with the number density of photons. For each quantity, which choice
most accurately describes the initial ratio of the number density of this quantity to
the number density of photons:

Electric Charge: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1
(iv) ∼ 10−6 (v) either zero or negligible

Baryon Number: (i) ∼ 10−20 (ii) ∼ 10−9 (iii) ∼ 10−6

(iv) ∼ 1 (v) anywhere from 10−5 to 1

Lepton Number: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1
(iv) ∼ 10−6 (v) could be as high as ∼ 1, but

is assumed to be very small
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(c) (12 points) The figure below comes from Weinberg’s Chapter 5, and is labeled The
Shifting Neutron-Proton Balance.

(i) (3 points) During the period labeled “thermal equilibrium,” the neutron fraction
is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into through reactions
such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other through
reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.
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(ii) (3 points) During the period labeled “neutron decay,” the neutron fraction is
changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into the other through
reactions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other through
reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.

(iii) (3 points) The masses of the neutron and proton are not exactly equal, but
instead

(A) The neutron is more massive than a proton with a rest energy difference of
1.293 GeV (1 GeV = 109 eV).

(B) The neutron is more massive than a proton with a rest energy difference of
1.293 MeV (1 MeV = 106 eV).

(C) The neutron is more massive than a proton with a rest energy difference of
1.293 KeV (1 KeV = 103 eV).

(D) The proton is more massive than a neutron with a rest energy difference of
1.293 GeV.

(E) The proton is more massive than a neutron with a rest energy difference of
1.293 MeV.
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(F) The proton is more massive than a neutron with a rest energy difference of
1.293 KeV.

(iv) (3 points) During the period labeled “era of nucleosynthesis,” (choose one:)

(A) Essentially all the neutrons present combine with protons to form helium
nuclei, which mostly survive until the present time.

(B) Essentially all the neutrons present combine with protons to form deuterium
nuclei, which mostly survive until the present time.

(C) About half the neutrons present combine with protons to form helium nu-
clei, which mostly survive until the present time, and the other half of the
neutrons remain free.

(D) About half the neutrons present combine with protons to form deuterium
nuclei, which mostly survive until the present time, and the other half of
the neutrons remain free.

(E) Essentially all the protons present combine with neutrons to form helium
nuclei, which mostly survive until the present time.

(F) Essentially all the protons present combine with neutrons to form deuterium
nuclei, which mostly survive until the present time.

PROBLEM 6: DID YOU DO THE READING? (2000, 2002)

Parts (a)-(c) of this problem come from Quiz 4, 2000, and parts (d) and (e) come from
Quiz 3, 2002.

(a) (5 points) By what factor does the lepton number per comoving volume of the uni-
verse change between temperatures of kT = 10 MeV and kT = 0.1 MeV? You should
assume the existence of the normal three species of neutrinos for your answer.

(b) (5 points) Measurements of the primordial deuterium abundance would give good
constraints on the baryon density of the universe. However, this abundance is hard
to measure accurately. Which of the following is NOT a reason why this is hard to
do?

(i) The neutron in a deuterium nucleus decays on the time scale of 15 minutes,
so almost none of the primordial deuterium produced in the Big Bang is still
present.

(ii) The deuterium abundance in the Earth’s oceans is biased because, being heavier,
less deuterium than hydrogen would have escaped from the Earth’s surface.

(iii) The deuterium abundance in the Sun is biased because nuclear reactions tend
to destroy it by converting it into helium-3.

(iv) The spectral lines of deuterium are almost identical with those of hydrogen, so
deuterium signatures tend to get washed out in spectra of primordial gas clouds.

(v) The deuterium abundance is so small (a few parts per million) that it can be
easily changed by astrophysical processes other than primordial nucleosynthesis.
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(c) (5 points) Give three examples of hadrons.

(d) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg posed the
question, “Why was there no systematic search for this [cosmic background] radia-
tion, years before 1965?” In discussing this issue, he contrasted it with the history
of two different elementary particles, each of which were predicted approximately 20
years before they were first detected. Name one of these two elementary particles.
(If you name them both correctly, you will get 3 points extra credit. However, one
right and one wrong will get you 4 points for the question, compared to 6 points for
just naming one particle and getting it right.)

Answer:
2nd Answer (optional):

(e) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg discusses three
reasons why the importance of a search for a 3◦K microwave radiation background
was not generally appreciated in the 1950s and early 1960s. Choose those three
reasons from the following list. (2 points for each right answer, circle at most 3.)

(i) The earliest calculations erroneously predicted a cosmic background tempera-
ture of only about 0.1◦K, and such a background would be too weak to detect.

(ii) There was a breakdown in communication between theorists and experimental-
ists.

(iii) It was not technologically possible to detect a signal as weak as a 3◦K microwave
background until about 1965.

(iv) Since almost all physicists at the time were persuaded by the steady state model,
the predictions of the big bang model were not taken seriously.

(v) It was extraordinarily difficult for physicists to take seriously any theory of the
early universe.

(vi) The early work on nucleosynthesis by Gamow, Alpher, Herman, and Follin, et
al., had attempted to explain the origin of all complex nuclei by reactions in the
early universe. This program was never very successful, and its credibility was
further undermined as improvements were made in the alternative theory, that
elements are synthesized in stars.

∗PROBLEM 7: RADIAL GEODESICS IN A CLOSED UNIVERSE (20
points)

The following problem was Problem 4, Quiz 2, 2018. (For clarity, part (c) has been
reworded slightly.

As shown in the formula sheets, we can describe a closed universe by choosing k = 1,
and then using coordinates (t, r, θ, φ), with metric

ds2 ≡ −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
, (7.1)
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or by using coordinates (t, ψ, θ, φ), with metric

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + a2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
. (7.2)

The connection between the two coordinate systems is given by

r = sinψ . (7.3)

The general spacetime geodesic equation can be written as

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
. (7.4)

(a) (7 points) Using the coordinates (t, ψ, θ, φ) and the metric of Eq. (7.2), compute
explicitly the geodesic equation for µ = ψ. By “compute explicitly”, I mean that
gµν should be replaced by the relevant expressions from Eq. (7.2), and that the sums
over indices should be written out, including only the nonzero terms.

(b) (7 points) Using instead the coordinates (t, r, θ, φ), compute explicitly the geodesic
equation for µ = r.

(c) (6 points) Are the equations that you are asked to derive in parts (a) and (b) both
valid, or is one valid and the other not? If you believe that they are both valid,
use Eq. (7.3) to show that they are equivalent. If you believe that only one is valid,
state which one is valid, and explain why the other is not. (4 points will be given
for showing the correct understanding of this problem, with 2 points allocated to
completing the algebra needed to demonstrate your answer.)

∗PROBLEM 8: EVOLUTION OF AN OPEN UNIVERSE

The following problem was taken from Quiz 2, 1990, where it counted 10 points out of
100.

Consider an open, matter-dominated universe, as described by the evolution equa-
tions on the front of the quiz. Find the time t at which a/

√
κ = 2α.

PROBLEM 9: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE (30 points)

The following problem was Problem 3, Quiz 2, 1998.

The spacetime metric for a homogeneous, isotropic, closed universe is given by the
Robertson-Walker formula:

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,
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where I have taken k = 1. To discuss motion in the radial direction, it is more convenient

to work with an alternative radial coordinate ψ, related to r by

r = sinψ .

Then
dr√

1− r2
= dψ ,

so the metric simplifies to

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

(a) (7 points) A light pulse travels on a null trajectory, which means that dτ = 0 for

each segment of the trajectory. Consider a light pulse that moves along a radial line,

so θ = φ = constant. Find an expression for dψ/dt in terms of quantities that appear

in the metric.

(b) (8 points) Write an expression for the physical horizon distance `phys at time t. You

should leave your answer in the form of a definite integral.

The form of a(t) depends on the content of the universe. If the universe is matter-

dominated (i.e., dominated by nonrelativistic matter), then a(t) is described by the

parametric equations

ct = α(θ − sin θ) ,

a = α(1− cos θ) ,

where

α ≡ 4π

3

Gρa3

c2
.

These equations are identical to those on the front of the exam, except that I have chosen

k = 1.

(c) (10 points) Consider a radial light-ray moving through a matter-dominated closed

universe, as described by the equations above. Find an expression for dψ/dθ, where

θ is the parameter used to describe the evolution.

(d) (5 points) Suppose that a photon leaves the origin of the coordinate system (ψ = 0)

at t = 0. How long will it take for the photon to return to its starting place? Express

your answer as a fraction of the full lifetime of the universe, from big bang to big

crunch.
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PROBLEM 10: LENGTHS AND AREAS IN A TWO-DIMENSIONAL

METRIC (25 points)

The following problem was Problem 3, Quiz 2, 1994:

Suppose a two dimensional space, described in polar coordinates (r, θ), has a metric

given by

ds2 = (1 + ar)2 dr2 + r2(1 + br)2 dθ2 ,

where a and b are positive constants. Consider the path in this space which is formed by

starting at the origin, moving along the θ = 0 line to r = r0, then moving at fixed r to

θ = π/2, and then moving back to the origin at fixed θ. The path is shown below:

a) (10 points) Find the total length of this path.

b) (15 points) Find the area enclosed by this path.

PROBLEM 11: GEOMETRY IN A CLOSED UNIVERSE (25 points)

The following problem was Problem 4, Quiz 2, 1988:

Consider a universe described by the Robertson–Walker metric on the first page of

the quiz, with k = 1. The questions below all pertain to some fixed time t, so the scale

factor can be written simply as a, dropping its explicit t-dependence.

A small rod has one end at the point (r = h, θ = 0, φ = 0) and the other end at the

point (r = h, θ = ∆θ, φ = 0). Assume that ∆θ � 1.
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(a) Find the physical distance `p from the origin (r = 0) to the first end (h, 0, 0) of the
rod. You may find one of the following integrals useful:∫

dr√
1− r2

= sin−1 r

∫
dr

1− r2
=

1

2
ln

(
1 + r

1− r

)
.

(b) Find the physical length sp of the rod. Express your answer in terms of the scale
factor a, and the coordinates h and ∆θ.

(c) Note that ∆θ is the angle subtended by the rod, as seen from the origin. Write an
expression for this angle in terms of the physical distance `p, the physical length sp,
and the scale factor a.

∗PROBLEM 12: THE GENERAL SPHERICALLY SYMMETRIC MET-
RIC (20 points)

The following problem was Problem 3, Quiz 2, 1986:

The metric for a given space depends of course on the coordinate system which
is used to describe it. It can be shown that for any three dimensional space which is
spherically symmetric about a particular point, coordinates can be found so that the
metric has the form

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
for some function ρ(r). The coordinates θ and φ have their usual ranges: θ varies between
0 and π, and φ varies from 0 to 2π, where φ = 0 and φ = 2π are identified. Given this
metric, consider the sphere whose outer boundary is defined by r = r0.
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(a) Find the physical radius a of the sphere. (By “radius”, I mean the physical length
of a radial line which extends from the center to the boundary of the sphere.)

(b) Find the physical area of the surface of the sphere.

(c) Find an explicit expression for the volume of the sphere. Be sure to include the
limits of integration for any integrals which occur in your answer.

(d) Suppose a new radial coordinate σ is introduced, where σ is related to r by

σ = r2 .

Express the metric in terms of this new variable.

PROBLEM 13: VOLUMES IN A ROBERTSON-WALKER UNIVERSE (20
points)

The following problem was Problem 1, Quiz 3, 1990:

The metric for a Robertson-Walker universe is given by

ds2 = a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Calculate the volume V (rmax) of the sphere described by

r ≤ rmax .

You should carry out any angular integrations that may be necessary, but you may leave
your answer in the form of a radial integral which is not carried out. Be sure, however,
to clearly indicate the limits of integration.

∗PROBLEM 14: THE SCHWARZSCHILD METRIC (25 points)

The follow problem was Problem 4, Quiz 3, 1992:

The space outside a spherically symmetric mass M is described by the Schwarzschild
metric, given at the front of the exam. Two observers, designated A and B, are located
along the same radial line, with values of the coordinate r given by rA and rB , respectively,
with rA < rB . You should assume that both observers lie outside the Schwarzschild
horizon.

a) (5 points) Write down the expression for the Schwarzschild horizon radius RS, ex-
pressed in terms of M and fundamental constants.

b) (5 points) What is the proper distance between A and B? It is okay to leave the
answer to this part in the form of an integral that you do not evaluate— but be sure
to clearly indicate the limits of integration.
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c) (5 points) Observer A has a clock that emits an evenly spaced sequence of ticks,
with proper time separation ∆τA. What will be the coordinate time separation ∆tA
between these ticks?

d) (5 points) At each tick of A’s clock, a light pulse is transmitted. Observer B receives
these pulses, and measures the time separation on his own clock. What is the time
interval ∆τB measured by B.

e) (5 points) Suppose that the object creating the gravitational field is a static black
hole, so the Schwarzschild metric is valid for all r. Now suppose that one considers
the case in which observer A lies on the Schwarzschild horizon, so rA ≡ RS. Is the
proper distance between A and B finite for this case? Does the time interval of the
pulses received by B, ∆τB , diverge in this case?

PROBLEM 15: GEODESICS (20 points)

The following problem was Problem 4, Quiz 2, 1986:

Ordinary Euclidean two-dimensional space can be described in polar coordinates by
the metric

ds2 = dr2 + r2 dθ2 .

(a) Suppose that r(λ) and θ(λ) describe a geodesic in this space, where the parameter
λ is the arc length measured along the curve. Use the general formula on the front
of the exam to obtain explicit differential equations which r(λ) and θ(λ) must obey.

(b) Now introduce the usual Cartesian coordinates, defined by

x = r cos θ ,

y = r sin θ .

Use your answer to (a) to show that the line y = 1 is a geodesic curve.

PROBLEM 16: AN EXERCISE IN TWO-DIMENSIONAL METRICS (30
points)

(a) (8 points) Consider first a two-dimensional space with coordinates r and θ. The
metric is given by

ds2 = dr2 + r2dθ2 .

Consider the curve described by

r(θ) = (1 + ε cos2 θ) r0 ,

where ε and r0 are constants, and θ runs from θ1 to θ2. Write an expression, in the
form of a definite integral, for the length S of this curve.
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(b) (5 points) Now consider a two-dimensional space with the same two coordinates r
and θ, but this time the metric will be

ds2 =
(

1 +
r

a

)
dr2 + r2 dθ2 ,

where a is a constant. θ is a periodic (angular) variable, with a range of 0 to 2π, with
2π identified with 0. What is the length R of the path from the origin (r = 0) to
the point r = r0, θ = 0, along the path for which θ = 0 everywhere along the path?
You can leave your answer in the form of a definite integral. (Be sure, however, to
specify the limits of integration.)

(c) (7 points) For the space described in part (b), what is the total area contained within
the region r < r0. Again you can leave your answer in the form of a definite integral,
making sure to specify the limits of integration.

(d) (10 points) Again for the space described in part (b), consider a geodesic described
by the usual geodesic equation,

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds
.

The geodesic is described by functions r(s) and θ(s), where s is the arc length along
the curve. Write explicitly both (i.e., for i=1=r and i=2=θ) geodesic equations.

PROBLEM 17: GEODESICS IN A CLOSED UNIVERSE

The following problem was Problem 3, Quiz 3, 2000, where it was worth 40 points plus 5
points extra credit.

Consider the case of closed Robertson-Walker universe. Taking k = 1, the spacetime
metric can be written in the form

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

We will assume that this metric is given, and that a(t) has been specified. While galaxies
are approximately stationary in the comoving coordinate system described by this metric,
we can still consider an object that moves in this system. In particular, in this problem
we will consider an object that is moving in the radial direction (r-direction), under the
influence of no forces other than gravity. Hence the object will travel on a geodesic.

(a) (7 points) Express dτ/dt in terms of dr/dt.

(b) (3 points) Express dt/dτ in terms of dr/dt.
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(c) (10 points) If the object travels on a trajectory given by the function rp(t) between
some time t1 and some later time t2, write an integral which gives the total amount
of time that a clock attached to the object would record for this journey.

(d) (10 points) During a time interval dt, the object will move a coordinate distance

dr =
dr

dt
dt .

Let d` denote the physical distance that the object moves during this time. By
“physical distance,” I mean the distance that would be measured by a comoving ob-
server (an observer stationary with respect to the coordinate system) who is located
at the same point. The quantity d`/dt can be regarded as the physical speed vphys

of the object, since it is the speed that would be measured by a comoving observer.
Write an expression for vphys as a function of dr/dt and r.

(e) (10 points) Using the formulas at the front of the exam, derive the geodesic equation
of motion for the coordinate r of the object. Specifically, you should derive an
equation of the form

d

dτ

[
A
dr

dτ

]
= B

(
dt

dτ

)2

+ C

(
dr

dτ

)2

+D

(
dθ

dτ

)2

+ E

(
dφ

dτ

)2

,

where A, B, C, D, and E are functions of the coordinates, some of which might be
zero.

(f) (5 points EXTRA CREDIT) On Problem 1 of Problem Set 6 we learned that in a
flat Robertson-Walker metric, the relativistically defined momentum of a particle,

p =
mvphys√
1− v2

phys

c2

,

falls off as 1/a(t). Use the geodesic equation derived in part (e) to show that the
same is true in a closed universe.

PROBLEM 18: A TWO-DIMENSIONAL CURVED SPACE (40 points)

The following problem was Problem 3, Quiz 2, 2002.

Consider a two-dimensional curved space described by polar
coordinates u and θ, where 0 ≤ u ≤ a and 0 ≤ θ ≤ 2π, and
θ = 2π is as usual identified with θ = 0. The metric is given by

ds2 =
a du2

4u(a− u)
+ udθ2 .

A diagram of the space is shown at the right, but you should of
course keep in mind that the diagram does not accurately reflect
the distances defined by the metric.
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(a) (6 points) Find the radius R of the space, defined as the
length of a radial (i.e., θ = constant) line. You may express
your answer as a definite integral, which you need not eval-
uate. Be sure, however, to specify the limits of integration.

(b) (6 points) Find the circumference S of the space, defined as
the length of the boundary of the space at u = a.

(c) (7 points) Consider an annular region as shown, consisting
of all points with a u-coordinate in the range u0 ≤ u ≤
u0 + du. Find the physical area dA of this region, to first
order in du.

(d) (3 points) Using your answer to part (c), write an expression for the total area of
the space.

(e) (10 points) Consider a geodesic curve in this space, described by the functions u(s)
and θ(s), where the parameter s is chosen to be the arc length along the curve. Find
the geodesic equation for u(s), which should have the form

d

ds

[
F (u, θ)

du

ds

]
= . . . ,

where F (u, θ) is a function that you will find. (Note that by writing F as a function
of u and θ, we are saying that it could depend on either or both of them, but we are
not saying that it necessarily depends on them.) You need not simplify the left-hand
side of the equation.

(f) (8 points) Similarly, find the geodesic equation for θ(s), which should have the form

d

ds

[
G(u, θ)

dθ

ds

]
= . . . ,

where G(u, θ) is a function that you will find. Again, you need not simplify the
left-hand side of the equation.
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∗PROBLEM 19: ROTATING FRAMES OF REFERENCE (35 points)

The following problem was Problem 3, Quiz 2, 2004.

In this problem we will use the formalism of general relativity and geodesics to derive
the relativistic description of a rotating frame of reference.

The problem will concern the consequences of the metric

ds2 = −c2 dτ2 = −c2 dt2 +
[
dr2 + r2 (dφ+ ω dt)

2
+ dz2

]
, (P19.1)

which corresponds to a coordinate system rotating about the z-axis, where φ is the
azimuthal angle around the z-axis. The coordinates have the usual range for cylindrical
coordinates: −∞ < t <∞, 0 ≤ r <∞, −∞ < z <∞, and 0 ≤ φ < 2π, where φ = 2π is
identified with φ = 0.

EXTRA INFORMATION

To work the problem, you do not need to know anything about where this metric
came from. However, it might (or might not!) help your intuition to know that
Eq. (P19.1) was obtained by starting with a Minkowski metric in cylindrical
coordinates t̄ , r̄, φ̄, and z̄,

c2 dτ2 = c2 dt̄ 2 −
[
dr̄2 + r̄2 dφ̄2 + dz̄2

]
,

and then introducing new coordinates t, r, φ, and z that are related by

t̄ = t, r̄ = r, φ̄ = φ+ ωt, z̄ = z ,

so dt̄ = dt, dr̄ = dr, dφ̄ = dφ+ ω dt, and dz̄ = dz.

(a) (8 points) The metric can be written in matrix form by using the standard definition

ds2 = −c2 dτ2 ≡ gµν dxµ dxν ,
where x0 ≡ t, x1 ≡ r, x2 ≡ φ, and x3 ≡ z. Then, for example, g11 (which can also be
called grr) is equal to 1. Find explicit expressions to complete the list of the nonzero
entries in the matrix gµν :

g11 ≡ grr = 1

g00 ≡ gtt = ?

g20 ≡ g02 ≡ gφt ≡ gtφ = ?

g22 ≡ gφφ = ?

g33 ≡ gzz = ?

(P19.2)
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If you cannot answer part (a), you can introduce unspecified functions f1(r), f2(r), f3(r),
and f4(r), with

g11 ≡ grr = 1

g00 ≡ gtt = f1(r)

g20 ≡ g02 ≡ gφt ≡ gtφ = f1(r)

g22 ≡ gφφ = f3(r)

g33 ≡ gzz = f4(r) ,

(P19.3)

and you can then express your answers to the subsequent parts in terms of these unspec-
ified functions.

(b) (10 points) Using the geodesic equations from the front of the quiz,

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
,

explicitly write the equation that results when the free index µ is equal to 1, corre-
sponding to the coordinate r.

(c) (7 points) Explicitly write the equation that results when the free index µ is equal
to 2, corresponding to the coordinate φ.

(d) (10 points) Use the metric to find an expression for dt/dτ in terms of dr/dt, dφ/dt,
and dz/dt. The expression may also depend on the constants c and ω. Be sure to
note that your answer should depend on the derivatives of t, φ, and z with respect
to t, not τ . (Hint: first find an expression for dτ/dt, in terms of the quantities
indicated, and then ask yourself how this result can be used to find dt/dτ .)

PROBLEM 20: THE STABILITY OF SCHWARZSCHILD ORBITS (30
points)

This problem was Problem 4, Quiz 2 in 2007. I have modified the reference to the
homework problem to correspond to the current (2016) context, where it is Problem 3 of
Problem Set 6. In 2007 it had also been a homework problem prior to the quiz.

This problem is an elaboration of the Problem 3 of Problem Set 6, for which both
the statement and the solution are reproduced at the end of this quiz. This material is
reproduced for your reference, but you should be aware that the solution to the present
problem has important differences. You can copy from this material, but to allow the
grader to assess your understanding, you are expected to present a logical, self-contained
answer to this question.

In the solution to that homework problem, it was stated that further analysis of the
orbits in a Schwarzschild geometry shows that the smallest stable circular orbit occurs
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for r = 3RS . Circular orbits are possible for 3
2RS < r < 3RS , but they are not stable.

In this problem we will explore the calculations behind this statement.

We will consider a body which undergoes small oscillations about a circular orbit at
r(t) = r0, θ = π/2, where r0 is a constant. The coordinate θ will therefore be fixed, but
all the other coordinates will vary as the body follows its orbit.

(a) (12 points) The first step, since r(τ) will not be a constant in this solution, will be
to derive the equation of motion for r(τ). That is, for the Schwarzschild metric

ds2 = −c2dτ2 = −h(r)c2dt2 + h(r)−1dr2 + r2dθ2 + r2 sin2 θ dφ2 , (P20.1)

where

h(r) ≡ 1− RS
r

,

work out the explicit form of the geodesic equation

d

dτ

[
gµν

dxν

dτ

]
=

1

2

∂gλσ
∂xµ

dxλ

dτ

dxσ

dτ
, (P20.2)

for the case µ = r. You should use this result to find an explicit expression for

d2r

dτ2
.

You may allow your answer to contain h(r), its derivative h′(r) with respect to r,
and the derivative with respect to τ of any coordinate, including dt/dτ .

(b) (6 points) It is useful to consider r and φ to be the independent variables, while
treating t as a dependent variable. Find an expression for(

dt

dτ

)2

in terms of r, dr/dτ , dφ/dτ , h(r), and c. Use this equation to simplify the expression
for d2r/dτ2 obtained in part (a). The goal is to obtain an expression of the form

d2r

dτ2
= f0(r) + f1(r)

(
dφ

dτ

)2

. (P20.3)

where the functions f0(r) and f1(r) might depend on RS or c, and might be positive,
negative, or zero. Note that the intermediate steps in the calculation involve a term
proportional to (dr/dτ)2, but the net coefficient for this term vanishes.
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(c) (7 points) To understand the orbit we will also need the equation of motion for φ.
Evaluate the geodesic equation (P20.2) for µ = φ, and write the result in terms of
the quantity L, defined by

L ≡ r2 dφ

dτ
. (P20.4)

(d) (5 points) Finally, we come to the question of stability. Substituting Eq. (P20.4)
into Eq. (P20.3), the equation of motion for r can be written as

d2r

dτ2
= f0(r) + f1(r)

L2

r4
.

Now consider a small perturbation about the circular orbit at r = r0, and write an
equation that determines the stability of the orbit. (That is, if some external force
gives the orbiting body a small kick in the radial direction, how can you determine
whether the perturbation will lead to stable oscillations, or whether it will start to
grow?) You should express the stability requirement in terms of the unspecified
functions f0(r) and f1(r). You are NOT asked to carry out the algebra of inserting
the explicit forms that you have found for these functions.

PROBLEM 21: GRAVITATIONAL BENDING OF LIGHT (30 points)

When a light ray passes by a massive object, general relativity predicts that it will
be bent. Since most celestial objects are nearly spherical, we can use the Schwarzschild
metric to calculate the bending. Furthermore, since we are usually interested in objects
that are not black holes or anywhere nearly as dense, we can obtain an accurate answer
by carrying out the calculation in a weak-field approximation. For a photon that grazes
the Sun, for example, the value of RSch/R�, the Schwarzschild radius over the radius of
the Sun, is about 4× 10−6.

Starting with the Schwarzschild metric,

ds2 = −
(

1− RSch

r

)
c2dt2 +

(
1− RSch

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) , (P21.1)

where RSch = 2GM/c2, we can expand in powers of RSch/r and keep only the first order
terms:

ds2 = −
(

1− RSch

r

)
c2dt2 +

(
1 +

RSch

r

)
dr2 + r2(dθ2 + sin2 θ dφ2) . (P21.2)

For this problem it is useful to switch to Cartesian-like coordinates, defined in terms of
r, θ, and φ by the usual Cartesian formulas,

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ .

(P21.3)
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General relativity allows us to make any coordinate redefinitions that we might want, as
long as we calculate the metric in terms of the new coordinates. It is useful to continue
to use the quantity r, but now it will be thought of as a function of the coordinates x, y,
and z:

r = (x2 + y2 + z2)1/2 . (P21.4)

The metric can then be rewritten as the Minkowski metric of special relativity, plus small
corrections:

ds2 = −c2dt2 + dx2 + dy2 + dz2 +
RSch

r
c2dt2 +

RSch

r
(dr)2 , (P21.5)

where from Eq. (4) one can see that

dr =
1

r
(xdx+ y dy + z dz) . (P21.6)

(a) (6 points) For the metric as approximated by Eqs. (P21.5) and (P21.6), write the
expressions for gtt, gxx, and gxy.

The trajectory of the photon is lightlike, so we cannot use τ to parameterize the
trajectory, because proper time intervals along a lightlike trajectory are zero. Nonetheless,
it can be shown that one can use an “affine parameter” λ, for which the geodesic equation
has the usual form:

d

dλ

{
gµν

dxν

dλ

}
=

1

2
[∂µgστ ]

dxσ

dλ

dxτ

dλ
. (P21.7)

To obtain an answer that is accurate to first order in G, we begin by considering the
unperturbed photon trajectory — the trajectory it would have if G were taken as zero, so
RSch = 2GM/c2 = 0. This would be a straight line in the (x, y, z) coordinates, as shown
in the diagram below:

Here b is called the impact parameter. We can parameterize this path by

x(λ) = λ , y(λ) = b , z(λ) = 0 , t(λ) = λ/c . (P21.8)

We will calculate the deflection (to first order in G) by assuming that the photon path is
accurately described by Eq. (P21.8), and we will calculate the y-velocity that the photon
acquires due to the gravitational attraction of the Sun.
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(b) (9 points) With the goal of calculating d2y/dλ2, we evaluate the geodesic equation
for µ = y. Start here by evaluating the left-hand side of Eq. (P21.7) for µ = y, to
first order in G. Expand the derivative with respect to λ using the product rule,
working out explicitly the derivatives of the relevant gµν with respect to λ. In parts
(b) and (c), you may assume that x(λ), y(λ), z(λ), and t(λ), as well as dx/dλ,
dy/dλ, dz/dλ, and dt/dλ, are all given to sufficient accuracy by Eq. (P21.8) and its
derivatives with respect to λ. (Be careful: it is likely that there are more terms than
you will at first notice.)

(c) (9 points) Evaluate the right-hand side of Eq. (P21.7) for µ = y, to first order in G.
Carry out all derivatives explicitly. (It always pays to be careful.)

(d) (2 points) Use your answers to parts (c) and (d) to find an equation for d2y/dλ2.

(e) (4 points) If the photon starts out on the unperturbed trajectory, its initial value of
dy/dλ will be zero. The final value of dy/dλ will then be

dy

dλ

∣∣∣∣
final

=

∫ ∞
−∞

d2y

dλ2
dλ . (P21.9)

Use this fact to express the deflection angle α, to first order in G, as an explicit
integral. You need not carry out the integral, but you may wish to use the table of
integrals given below to carry it out so that you can check your answer. The correct
final answer is

α =
4GM

c2b .
(P21.10)

TABLE OF INTEGRALS:∫ ∞
−∞

1

(x2 + b2)
dx =

π

b

∫ ∞
−∞

1

(x2 + b2)3/2
dx =

2

b2

∫ ∞
−∞

1

(x2 + b2)2
dx =

π

2b3∫ ∞
−∞

x2

(x2 + b2)2
dx =

π

2b

∫ ∞
−∞

x2

(x2 + b2)5/2
dx =

2

3b2

∫ ∞
−∞

x2

(x2 + b2)3
dx =

π

8b3

∗PROBLEM 22: PRESSURE AND ENERGY DENSITY OF MYSTERI-
OUS STUFF (25 points)

The following problem was Problem 3, Quiz 3, 2002.

In Lecture Notes 6, with further calculations in Problem 4 of Problem Set 6, a
thought experiment involving a piston was used to show that p = 1

3ρc
2 for radiation. In

this problem you will apply the same technique to calculate the pressure of mysterious
stuff, which has the property that the energy density falls off in proportion to 1/

√
V as

the volume V is increased.
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If the initial energy density of the mysterious stuff is u0 = ρ0c
2, then the initial

configuration of the piston can be drawn as

The piston is then pulled outward, so that its initial volume V is increased to V + ∆V .
You may consider ∆V to be infinitesimal, so ∆V 2 can be neglected.

(a) (15 points) Using the fact that the energy density of mysterious stuff falls off as
1/
√
V , find the amount ∆U by which the energy inside the piston changes when the

volume is enlarged by ∆V . Define ∆U to be positive if the energy increases.

(b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how much
work ∆W is done by the agent that pulls out the piston?

(c) (5 points) Use your results from (a) and (b) to express the pressure p of the mysterious
stuff in terms of its energy density u. (If you did not answer parts (a) and/or (b),
explain as best you can how you would determine the pressure if you knew the
answers to these two questions.)

PROBLEM 23: THE EFFECT OF PRESSURE ON COSMOLOGICAL EVO-
LUTION (25 points)

The following problem was Problem 2 of Quiz 3, 2016. It was also Problem 2 of Problem
Set 7 (2016), except that some numerical constants have been changed, so the answers
will not be identical.

A radiation-dominated universe behaves differently from a matter-dominated uni-
verse because the pressure of the radiation is significant. In this problem we explore the
role of pressure for several fictitious forms of matter.
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(a) (8 points) For the first fictitious form of matter, the mass density ρ decreases as the
scale factor a(t) grows, with the relation

ρ(t) ∝ 1

a8(t)
.

What is the pressure of this form of matter? [Hint: the answer is proportional to
the mass density.]

(b) (9 points) Find the behavior of the scale factor a(t) for a flat universe dominated
by the form of matter described in part (a). You should be able to determine the
function a(t) up to a constant factor.

(c) (8 points) Now consider a universe dominated by a different form of fictitious matter,
with a pressure given by

p =
2

3
ρc2 .

As the universe expands, the mass density of this form of matter behaves as

ρ(t) ∝ 1

an(t)
.

Find the power n.
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SOLUTIONS

PROBLEM 1: DID YOU DO THE READING? (2018) (25 points)

(a) (4 points) Which of the following statements about deuterium is NOT true? Choose
one.

(i) The abundance of deuterium in the universe tends to decrease with time, because
deuterium is very easily destroyed in stars.

(ii) The most promising way to find the primordial value of deuterium abundance is
to look at the spectra of distant quasars to estimate the abundance of deuterium
within the quasar itself.

(iii) The Lyman-α transition in deuterium corresponds to a slightly different wave-
length than the Lyman-α transition in hydrogen.

(iv) Deuterium plays an important role in forming helium in the early universe
mainly by producing tritium or 3He.

[Comment: The most promising way to find the primordial value of the deuterium
abundance is to look at the spectra of distant quasars to estimate the abundance of
deuterium in intergalactic gas clouds that lie between the quasars and us.]

(b) (6 points) In Chapter 5 of The First Three Minutes, Steven Weinberg describes the
first three minutes (or, more precisely, the first three and three quarter minutes)
of the history of the universe. Choose two correct statements about the first three
minutes. You can assume the fraction by weight of primordial helium is 26 percent.
(3 points for each right answer, no penalty for guessing.)

(i) When the temperature of the universe was about 1010 ◦K (t ∼ 1 sec), neutrinos

and antineutrinos started to behave as free particles, no longer having significant
interactions with electrons, positrons, or photons.

(ii) After the neutrinos decoupled from the photons, the temperature of the neutri-
nos was higher than that of the photons because neutrinos interacted less with
other particles as the universe expanded.

(iii) Most of the atoms heavier than helium were made through nucleosynthesis dur-
ing the first 3 3

4 minutes, and this is why we call this period the era of nucle-
osynthesis.

(iv) After the first 3 3
4 minutes, the neutron-proton balance was about 13% neutrons,

87% protons, and the ratio of protons to neutrons has been almost preserved
until today.
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(v) The protons and neutrons became decoupled from the photons after the first 3 3
4

minutes, because the number densities of protons and neutrons were decreased
by the formation of helium, and so their interactions with photons became
negligible.

(vi) The observed abundance of helium in a galaxy today is much larger than the
abundance of primordial helium, because helium is continuously formed inside
stars by nuclear fusion.

[Comment: The statement (i) is described in Chapter 5 of Weinberg’s book, and
it has also been discussed in class. The correctness of statement (iv) can also be
seen from Weinberg’s Chapter 5, which says that the fraction of neutrons after the
first three minutes is around 14%, and it goes down to around 13% “a little later”,
which he explains is probably about 3 3

4 minutes, depending on the ratio of photons to
nuclear particles. Weinberg also explains that most of the neutrons present at this
time immdiately combined with protons to form helium, which causes the ratio to
be nearly constant until today. If you did not remember Weinberg’s numbers, the
statement that the fraction by weight of primordial helium is 26% should allow you
to determine the fraction of neutrons, provided that you remember that the helium
nucleus consists of 2 protons and two neutrons, that the mass of the proton and
neutron are about equal, and that the remaining 74% of the matter is essentially
hydrogen, with no neutrons. Thus helium is very nearly half protons and half neutrons
by weight, so the neutrons must be about 13% of the matter in the universe. (Note
that we are talking about fractions of the total “baryonic” matter, which does not
include the dark matter.) (ii) is clearly false, because the temperature of neutrinos
becomes lower than that of photons. (iii) is clearly false, because most atoms heavier
than helium were made much later in the history of the universe, in the interiors of
stars. (v) is false because protons did not decouple from photons until about 350,000
years, and it happened because the plasma of protons and electrons combined to form
neutral hydrogen. (vi) is false because most of the helium in the universe today is
primordial. Ryden points out, for example, that the abundance of helium in the
Sun’s atmosphere is only about 28%. Weinberg states, near the end of Chapter 5,
that “the 20-30 percent helium abundance could not have been created recently without
liberating enormous amounts of radiation that we do not observe.”]

(c) (4 points) The cosmic microwave background radiation was first discovered by Pen-
zias and Wilson in 1964. However, according to Chapter 6 of The First Three
Minutes, a team at the MIT Radiation Laboratory led by Robert Dicke was able to
set an upper limit on any isotropic extraterrestrial radiation background, showing
that the equivalent temperature was less than 20 ◦K at wavelengths of 1.00, 1.25,
and 1.50 centimeters. This measurement was made in the

(i) 1920s (ii) 1930s (iii) 1940s (iv) 1950s (v) 1960s
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(d) (5 points) A free neutron can radioactively decay into a proton, plus two other
particles. What are these particles? Give the charge, baryon number, and lepton
number for each of these particles, verifying that each of these quantities is conserved
in this process.

Answer:

The neutron decays through the reaction

n→ p+ e− + ν̄e .

The quantum numbers of these particles can be described by the following table:

Particle Charge
Baryon
Number

Lepton
Number

Neutron (n) 0 1 0

Proton (p) +e 1 0

Electron (e−) -e 0 1

Anti-electron-neutrino (ν̄e) 0 0 -1

Thus, the total charge of the final state is zero, the total baryon number is 1, and the
total lepton number is zero, in all cases matching the initial value of these quantities.

(e) (6 points) In Chapter 8 of Ryden’s Introduction to Cosmology, she discusses three
ways to measure the dark matter in clusters. Give a brief, qualitative description of
TWO of them. (If you give three descriptions, only the first two will be graded!)

Answer: You should have given two of the following three items.

1) Virial theorem: The virial theorem relates the total kinetic energy of a steady-
state cluster to is gravitational potential energy. Since the kinetic energy is
proportional to the mass M of the cluster, while the potential energy is propor-
tional to M2, the relation will hold for only one value of M . By measuring the
velocity dispersion (root mean square of the radial galaxy velocities relative to
the mean radial velocity) and the size of the cluster, the mass can be inferred.

2) Hot, x-ray emitting gases: By measuring the x-rays emitted by the cluster, it is
possible to model the density, temperature, and composition of the hot gas within
the cluster (intracluster gas). By assuming that the gas is in hydrostatic equi-
librium — i.e., by assuming that the pressure gradients balance the gravitational
forces — one can infer the gravitational field, and hence the total mass.

3) Gravitational lensing: If one can find a galaxy behind the cluster, so that the
image of the galaxy is gravitationally lensed, then the mass of the galaxy can be
inferred by the degree to which the galaxy is lensed.
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PROBLEM 2: DID YOU DO THE READING? (2016) (25 points)

(a) (5 points) In Chapter 8 of Barbara Ryden’s Introduction to Cosmology, she estimates
the contribution to Ω from clusters of galaxies as

(i) 0.01 (ii) 0.05 (iii) 0.20 (iv) 0.60 (v) 1.00

(b) (4 points) One method of estimating the total mass of a cluster of galaxies is based
on the virial theorem. With this method, one estimates the mass by measuring

(i) the radius containing half the luminosity and also the temperature of the X-ray
emitting gas at the center of the galaxy.

(ii) the velocity dispersion perpendicular to the line of sight and also the radius
containing half of the luminosity of the cluster.

(iii) the velocity dispersion along the line of sight and also the radius containing half

of the luminosity of the cluster.

(iv) the velocity dispersion along the line of sight and also the redshift of the cluster.

(v) the velocity dispersion perpendicular to the line of sight and also the redshift of
the cluster.

Explanation: The virial theorem relates the kinetic energy to the potential energy. The
key relationship is

1

2
M<v2> =

α

2

GM2

rh
,

where M is the mass of the cluster, <v2> is the average squared velocity of its
galaxies, and rh is the radius containing half the total mass, which is estimated by
the radius containing half the luminosity. α is a numerical factor depending on the
structure of the cluster, estimated at 0.4 based on observed clusters. Velocities along
the line of sight are measured by the spread in Doppler shifts, while velocities perpen-
dicular to the line of sight are essentially impossible to measure, eliminating answers
(ii) and (v). Since rh is needed, neither (i) nor (iv) include enough information. (iii)
is exactly right.

(c) (4 points) Another method of estimating the total mass of a cluster of galaxies is to
make detailed measurements of the x-rays emitted by the hot intracluster gas.

(i) By assuming that this gas is the dominant component of the mass of the cluster,
the mass of the cluster can be estimated.

(ii) By assuming that the hot gas comprises about a third of the mass of the cluster,
the total mass of the cluster can be estimated.
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(iii) By assuming that the gas is heated by stars and supernovae that make up
most of the mass of the cluster, the mass of these stars and supernovae can be
estimated.

(iv) By assuming that the gas is heated by interactions with dark matter, which
dominates the mass of the cluster, the mass of the cluster can be estimated.

(v) By assuming that this gas is in hydrostatic equilibrium, the temperature, mass

density, and even the chemical composition of the cluster can be modeled.

Explanation: The dominant component of the mass is apparently dark matter, so the
hot intracluster gas is only a small fraction, and we have no direct way of knowing
what fraction. But the gas settles into a state of hydrostatic equilibrium which
is determined by pressures and gravitational forces. The gas can be mapped by
measuring its x-rays, which allows astronomers to estimate the gravitational forces,
and hence the mass.

(d) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg discusses three
reasons why the importance of a search for a 3◦K microwave radiation background
was not generally appreciated in the 1950s and early 1960s. Choose those three
reasons from the following list. (2 points for each right answer, circle at most 3.)

(i) The earliest calculations erroneously predicted a cosmic background tempera-
ture of only about 0.1◦K, and such a background would be too weak to detect.

(ii) There was a breakdown in communication between theorists and experimental-
ists.

(iii) It was not technologically possible to detect a signal as weak as a 3◦K microwave
background until about 1965.

(iv) Since almost all physicists at the time were persuaded by the steady state model,
the predictions of the big bang model were not taken seriously.

(v) It was extraordinarily difficult for physicists to take seriously any theory of the
early universe.

(vi) The early work on nucleosynthesis by Gamow, Alpher, Herman, and Follin, et
al., had attempted to explain the origin of all complex nuclei by reactions in the
early universe. This program was never very successful, and its credibility was
further undermined as improvements were made in the alternative theory, that
elements are synthesized in stars.

Answer: The correct answers were (ii), (v) and (vi). The others were incorrect for the

following reasons:

(i) the earliest prediction of the CMB temperature, by Alpher and Herman in 1948,
was 5 degrees, not 0.1 degrees.
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(iii) Weinberg quotes his experimental colleagues as saying that the 3◦K radiation

could have been observed “long before 1965, probably in the mid-1950s and per-

haps even in the mid-1940s.” To Weinberg, however, the historically interesting

question is not when the radiation could have been observed, but why radio

astronomers did not know that they ought to try.

(iv) Weinberg argues that physicists at the time did not pay attention to either the

steady state model or the big bang model, as indicated by the sentence in item

(v) which is a direct quote from the book: “It was extraordinarily difficult for

physicists to take seriously any theory of the early universe”.

(e) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predicting

a cosmic microwave background with a temperature of 5 K. The paper was based

on a cosmological model that they had developed with George Gamow, in which the

early universe was assumed to have been filled with hot neutrons. As the universe

expanded and cooled the neutrons underwent beta decay into protons, electrons, and

antineutrinos, until at some point the universe cooled enough for light elements to

be synthesized. Alpher and Herman found that to account for the observed present

abundances of light elements, the ratio of photons to nuclear particles must have

been about 109. Although the predicted temperature was very close to the actual

value of 2.7 K, the theory differed from our present theory in two ways. Circle the

two correct statements in the following list. (3 points for each right answer; circle at

most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but now

the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of protons

and neutrons, not all neutrons as Gamow, Alpher, and Herman assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not all

neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha particle is

the nucleus of a helium atom, composed of two protons and two neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice versa)

took place mainly through collisions with electrons, positrons, neutrinos, and

antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now believed

to have been about 103, not 109 as Alpher and Herman concluded.
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PROBLEM 3: DID YOU DO THE READING? (2013) (25 points)

(a) (6 points) The primary evidence for dark matter in galaxies comes from measuring

their rotation curves, i.e., the orbital velocity v as a function of radius R. If stars

contributed all, or most, of the mass in a galaxy, what would we expect for the

behavior of v(R) at large radii?

Answer: If stars contributed most of the mass, then at large radii the mass would

appear to be concentrated as a spherical lump at the center, and the orbits of the

stars would be “Keplerian,” i.e., orbits in a 1/r2 gravitational field. Then ~F = m~a

implies that

1

R2
∝ v2

R
=⇒ v ∝ 1√

R
.

(b) (5 points) What is actually found for the behavior of v(R)?

Answer: v(R) looks nearly flat at large radii.

(c) (7 points) An important tool for estimating the mass in a galaxy is the steady-state

virial theorem. What does this theorem state?

Answer: For a gravitationally bound system in equilibrium,

Kinetic energy = −1

2
(Gravitational potential energy) .

(The equality holds whenever Ï ≈ 0, where I is the moment of inertia.)

(d) (7 points) At the end of Chapter 10, Ryden writes “Thus, the very strong asymmetry

between baryons and antibaryons today and the large number of photons per baryon

are both products of a tiny asymmetry between quarks and anitquarks in the early

universe.” Explain in one or a few sentences how a tiny asymmetry between quarks

and anitquarks in the early universe results in a strong asymmetry between baryons

and antibaryons today.

Answer: When kT was large compared to 150 MeV, the excess of quarks over anti-

quarks was tiny: only about 3 extra quarks for every 109 antiquarks. But there was

massive quark-antiquark annihilation as kT fell below 150 MeV, so that today we

see the excess quarks, bound into baryons, and almost no sign of antiquarks.
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PROBLEM 4: DID YOU DO THE READING? (2011) (20 points)†

(a) (8 points)

(i) (4 points) We will use the notation XA to indicate a nucleus,* where X is
the symbol for the element which indicates the number of protons, while A
is the mass number, namely the total number of protons and neutrons. With
this notation H1, H2, H3, He3 and He4 stand for hydrogen, deuterium, tritium,
helium-3 and helium-4 nuclei, respectively. Steven Weinberg, in The First Three
Minutes, chapter V, page 108, describes two chains of reactions that produce
helium, starting from protons and neutrons. They can be written as:

p+ n→ H2 + γ H2 + n→ H3 + γ H3 + p→ He4 + γ,

p+ n→ H2 + γ H2 + p→ He3 + γ He3 + n→ He4 + γ.

These are the two examples given by Weinberg. However, different chains of
two particle reactions can take place (in general with different probabilities).
For example:

p+ n→ H2 + γ H2 +H2 → He4 + γ,

p+ n→ H2 + γ H2 + n→ H3 + γ H3 +H2 → He4 + n,

p+ n→ H2 + γ H2 + p→ He3 + γ He3 +H2 → He4 + p,

...

Students who described chains different from those of Weinberg, but that can
still take place, got full credit for this part. Also, notice that photons in the
reactions above carry the additional energy released. However, since the main
point was to describe the nuclear reactions, students who didn’t include the
photons still received full credit.

(ii) (4 points) The deuterium bottleneck is discussed by Weinberg in The First Three
Minutes, chapter V, pages 109-110. The key point is that from part (i) it should
be clear that deuterium (H2) plays a crucial role in nucleosynthesis, since it is the
starting point for all the chains. However, the deuterium nucleus is extremely
loosely bound compared to H3, He3, or especially He4. So, there will be a

* Notice that some students talked about atoms, while we are talking about nuclei
formation. During nucleosynthesis the temperature is way too high to allow electrons
and nuclei to bind together to form atoms. This happens much later, in the process
called recombination.
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range of temperatures which are low enough for H3, He3, and He4 nuclei to be
bound, but too high to allow the deuterium nucleus to be stable. This is the
temperature range where the deuterium bottleneck is in action: even if H3, He3,
and He4 nuclei could in principle be stable at those temperatures, they do not
form because deuterium, which is the starting point for their formation, cannot
be formed yet. Nucleosynthesis cannot proceed at a significant rate until the
temperature is low enough so that deuterium nuclei are stable; at this point the
deuterium bottleneck has been passed.

(b) (12 points)

(i) (3 points) If we take a(t) = bt1/2, for some constant b, we get for the Hubble
expansion rate:

H =
ȧ

a
=

1

2t
=⇒ t =

1

2H
.

(ii) (6 points) By using the Friedmann equation with k = 0 and ρ = ρr = αT 4, we
find:

H2 =
8π

3
Gρr =

8π

3
GαT 4 =⇒ H = T 2

√
8π

3
Gα .

If we substitute the given numerical values G ' 6.67× 10−11 N ·m2 · kg−2 and
α ' 4.52× 10−32 kg ·m−3 ·K−4 we get:

H ' T 2 × 5.03× 10−21 s−1 ·K−2 .

Notice that the units correctly combine to give H in units of s−1 if the temper-
ature is expressed in degrees Kelvin (K). In detail, we see:

[Gα]1/2 = (N ·m2 · kg−2 · kg ·m−3 ·K−4)1/2 = s−1 ·K−2 ,

where we used the fact that 1 N = 1 kg ·m · s−2. At T = Tnucl ' 0.9× 109K we
get:

H ' 4.07× 10−3s−1.

(iii) (3 points) Using the results in parts (i) and (ii), we get

t =
1

2H
'
(

9.95× 1019

T 2

)
s ·K2 .
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To good accuracy, the numerator in the expression above can be rounded to
1020. The above equation agrees with Weinberg’s claim that, for a radiation
dominated universe, time is proportional to the inverse square of the tempera-
ture. In particular for T = Tnucl we get:

tnucl ' 123 s ≈ 2 min.

†Solution written by Daniele Bertolini.

PROBLEM 5: DID YOU DO THE READING? (2007) (24 points)

(a) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predicting
a cosmic microwave background with a temperature of 5 K. The paper was based
on a cosmological model that they had developed with George Gamow, in which the
early universe was assumed to have been filled with hot neutrons. As the universe
expanded and cooled the neutrons underwent beta decay into protons, electrons, and
antineutrinos, until at some point the universe cooled enough for light elements to
be synthesized. Alpher and Herman found that to account for the observed present
abundances of light elements, the ratio of photons to nuclear particles must have
been about 109. Although the predicted temperature was very close to the actual
value of 2.7 K, the theory differed from our present theory in two ways. Circle the
two correct statements in the following list. (3 points for each right answer; circle at
most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but now
the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of protons

and neutrons, not all neutrons as Gamow, Alpher, and Herman assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not all
neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha particle is
the nucleus of a helium atom, composed of two protons and two neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice versa)

took place mainly through collisions with electrons, positrons, neutrinos, and
antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now believed
to have been about 103, not 109 as Alpher and Herman concluded.

(b) (6 points) In Weinberg’s “Recipe for a Hot Universe,” he described the primordial
composition of the universe in terms of three conserved quantities: electric charge,
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baryon number, and lepton number. If electric charge is measured in units of the elec-
tron charge, then all three quantities are integers for which the number density can
be compared with the number density of photons. For each quantity, which choice
most accurately describes the initial ratio of the number density of this quantity to
the number density of photons:

Electric Charge: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1

(iv) ∼ 10−6 (v) either zero or negligible

Baryon Number: (i) ∼ 10−20 (ii) ∼ 10−9 (iii) ∼ 10−6

(iv) ∼ 1 (v) anywhere from 10−5 to 1

Lepton Number: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1

(iv) ∼ 10−6 (v) could be as high as ∼ 1, but
is assumed to be very small

(c) (12 points) The figure below comes from Weinberg’s Chapter 5, and is labeled The
Shifting Neutron-Proton Balance.

(i) (3 points) During the period labeled “thermal equilibrium,” the neutron fraction
is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 1 second.
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(B) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into through reactions
such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other through

reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.

(ii) (3 points) During the period labeled “neutron decay,” the neutron fraction is
changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and antineu-

trino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into the other through
reactions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other through
reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.
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(iii) (3 points) The masses of the neutron and proton are not exactly equal, but

instead

(A) The neutron is more massive than a proton with a rest energy difference of

1.293 GeV (1 GeV = 109 eV).

(B) The neutron is more massive than a proton with a rest energy difference of

1.293 MeV (1 MeV = 106 eV).

(C) The neutron is more massive than a proton with a rest energy difference of

1.293 KeV (1 KeV = 103 eV).

(D) The proton is more massive than a neutron with a rest energy difference of

1.293 GeV.

(E) The proton is more massive than a neutron with a rest energy difference of

1.293 MeV.

(F) The proton is more massive than a neutron with a rest energy difference of

1.293 KeV.

(iv) (3 points) During the period labeled “era of nucleosynthesis,” (choose one:)

(A) Essentially all the neutrons present combine with protons to form helium

nuclei, which mostly survive until the present time.

(B) Essentially all the neutrons present combine with protons to form deuterium

nuclei, which mostly survive until the present time.

(C) About half the neutrons present combine with protons to form helium nu-

clei, which mostly survive until the present time, and the other half of the

neutrons remain free.

(D) About half the neutrons present combine with protons to form deuterium

nuclei, which mostly survive until the present time, and the other half of

the neutrons remain free.

(E) Essentially all the protons present combine with neutrons to form helium

nuclei, which mostly survive until the present time.

(F) Essentially all the protons present combine with neutrons to form deuterium

nuclei, which mostly survive until the present time.
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PROBLEM 6: DID YOU DO THE READING? (2000, 2002)

(a) This is a total trick question. Lepton number is, of course, conserved, so the factor
is just 1. See Weinberg chapter 4, pages 91-4.

(b) The correct answer is (i). The others are all real reasons why it’s hard to measure,
although Weinberg’s book emphasizes reason (v) a bit more than modern astrophysi-
cists do: astrophysicists have been looking for other ways that deuterium might be
produced, but no significant mechanism has been found. See Weinberg chapter 5,
pages 114-7.

(c) The most obvious answers would be proton, neutron, and pi meson. However, there
are many other possibilities, including many that were not mentioned by Weinberg.
See Weinberg chapter 7, pages 136-8.

(d) The correct answers were the neutrino and the antiproton. The neutrino was first

hypothesized by Wolfgang Pauli in 1932 (in order to explain the kinematics of beta
decay), and first detected in the 1950s. After the positron was discovered in 1932,
the antiproton was thought likely to exist, and the Bevatron in Berkeley was built
to look for antiprotons. It made the first detection in the 1950s.

(e) The correct answers were (ii), (v) and (vi). The others were incorrect for the fol-

lowing reasons:

(i) the earliest prediction of the CMB temperature, by Alpher and Herman in 1948,
was 5 degrees, not 0.1 degrees.

(iii) Weinberg quotes his experimental colleagues as saying that the 3◦K radiation
could have been observed “long before 1965, probably in the mid-1950s and per-
haps even in the mid-1940s.” To Weinberg, however, the historically interesting
question is not when the radiation could have been observed, but why radio
astronomers did not know that they ought to try.

(iv) Weinberg argues that physicists at the time did not pay attention to either the
steady state model or the big bang model, as indicated by the sentence in item
(v) which is a direct quote from the book: “It was extraordinarily difficult for
physicists to take seriously any theory of the early universe”.

PROBLEM 7: RADIAL GEODESICS IN A CLOSED UNIVERSE (20 points)

As shown in the formula sheets, we can describe a closed universe by choosing k = 1,
and then using coordinates (t, r, θ, φ), with metric

ds2 ≡ −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
, (7.1)
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or by using coordinates (t, ψ, θ, φ), with metric

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + a2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
. (7.2)

The connection between the two coordinate systems is given by

r = sinψ . (7.3)

The general spacetime geodesic equation can be written as

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
. (7.4)

(a) (7 points) Using the coordinates (t, ψ, θ, φ) and the metric of Eq. (7.2), compute
explicitly the geodesic equation for µ = ψ. By “compute explicitly”, I mean that
gµν should be replaced by the relevant expressions from Eq. (7.2), and that the sums
over indices should be written out, including only the nonzero terms.

Answer:

Since the metric is diagonal, only ν = ψ contributes to the sum over ν. Similarly
λ must equal σ, and the only nonzero values of ∂ψgλσ are when λ = σ = θ and
λ = σ = φ. So Eq. (7.4) becomes

d

dτ

{
gψψ

dψ

dτ

}
=

1

2

[
∂gθθ
∂ψ

(
dθ

dτ

)2

+
∂gφφ
∂ψ

(
dφ

dτ

)2
]
.

Using gψψ = a2(t), gθθ = a2(t) sin2 ψ, and gφφ = a2(t) sin2 ψ sin2 θ, the equation
becomes

d

dτ

{
a2(t)

dψ

dτ

}
= a2(t) sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
. (7.5)

You were not asked to expand the left-hand-side, but some of you did. If you do
expand the left-hand side, it is important to remember that a(t) depends on t and t
depends on τ , so the equation becomes

a2(t)
d2ψ

dτ2
+ 2aȧ

dt

dτ

dψ

dτ
= a2(t) sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
,

or
d2ψ

dτ2
+ 2

(
ȧ

a

)
dt

dτ

dψ

dτ
= sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.
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(b) (7 points) Using instead the coordinates (t, r, θ, φ), compute explicitly the geodesic
equation for µ = r.

Answer:

Again the equation simplifies significantly, since gµν is diagonal. On the right-hand
side, only 3 of the 4 possible values of λ = σ contribute, as ∂rgtt = 0. So,

d

dτ

{
grr

dr

dτ

}
=

1

2

[
∂grr
∂r

(
dr

dτ

)2

+
∂gθθ
∂r

(
dθ

dτ

)2

+
∂gφφ
∂r

(
dφ

dτ

)2
]
.

Now we use

grr =
a2(t)

1− r2
, gθθ = a2(t)r2 , gφφ = a2(t)r2 sin2 θ ,

which allows us to rewrite the equation as

d

dτ

{
a2(t)

1− r2

dr

dτ

}
=

1

2

[
2ra2(t)

(1− r2)2

(
dr

dτ

)2

+ 2ra2(t)

(
dθ

dτ

)2

+ 2ra2(t) sin2 θ

(
dφ

dτ

)2
]
,

or

d

dτ

{
a2(t)

1− r2

dr

dτ

}
= ra2(t)

[
1

(1− r2)2

(
dr

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

(7.6)
Again you were not asked to expand the left-hand side, but if the left-hand side is
expanded, one must remember that a(t) and r both depend on τ . So

a2(t)

1− r2

d2r

dτ2
+

2ra2(t)

(1− r2)2

(
dr

dτ

)2

+
2aȧ

1− r2

dt

dτ

dr

dτ

= ra2(t)

[
1

(1− r2)2

(
dr

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.
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Rearranging terms, the equation can be simplified to

d2r

dτ2
+ 2

(
ȧ

a

)
dt

dτ

dr

dτ

= r

{
− 1

(1− r2)

(
dr

dτ

)2

+ (1− r2)

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]}

.

(c) (6 points) Are the equations that you are asked to derive in parts (a) and (b) both
valid, or is one valid and the other not? If you believe that they are both valid,
use Eq. (7.3) to show that they are equivalent. If you believe that only one is valid,
state which one is valid, and explain why the other is not. (4 points will be given
for showing the correct understanding of this problem, with 2 points allocated to
completing the algebra needed to demonstrate your answer.)

Answer:

Both answers are valid, since they are both correct forms of the geodesic equation,
in different coordinate systems. To see that they are equivalent, we can start with
the equation for r, Eq. (7.6), and substitute

r = sinψ =⇒ dr

dτ
= cosψ

dψ

dτ
=⇒ 1

1− r2

dr

dτ
=

1

cosψ

dψ

dτ
.

So Eq. (7.6) becomes

d

dτ

{
a2(t)

cosψ

dψ

dt

}
= a2 sinψ

[
1

cos2 ψ

(
dψ

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

Partially expanding the left-hand side,

1

cosψ

d

dτ

{
a2(t)

dψ

dt

}
+

a2

cos2 ψ
sinψ

(
dψ

dτ

)2

= a2 sinψ

[
1

cos2 ψ

(
dψ

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

The terms proportional to (dψ/dτ)2 can be seen to cancel, and then multiplication
of the equation by cosψ gives

d

dτ

{
a2(t)

dψ

dτ

}
= a2(t) sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
,

which is identical to Eq. (7.5).
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PROBLEM 8: EVOLUTION OF AN OPEN UNIVERSE

The evolution of an open, matter-dominated universe is described by the following
parametric equations:

ct = α(sinh θ − θ)
a√
κ

= α(cosh θ − 1) .

Evaluating the second of these equations at a/
√
κ = 2α yields a solution for θ:

2α = α(cosh θ − 1) =⇒ cosh θ = 3 =⇒ θ = cosh−1(3) .

We can use these results in the first equation to solve for t. Noting that

sinh θ =
√

cosh2 θ − 1 =
√

8 = 2
√

2 ,

we have

t =
α

c

[
2
√

2− cosh−1(3)
]
.

Numerically, t ≈ 1.06567α/c.

PROBLEM 9: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE

(a) Since θ = φ = constant, dθ = dφ = 0, and for light rays one always has dτ = 0. The
line element therefore reduces to

0 = −c2 dt2 + a2(t)dψ2 .

Rearranging gives (
dψ

dt

)2

=
c2

a2(t)
,

which implies that

dψ

dt
= ± c

a(t)
.

The plus sign describes outward radial motion, while the minus sign describes inward
motion.



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2020 p. 53

(b) The maximum value of the ψ coordinate that can be reached by time t is found by
integrating its rate of change:

ψhor =

∫ t

0

c

a(t′)
dt′ .

The physical horizon distance is the proper length of the shortest line drawn at the
time t from the origin to ψ = ψhor, which according to the metric is given by

`phys(t) =

∫ ψ=ψhor

ψ=0

ds =

∫ ψhor

0

a(t) dψ = a(t)

∫ t

0

c

a(t′)
dt′ .

(c) From part (a),
dψ

dt
=

c

a(t)
.

By differentiating the equation ct = α(θ − sin θ) stated in the problem, one finds

dt

dθ
=
α

c
(1− cos θ) .

Then
dψ

dθ
=
dψ

dt

dt

dθ
=
α(1− cos θ)

a(t)
.

Then using a = α(1− cos θ), as stated in the problem, one has the very simple result

dψ

dθ
= 1 .

(d) This part is very simple if one knows that ψ must change by 2π before the photon
returns to its starting point. Since dψ/dθ = 1, this means that θ must also change
by 2π. From a = α(1− cos θ), one can see that a returns to zero at θ = 2π, so this
is exactly the lifetime of the universe. So,

Time for photon to return

Lifetime of universe
= 1 .

If it is not clear why ψ must change by 2π for the photon to return to its starting
point, then recall the construction of the closed universe that was used in Lecture
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Notes 5. The closed universe is described as the 3-dimensional surface of a sphere in
a four-dimensional Euclidean space with coordinates (x, y, z, w):

x2 + y2 + z2 + w2 = a2 ,

where a is the radius of the sphere. The Robertson-Walker coordinate system is
constructed on the 3-dimensional surface of the sphere, taking the point (0, 0, 0, 1)
as the center of the coordinate system. If we define the w-direction as “north,”
then the point (0, 0, 0, 1) can be called the north pole. Each point (x, y, z, w) on the
surface of the sphere is assigned a coordinate ψ, defined to be the angle between the
positive w axis and the vector (x, y, z, w). Thus ψ = 0 at the north pole, and ψ = π
for the antipodal point, (0, 0, 0,−1), which can be called the south pole. In making
the round trip the photon must travel from the north pole to the south pole and
back, for a total range of 2π.

Discussion: Some students answered that the photon would return in the lifetime
of the universe, but reached this conclusion without considering the details of the
motion. The argument was simply that, at the big crunch when the scale factor
returns to zero, all distances would return to zero, including the distance between
the photon and its starting place. This statement is correct, but it does not quite
answer the question. First, the statement in no way rules out the possibility that
the photon might return to its starting point before the big crunch. Second, if we
use the delicate but well-motivated definitions that general relativists use, it is not
necessarily true that the photon returns to its starting point at the big crunch. To
be concrete, let me consider a radiation-dominated closed universe—a hypothetical
universe for which the only “matter” present consists of massless particles such as
photons or neutrinos. In that case (you can check my calculations) a photon that
leaves the north pole at t = 0 just reaches the south pole at the big crunch. It
might seem that reaching the south pole at the big crunch is not any different from
completing the round trip back to the north pole, since the distance between the
north pole and the south pole is zero at t = tCrunch, the time of the big crunch.
However, suppose we adopt the principle that the instant of the initial singularity
and the instant of the final crunch are both too singular to be considered part of the
spacetime. We will allow ourselves to mathematically consider times ranging from
t = ε to t = tCrunch − ε, where ε is arbitrarily small, but we will not try to describe
what happens exactly at t = 0 or t = tCrunch. Thus, we now consider a photon that
starts its journey at t = ε, and we follow it until t = tCrunch − ε. For the case of the
matter-dominated closed universe, such a photon would traverse a fraction of the
full circle that would be almost 1, and would approach 1 as ε→ 0. By contrast, for
the radiation-dominated closed universe, the photon would traverse a fraction of the
full circle that is almost 1/2, and it would approach 1/2 as ε → 0. Thus, from this
point of view the two cases look very different. In the radiation-dominated case, one
would say that the photon has come only half-way back to its starting point.
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PROBLEM 10: LENGTHS AND AREAS IN A TWO-DIMEN-
SIONAL METRIC

a) Along the first segment dθ = 0, so ds2 = (1+ar)2 dr2, or ds = (1+ar) dr. Integrating,
the length of the first segment is found to be

S1 =

∫ r0

0

(1 + ar) dr = r0 +
1

2
ar2

0 .

Along the second segment dr = 0, so ds = r(1 + br) dθ, where r = r0. So the length
of the second segment is

S2 =

∫ π/2

0

r0(1 + br0) dθ =
π

2
r0(1 + br0) .

Finally, the third segment is identical to the first, so S3 = S1. The total length is
then

S = 2S1 + S2 = 2

(
r0 +

1

2
ar2

0

)
+
π

2
r0(1 + br0)

=
(

2 +
π

2

)
r0 +

1

2
(2a+ πb)r2

0 .

b) To find the area, it is best to divide the region into concentric strips as shown:

Note that the strip has a coordinate width of dr, but the distance across the width
of the strip is determined by the metric to be

dh = (1 + ar) dr .
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The length of the strip is calculated the same way as S2 in part (a):

s(r) =
π

2
r(1 + br) .

The area is then
dA = s(r) dh ,

so

A =

∫ r0

0

s(r) dh

=

∫ r0

0

π

2
r(1 + br)(1 + ar) dr

=
π

2

∫ r0

0

[r + (a+ b)r2 + abr3] dr

=
π

2

[
1

2
r2
0 +

1

3
(a+ b)r3

0 +
1

4
abr4

0

]

PROBLEM 11: GEOMETRY IN A CLOSED UNIVERSE

(a) As one moves along a line from the origin to (h, 0, 0), there is no variation in θ or φ.
So dθ = dφ = 0, and

ds =
a dr√
1− r2

.

So

`p =

∫ h

0

a dr√
1− r2

= a sin−1 h .

(b) In this case it is only θ that varies, so dr = dφ = 0. So

ds = ar dθ ,

so

sp = ah∆θ .

(c) From part (a), one has
h = sin(`p/a) .
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Inserting this expression into the answer to (b), and then solving for ∆θ, one has

∆θ =
sp

a sin(`p/a)
.

Note that as a→∞, this approaches the Euclidean result, ∆θ = sp/`p.

PROBLEM 12: THE GENERAL SPHERICALLY SYMMETRIC METRIC

(a) The metric is given by

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
.

The radius a is defined as the physical length of a radial line which extends from the
center to the boundary of the sphere. The length of a path is just the integral of ds,
so

a =

∫
radial path from
origin to r0

ds .

The radial path is at a constant value of θ and φ, so dθ = dφ = 0, and then ds = dr.
So

a =

∫ r0

0

dr = r0 .

(b) On the surface r = r0, so dr ≡ 0. Then

ds2 = ρ2(r0)
[
dθ2 + sin2 θ dφ2

]
.

To find the area element, consider first a path obtained by varying only θ. Then ds =
ρ(r0) dθ. Similarly, a path obtained by varying only φ has length ds = ρ(r0) sin θ dφ.
Furthermore, these two paths are perpendicular to each other, a fact that is incor-
porated into the metric by the absence of a dr dθ term. Thus, the area of a small
rectangle constructed from these two paths is given by the product of their lengths,
so

dA = ρ2(r0) sin θ dθ dφ .

The area is then obtained by integrating over the range of the coordinate variables:

A = ρ2(r0)

∫ 2π

0

dφ

∫ π

0

sin θ dθ

= ρ2(r0)(2π)
(
− cos θ

∣∣∣π
0

)
=⇒ A = 4πρ2(r0) .
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As a check, notice that if ρ(r) = r, then the metric becomes the metric of Euclidean

space, in spherical polar coordinates. In this case the answer above becomes the

well-known formula for the area of a Euclidean sphere, 4πr2.

(c) As in Problem 2 of Problem Set 5, we can imagine breaking up the volume into

spherical shells of infinitesimal thickness, with a given shell extending from r to

r + dr. By the previous calculation, the area of such a shell is A(r) = 4πρ2(r). (In

the previous part we considered only the case r = r0, but the same argument applies

for any value of r.) The thickness of the shell is just the path length ds of a radial

path corresponding to the coordinate interval dr. For radial paths the metric reduces

to ds2 = dr2, so the thickness of the shell is ds = dr. The volume of the shell is then

dV = 4πρ2(r) dr .

The total volume is then obtained by integration:

V = 4π

∫ r0

0

ρ2(r) dr .

Checking the answer for the Euclidean case, ρ(r) = r, one sees that it gives V =

(4π/3)r3
0, as expected.

(d) If r is replaced by a new coordinate σ ≡ r2, then the infinitesimal variations of the

two coordinates are related by

dσ

dr
= 2r = 2

√
σ ,

so

dr2 =
dσ2

4σ
.

The function ρ(r) can then be written as ρ(
√
σ ), so

ds2 =
dσ2

4σ
+ ρ2(

√
σ )
[
dθ2 + sin2 θ dφ2

]
.
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PROBLEM 13: VOLUMES IN A ROBERTSON-WALKER UNIVERSE

The product of differential length elements corresponding to infinitesimal changes in
the coordinates r, θ and φ equals the differential volume element dV . Therefore

dV = a(t)
dr√

1− kr2
× a(t)rdθ × a(t)r sin θdφ

The total volume is then

V =

∫
dV = a3(t)

∫ rmax

0

dr

∫ π

0

dθ

∫ 2π

0

dφ
r2 sin θ√
1− kr2

We can do the angular integrations immediately:

V = 4πa3(t)

∫ rmax

0

r2dr√
1− kr2

.

[Pedagogical Note: If you don’t see through the solutions above, then note that the volume
of the sphere can be determined by integration, after first breaking the volume into
infinitesimal cells. A generic cell is shown in the diagram below:

The cell includes the volume lying between r and r+ dr, between θ and θ+ dθ, and
between φ and φ + dφ. In the limit as dr, dθ, and dφ all approach zero, the cell
approaches a rectangular solid with sides of length:

ds1 = a(t)
dr√

1− kr2

ds2 = a(t)r dθ

ds3 = a(t)r sin θ dθ .
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Here each ds is calculated by using the metric to find ds2, in each case allowing only
one of the quantities dr, dθ, or dφ to be nonzero. The infinitesimal volume element
is then dV = ds1ds2ds3, resulting in the answer above. The derivation relies on the
orthogonality of the dr, dθ, and dφ directions; the orthogonality is implied by the
metric, which otherwise would contain cross terms such as dr dθ.]

[Extension: The integral can in fact be carried out, using the substitution

√
k r = sinψ (if k > 0)

√
−k r = sinhψ (if k > 0).

The answer is

V =


2πa3(t)

 sin−1
(√

k rmax

)
k3/2

−
√

1− kr2
max

k

 (if k > 0)

2πa3(t)

[√
1− kr2

max

(−k)
−

sinh−1
(√
−k rmax

)
(−k)3/2

]
(if k < 0) .]

PROBLEM 14: THE SCHWARZSCHILD METRIC

a) The Schwarzschild horizon is the value of r for which the metric becomes singular.
Since the metric contains the factor(

1− 2GM

rc2

)
,

it becomes singular at

RS =
2GM

c2
.

b) The separation between A and B is purely in the radial direction, so the proper
length of a segment along the path joining them is given by

ds2 =

(
1− 2GM

rc2

)−1

dr2 ,

so

ds =
dr√

1− 2GM
rc2

.
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The proper distance from A to B is obtained by adding the proper lengths of all the
segments along the path, so

sAB =

∫ rB

rA

dr√
1− 2GM

rc2

.

EXTENSION: The integration can be carried out explicitly. First use the expression
for the Schwarzschild radius to rewrite the expression for sAB as

sAB =

∫ rB

rA

√
r dr√

r −RS
.

Then introduce the hyperbolic trigonometric substitution

r = RS cosh2 u .

One then has √
r −RS =

√
RS sinhu

dr = 2RS coshu sinhu du ,

and the indefinite integral becomes∫ √
r dr√

r −RS
= 2RS

∫
cosh2 u du

= RS

∫
(1 + cosh 2u)du

= RS

(
u+

1

2
sinh 2u

)
= RS(u+ sinhu coshu)

= RS sinh−1

(√
r

RS
− 1

)
+
√
r(r −RS) .

Thus,

sAB = RS

[
sinh−1

(√
rB
RS
− 1

)
− sinh−1

(√
rA
RS
− 1

)]
+
√
rB(rB −RS)−

√
rA(rA −RS) .
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c) A tick of the clock and the following tick are two events that differ only in their time
coordinates. Thus, the metric reduces to

−c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 ,

so

dτ =

√
1− 2GM

rc2
dt .

The reading on the observer’s clock corresponds to the proper time interval dτ , so
the corresponding interval of the coordinate t is given by

∆tA =
∆τA√

1− 2GM
rAc2

.

d) Since the Schwarzschild metric does not change with time, each pulse leaving A will
take the same length of time to reach B. Thus, the pulses emitted by A will arrive
at B with a time coordinate spacing

∆tB = ∆tA =
∆τA√

1− 2GM
rAc2

.

The clock at B, however, will read the proper time and not the coordinate time.
Thus,

∆τB =

√
1− 2GM

rBc2
∆tB

=

√√√√1− 2GM
rBc2

1− 2GM
rAc2

∆τA .

e) From parts (a) and (b), the proper distance between A and B can be rewritten as

sAB =

∫ rB

RS

√
rdr√

r −RS
.

The potentially divergent part of the integral comes from the range of integration in
the immediate vicinity of r = RS, say RS < r < RS + ε. For this range the quantity√
r in the numerator can be approximated by

√
RS , so the contribution has the form√

RS

∫ RS+ε

RS

dr√
r −RS

.
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Changing the integration variable to u ≡ r − RS , the contribution can be easily
evaluated:

√
RS

∫ RS+ε

RS

dr√
r −RS

=
√
RS

∫ ε

0

du√
u

= 2
√
RSε <∞ .

So, although the integrand is infinite at r = RS , the integral is still finite.

The proper distance between A and B does not diverge.

Looking at the answer to part (d), however, one can see that when rA = RS ,

The time interval ∆τB diverges.

PROBLEM 15: GEODESICS

The geodesic equation for a curve xi(λ), where the parameter λ is the arc length
along the curve, can be written as

d

dλ

{
gij
dxj

dλ

}
=

1

2
(∂igk`)

dxk

dλ

dx`

dλ
.

Here the indices j, k, and ` are summed from 1 to the dimension of the space, so there
is one equation for each value of i.

(a) The metric is given by

ds2 = gijdx
idxj = dr2 + r2 dθ2 ,

so
grr = 1, gθθ = r2 , grθ = gθr = 0 .

First taking i = r, the nonvanishing terms in the geodesic equation become

d

dλ

{
grr

dr

dλ

}
=

1

2
(∂rgθθ)

dθ

dλ

dθ

dλ
,

which can be written explicitly as

d

dλ

{
dr

dλ

}
=

1

2

(
∂rr

2
)( dθ

dλ

)2

,
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or

d2r

dλ2
= r

(
dθ

dλ

)2

.

For i = θ, one has the simplification that gij is independent of θ for all (i, j). So

d

dλ

{
r2 dθ

dλ

}
= 0 .

(b) The first step is to parameterize the curve, which means to imagine moving along

the curve, and expressing the coordinates as a function of the distance traveled. (I

am calling the locus y = 1 a curve rather than a line, since the techniques that are

used here are usually applied to curves. Since a line is a special case of a curve, there

is nothing wrong with treating the line as a curve.) In Cartesian coordinates, the

curve y = 1 can be parameterized as

x(λ) = λ , y(λ) = 1 .

(The parameterization is not unique, because one can choose λ = 0 to represent any

point along the curve.) Converting to the desired polar coordinates,

r(λ) =
√
x2(λ) + y2(λ) =

√
λ2 + 1 ,

θ(λ) = tan−1 y(λ)

x(λ)
= tan−1(1/λ) .
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Calculating the needed derivatives,*

dr

dλ
=

λ√
λ2 + 1

d2r

dλ2
=

1√
λ2 + 1

− λ2

(λ2 + 1)
3/2

=
1

(λ2 + 1)
3/2

=
1

r3

dθ

dλ
= − 1

1 +
(

1
λ

)2 1

λ2
= − 1

r2
.

Then, substituting into the geodesic equation for i = r,

d2r

dλ2
= r

(
dθ

dλ

)2

⇐⇒ 1

r3
= r

(
− 1

r2

)2

,

which checks. Substituting into the geodesic equation for i = θ,

d

dλ

{
r2 dθ

dλ

}
= 0⇐⇒ d

dλ

{
r2

(
− 1

r2

)}
= 0 ,

which also checks.

PROBLEM 16: AN EXERCISE IN TWO-DIMENSIONAL METRICS (30
points)

(a) Since
r(θ) = (1 + ε cos2 θ) r0 ,

as the angular coordinate θ changes by dθ, r changes by

dr =
dr

dθ
dθ = −2εr0 cos θ sin θ dθ .

* If you do not remember how to differentiate φ = tan−1(z), then you should know
how to derive it. Write z = tanφ = sinφ/ cosφ, so

dz =

(
cosφ

cosφ
+

sin2 φ

cos2 φ

)
dφ = (1 + tan2 φ)dφ .

Then
dφ

dz
=

1

1 + tan2 φ
=

1

1 + z2
.
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ds2 is then given by

ds2 = dr2 + r2dθ2

= 4ε2r2
0 cos2 θ sin2 θ dθ2 + (1 + ε cos2 θ)2 r2

0 dθ2

=
[
4ε2 cos2 θ sin2 θ + (1 + ε cos2 θ)2

]
r2
0 dθ2 ,

so

ds = r0

√
4ε2 cos2 θ sin2 θ + (1 + ε cos2 θ)2 dθ .

Since θ runs from θ1 to θ2 as the curve is swept out,

S = r0

∫ θ2

θ1

√
4ε2 cos2 θ sin2 θ + (1 + ε cos2 θ)2 dθ .

(b) Since θ does not vary along this path,

ds =

√
1 +

r

a
dr ,

and so

R =

∫ r0

0

√
1 +

r

a
dr .

(c) Since the metric does not contain a term in dr dθ, the r and θ directions are orthog-
onal. Thus, if one considers a small region in which r is in the interval r′ to r′+ dr′,
and θ is in the interval θ′ to θ′ + dθ′, then the region can be treated as a rectangle.
The side along which r varies has length dsr =

√
1 + (r′/a) dr′, while the side along

which θ varies has length dsθ = r′ dθ′. The area is then

dA = dsr dsθ = r′
√

1 + (r′/a) dr′ dθ′ .

To cover the area for which r < r0, r′ must be integrated from 0 to r0, and θ′ must
be integrated from 0 to 2π:

A =

∫ r0

0

dr′
∫ 2π

0

dθ′ r′
√

1 + (r′/a) .

But ∫ 2π

0

dθ′ = 2π ,
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so

A = 2π

∫ r0

0

dr′ r′
√

1 + (r′/a) .

You were not asked to carry out the integration, but it can be done by using the
substitution u = 1 + (r′/a), so du = (1/a) dr′, and r′ = a(u− 1). The result is

A =
4πa2

15

[
2 +

(
3r2

0

a2
+
r0

a
− 2

)√
1 +

r0

a

]
.

(d) The nonzero metric coefficients are given by

grr = 1 +
r

a
, gθθ = r2 ,

so the metric is diagonal. For i = 1 = r, the geodesic equation becomes

d

ds

{
grr

dr

ds

}
=

1

2

∂grr
∂r

dr

ds

dr

ds
+

1

2

∂gθθ
∂r

dθ

ds

dθ

ds
,

so if we substitute the values from above, we have

d

ds

{(
1 +

r

a

) dr

ds

}
=

1

2

∂

∂r

(
1 +

r

a

)(dr

ds

)2

+
1

2

∂r2

∂r

(
dθ

ds

)2

.

Simplifying slightly,

d

ds

{(
1 +

r

a

) dr

ds

}
=

1

2a

(
dr

ds

)2

+ r

(
dθ

ds

)2

.

The answer above is perfectly acceptable, but one might want to expand the left-hand
side:

d

ds

{(
1 +

r

a

) dr

ds

}
=

1

a

(
dr

ds

)2

+
(

1 +
r

a

) d2r

ds2
.

Inserting this expansion into the boxed equation above, the first term can be brought
to the right-hand side, giving

(
1 +

r

a

) d2r

ds2
= − 1

2a

(
dr

ds

)2

+ r

(
dθ

ds

)2

.
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The i = 2 = θ equation is simpler, because none of the gij coefficients depend on θ,
so the right-hand side of the geodesic equation vanishes. One has simply

d

ds

{
r2 dθ

ds

}
= 0 .

For most purposes this is the best way to write the equation, since it leads immedi-
ately to r2(dθ/ds) = const. However, it is possible to expand the derivative, giving
the alternative form

r2 d2θ

ds2
+ 2r

dr

ds

dθ

ds
= 0 .

PROBLEM 17: GEODESICS IN A CLOSED UNIVERSE

(a) (7 points) For purely radial motion, dθ = dφ = 0, so the line element reduces do

−c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2

}
.

Dividing by dt2,

−c2
(
dτ

dt

)2

= −c2 +
a2(t)

1− r2

(
dr

dt

)2

.

Rearranging,

dτ

dt
=

√
1− a2(t)

c2(1− r2)

(
dr

dt

)2

.

(b) (3 points)

dt

dτ
=

1

dτ

dt

=
1√

1− a2(t)

c2(1− r2)

(
dr

dt

)2
.

(c) (10 points) During any interval of clock time dt, the proper time that would be
measured by a clock moving with the object is given by dτ , as given by the metric.
Using the answer from part (a),

dτ =
dτ

dt
dt =

√
1− a2(t)

c2(1− r2
p)

(
drp
dt

)2

dt .
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Integrating to find the total proper time,

τ =

∫ t2

t1

√
1− a2(t)

c2(1− r2
p)

(
drp
dt

)2

dt .

(d) (10 points) The physical distance d` that the object moves during a given time
interval is related to the coordinate distance dr by the spatial part of the metric:

d`2 = ds2 = a2(t)

{
dr2

1− r2

}
=⇒ d` =

a(t)√
1− r2

dr .

Thus

vphys =
d`

dt
=

a(t)√
1− r2

dr

dt
.

Discussion: A common mistake was to include −c2 dt2 in the expression for d`2. To
understand why this is not correct, we should think about how an observer would
measure d`, the distance to be used in calculating the velocity of a passing object.
The observer would place a meter stick along the path of the object, and she would
mark off the position of the object at the beginning and end of a time interval dtmeas.
Then she would read the distance by subtracting the two readings on the meter stick.
This subtraction is equal to the physical distance between the two marks, measured
at the same time t. Thus, when we compute the distance between the two marks,
we set dt = 0. To compute the speed she would then divide the distance by dtmeas,
which is nonzero.

(e) (10 points) We start with the standard formula for a geodesic, as written on the
front of the exam:

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
.

This formula is true for each possible value of µ, while the Einstein summation
convention implies that the indices ν, λ, and σ are summed. We are trying to derive
the equation for r, so we set µ = r. Since the metric is diagonal, the only contribution
on the left-hand side will be ν = r. On the right-hand side, the diagonal nature of
the metric implies that nonzero contributions arise only when λ = σ. The term will
vanish unless dxλ/dτ is nonzero, so λ must be either r or t (i.e., there is no motion
in the θ or φ directions). However, the right-hand side is proportional to

∂gλσ
∂r

.
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Since gtt = −c2, the derivative with respect to r will vanish. Thus, the only nonzero
contribution on the right-hand side arises from λ = σ = r. Using

grr =
a2(t)

1− r2
,

the geodesic equation becomes

d

dτ

{
grr

dr

dτ

}
=

1

2
(∂rgrr)

dr

dτ

dr

dτ
,

or
d

dτ

{
a2

1− r2

dr

dτ

}
=

1

2

[
∂r

(
a2

1− r2

)]
dr

dτ

dr

dτ
,

or finally

d

dτ

{
a2

1− r2

dr

dτ

}
= a2 r

(1− r2)2

(
dr

dτ

)2

.

This matches the form shown in the question, with

A =
a2

1− r2
, and C = a2 r

(1− r2)2
,

with B = D = E = 0.

(f) (5 points EXTRA CREDIT) The algebra here can get messy, but it is not too bad
if one does the calculation in an efficient way. One good way to start is to simplify
the expression for p. Using the answer from (d),

p =
mvphys√
1− v2

phys

c2

=
m a(t)√

1−r2
dr
dt√

1− a2

c2(1−r2)

(
dr
dt

)2 .

Using the answer from (b), this simplifies to

p = m
a(t)√
1− r2

dr

dt

dt

dτ
= m

a(t)√
1− r2

dr

dτ
.

Multiply the geodesic equation by m, and then use the above result to rewrite it as

d

dτ

{
ap√

1− r2

}
= ma2 r

(1− r2)2

(
dr

dτ

)2

.
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Expanding the left-hand side,

LHS =
d

dτ

{
ap√

1− r2

}
=

1√
1− r2

d

dτ
{ap}+ ap

r

(1− r2)
3/2

dr

dτ

=
1√

1− r2

d

dτ
{ap}+ma2 r

(1− r2)
2

(
dr

dτ

)2

.

Inserting this expression back into left-hand side of the original equation, one sees
that the second term cancels the expression on the right-hand side, leaving

1√
1− r2

d

dτ
{ap} = 0 .

Multiplying by
√

1− r2, one has the desired result:

d

dτ
{ap} = 0 =⇒ p ∝ 1

a(t)
.

PROBLEM 18: A TWO-DIMENSIONAL CURVED SPACE (40 points)

(a) For θ = constant, the expression for the metric reduces to

ds2 =
a du2

4u(a− u)
=⇒

ds =
1

2

√
a

u(a− u)
du .

To find the length of the radial line shown, one must in-
tegrate this expression from the value
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of u at the center, which is 0, to the value of u at the outer edge, which is a. So

R =
1

2

∫ a

0

√
a

u(a− u)
du .

You were not expected to do it, but the integral can be carried out, giving R =
(π/2)

√
a.

(b) For u = constant, the expression for the metric reduces to

ds2 = udθ2 =⇒ ds =
√
udθ .

Since θ runs from 0 to 2π, and u = a for the circumference
of the space,

S =

∫ 2π

0

√
a dθ = 2π

√
a .

(c) To evaluate the answer to first order in du means to neglect
any terms that would be proportional to du2 or higher pow-
ers. This means that we can treat the annulus as if it were
arbitrarily thin, in which case we can imagine bending it
into a rectangle without changing its area. The area is then
equal to the circumference times the width. Both the cir-
cumference and the width must be calculated by using the
metric:

dA = circumference× width

= [2π
√
u0 ]×

[
1

2

√
a

u0(a− u0)
du

]

= π

√
a

(a− u0)
du .
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(d) We can find the total area by imagining that it is broken up into annuluses, where
a single annulus starts at radial coordinate u and extends to u+ du. As in part (a),
this expression must be integrated from the value of u at the center, which is 0, to
the value of u at the outer edge, which is a.

A = π

∫ a

0

√
a

(a− u)
du .

You did not need to carry out this integration, but the answer would be A = 2πa.

(e) From the list at the front of the exam, the general formula for a geodesic is written
as

d

ds

[
gij

dxj

ds

]
=

1

2

∂gk`
∂xi

dxk

ds

dx`

ds
.

The metric components gij are related to ds2 by

ds2 = gij dxi dxj ,

where the Einstein summation convention (sum over repeated indices) is assumed.
In this case

g11 ≡ guu =
a

4u(a− u)

g22 ≡ gθθ = u

g12 = g21 = 0 ,

where I have chosen x1 = u and x2 = θ. The equation with du/ds on the left-hand
side is found by looking at the geodesic equations for i = 1. Of course j, k, and `
must all be summed, but the only nonzero contributions arise when j = 1, and k
and ` are either both equal to 1 or both equal to 2:

d

ds

[
guu

du

ds

]
=

1

2

∂guu
∂u

(
du

ds

)2

+
1

2

∂gθθ
∂u

(
dθ

ds

)2

.

d

ds

[
a

4u(a− u)

du

ds

]
=

1

2

[
d

du

(
a

4u(a− u)

)](
du

ds

)2

+
1

2

[
d

du
(u)

](
dθ

ds

)2

=
1

2

[
a

4u(a− u)2
− a

4u2(a− u)

](
du

ds

)2

+
1

2

(
dθ

ds

)2

=
1

8

a(2u− a)

u2(a− u)2

(
du

ds

)2

+
1

2

(
dθ

ds

)2

.
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(f) This part is solved by the same method, but it is simpler. Here we consider the
geodesic equation with i = 2. The only term that contributes on the left-hand side
is j = 2. On the right-hand side one finds nontrivial expressions when k and ` are
either both equal to 1 or both equal to 2. However, the terms on the right-hand side
both involve the derivative of the metric with respect to x2 = θ, and these derivatives
all vanish. So

d

ds

[
gθθ

dθ

ds

]
=

1

2

∂guu
∂θ

(
du

ds

)2

+
1

2

∂gθθ
∂θ

(
dθ

ds

)2

,

which reduces to

d

ds

[
u

dθ

ds

]
= 0 .

PROBLEM 19: ROTATING FRAMES OF REFERENCE (35 points)

(a) The metric was given as

−c2 dτ2 = −c2 dt2 +
[
dr2 + r2 (dφ+ ω dt)

2
+ dz2

]
,

and the metric coefficients are then just read off from this expression:

g11 ≡ grr = 1

g00 ≡ gtt = coefficient of dt2 = −c2 + r2ω2

g20 ≡ g02 ≡ gφt ≡ gtφ =
1

2
× coefficient of dφdt = r2ω

g22 ≡ gφφ = coefficient of dφ2 = r2

g33 ≡ gzz = coefficient of dz2 = 1 .

Note that the off-diagonal term gφt must be multiplied by 1/2, because the expression

3∑
µ=0

3∑
ν=0

gµν dx
µ dxν

includes the two equal terms g20 dφdt+ g02 dtdφ, where g20 ≡ g02.

(b) Starting with the general expression

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
,
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we set µ = r:
d

dτ

{
grν

dxν

dτ

}
=

1

2
(∂rgλσ)

dxλ

dτ

dxσ

dτ
.

When we sum over ν on the left-hand side, the only value for which grν 6= 0 is
ν = 1 ≡ r. Thus, the left-hand side is simply

LHS =
d

dτ

(
grr

dx1

dτ

)
=

d

dτ

(
dr

dτ

)
=

d2r

dτ2
.

The RHS includes every combination of λ and σ for which gλσ depends on r, so that
∂r gλσ 6= 0. This means gtt, gφφ, and gφt. So,

RHS =
1

2
∂r(−c2 + r2ω2)

(
dt

dτ

)2

+
1

2
∂r(r

2)

(
dφ

dτ

)2

+ ∂r(r
2ω)

dφ

dτ

dt

dτ

= rω2

(
dt

dτ

)2

+ r

(
dφ

dτ

)2

+ 2rω
dφ

dτ

dt

dτ

= r

(
dφ

dτ
+ ω

dt

dτ

)2

.

Note that the final term in the first line is really the sum of the contributions from
gφt and gtφ, where the two terms were combined to cancel the factor of 1/2 in the
general expression. Finally,

d2r

dτ2
= r

(
dφ

dτ
+ ω

dt

dτ

)2

.

If one expands the RHS as

d2r

dτ2
= r

(
dφ

dτ

)2

+ rω2

(
dt

dτ

)2

+ 2rω
dφ

dτ

dt

dτ
,

then one can identify the term proportional to ω2 as the centrifugal force, and the
term proportional to ω as the Coriolis force.

(c) Substituting µ = φ,

d

dτ

{
gφν

dxν

dτ

}
=

1

2
(∂φgλσ)

dxλ

dτ

dxσ

dτ
.
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But none of the metric coefficients depend on φ, so the right-hand side is zero. The

left-hand side receives contributions from ν = φ and ν = t:

d

dτ

(
gφφ

dφ

dτ
+ gφt

dt

dτ

)
=

d

dτ

(
r2 dφ

dτ
+ r2ω

dt

dτ

)
= 0 ,

so

d

dτ

(
r2 dφ

dτ
+ r2ω

dt

dτ

)
= 0 .

Note that one cannot “factor out” r2, since r can depend on τ . If this equation

is expanded to give an equation for d2φ/dτ2, the term proportional to ω would

be identified as the Coriolis force. There is no term proportional to ω2, since the

centrifugal force has no component in the φ direction.

(d) If Eq. (P19.1) of the problem is divided by c2dt2, one obtains

(
dτ

dt

)2

= 1− 1

c2

[(
dr

dt

)2

+ r2

(
dφ

dt
+ ω

)2

+

(
dz

dt

)2
]
.

Then using

dt

dτ
=

1(
dτ
dt

) ,
one has

dt

dτ
=

1√√√√1− 1

c2

[(
dr

dt

)2

+ r2

(
dφ

dt
+ ω

)2

+

(
dz

dt

)2
] .

Note that this equation is really just

dt

dτ
=

1√
1− v2/c2

,

adapted to the rotating cylindrical coordinate system.
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PROBLEM 20: THE STABILITY OF SCHWARZSCHILD ORBITS∗ (30
points)

From the metric:

ds2 = −c2dτ2 = −h(r) c2dt2 + h(r)−1dr2 + r2dθ2 + r2 sin2 θdφ2 , (S20.1)

and the convention ds2 = gµνdx
µdxν we read the nonvanishing metric components:

gtt = −h(r)c2 , grr =
1

h(r)
, gθθ = r2 , gφφ = r2 sin2 θ . (S20.2)

We are told that the orbit has θ = π/2, so on the orbit dθ = 0 and the relevant metric
and metric components are:

ds2 = −c2dτ2 = −h(r) c2dt2 + h(r)−1dr2 + r2dφ2 , (S20.3)

gtt = −h(r)c2 , grr =
1

h(r)
, gφφ = r2 . (S20.4)

We also know that

h(r) = 1− RS
r
. (S20.5)

(a) The geodesic equation

d

dτ

[
gµν

dxν

dτ

]
=

1

2

∂gλσ
∂xµ

dxλ

dτ

dxσ

dτ
, (S20.6)

for the index value µ = r takes the form

d

dτ

[
grr

dr

dτ

]
=

1

2

∂gλσ
∂r

dxλ

dτ

dxσ

dτ
.

Expanding out

d

dτ

[
1

h

dr

dτ

]
=

1

2

∂gtt
∂r

(
dt

dτ

)2

+
1

2

∂grr
∂r

(
dr

dτ

)2

+
1

2

∂gφφ
∂r

(
dφ

dτ

)2

.

Using the values in (S20.4) to evaluate the right-hand side and taking the derivatives on
the left-hand side:

− h
′

h2

(
dr

dτ

)2

+
1

h

d2r

dτ2
= −1

2
c2h′

(
dt

dτ

)2

−1

2

h′

h2

(
dr

dτ

)2

+ r

(
dφ

dτ

)2

.

* Solution by Barton Zwiebach.
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Here h′ ≡ dh
dr and we have supressed the arguments of h and h′ to avoid clutter. Collecting

the underlined terms to the right and multiplying by h, we find

d2r

dτ2
= −1

2
h′ hc2

(
dt

dτ

)2

+
1

2

h′

h

(
dr

dτ

)2

+ rh

(
dφ

dτ

)2

. (S20.7)

(b) Dividing the expression (S20.3) for the metric by dτ2 we readily find

−c2 = −hc2
(
dt

dτ

)2

+
1

h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2

,

and rearranging,

hc2
(
dt

dτ

)2

= c2 +
1

h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2

. (S20.8)

This is the most useful form of the answer. Of course, we also have(
dt

dτ

)2

=
1

h
+

1

h2c2

(
dr

dτ

)2

+
r2

hc2

(
dφ

dτ

)2

. (S20.9)

We use now (S20.8) to simplify (S20.7):

d2r

dτ2
= −1

2
h′

(
c2 +

1

h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2
)

+
1

2

h′

h

(
dr

dτ

)2

+ rh

(
dφ

dτ

)2

.

Expanding out, the terms with ( drdτ )2 cancel and we find

d2r

dτ2
= −1

2
h′ c2 +

(
rh− 1

2
h′r2

) (
dφ

dτ

)2

. (S20.10)

This is an acceptable answer. One can simplify (S20.10) further by noting that h′ =
RS/r

2 and rh = r −RS :

d2r

dτ2
= −1

2

RSc
2

r2
+

(
r − 3

2
RS

) (
dφ

dτ

)2

. (S20.11)

In the notation of the problem statement, we have

f0(r) = −1

2

RSc
2

r2
, f1(r) = r − 3

2
RS . (S20.12)
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(c) The geodesic equation (S20.6) for µ = φ gives

d

dτ

[
gφφ

dφ

dτ

]
=

1

2

∂gλσ
∂φ

dxλ

dτ

dxσ

dτ
.

Since no metric component depends on φ, the right-hand side vanishes and we get:

d

dτ

[
r2 dφ

dτ

]
= 0 → d

dτ
L = 0 , where L ≡ r2 dφ

dτ
. (S20.13)

The quantity L is a constant of the motion, namely, it is a number independent of τ .

(d) Using (S20.13) the second-order differential equation (S20.11) for r(τ) takes the form
stated in the problem:

d2r

dτ2
= f0(r) +

f1(r)

r4
L2 ≡ H(r) , (S20.14)

where we have introduced the function H(r) (recall that L is a constant!). The differential
equation then takes the form

d2r

dτ2
= H(r) . (S20.15)

Since we are told that a circular orbit with radius r0 exists, the function r(τ) = r0

must solve this equation. Being the constant function, the left-hand side vanishes and,
consequently, the right-hand side must also vanish:

H(r0) = f0(r0) +
f1(r0)

r4
0

L2 = 0 . (S20.16)

To investigate stability we consider a small perturbation δr(τ) of the orbit:

r(τ) = r0 + δr(τ) , with δr(τ)� r0 at some initial τ .

Substituting this into (S20.15) we get, to first nontrivial approximation

d2δr

dτ2
= H(r0 + δr) ' H(r0) + δrH ′(r0) = δr H ′(r0) ,

where H ′(r) = dH(r)
dr and we used H(r0) = 0 from (S20.16). The resulting equation

d2δr(τ)

dτ2
= H ′(r0) δr(τ) , (S20.17)

is familiar because H ′(r0) is just a number. The condition of stability is that this number
is negative: H ′(r0) < 0. Indeed, in this case (S20.17) is the harmonic oscillator equation

d2x

dt2
= −ω2x , with replacements x↔ δr, t↔ τ , −ω2 ↔ H ′(r0) ,
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and the solution describes bounded oscillations. So stability requires:

Stability Condition: H ′(r0) =
d

dr

[
f0(r) +

f1(r)

r4
L2

]
r=r0

< 0 . (S20.18)

This is the answer to part (d).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

For students interested in getting the famous result that orbits are stable for r > 3RS we
complete this part of the analysis below. First we evaluate H ′(r0) in (S20.18) using the
values of f0 and f1 in (S20.12):

H ′(r0) =
d

dr

[
−1

2

RSc
2

r2
+

(
1

r3
− 3RS

2r4

)
L2

]
r=r0

=
RSc

2

r3
0

− 3L2

r5
0

(r0 − 2RS) .

The inequality in (S20.18) then gives us

RSc
2 − 3L2

r2
0

(r0 − 2RS) < 0 , (S20.19)

where we multiplied by r3
0 > 0. To complete the calculation we need the value of L2 for

the orbit with radius r0. This value is determined by the vanishing of H(r0):

−1

2

RSc
2

r2
0

+ (r0 −
3

2
RS)

L2

r4
0

= 0 → L2

r2
0

=
1

2

RSc
2

(r0 − 3
2RS)

.

Note, incidentally, that the equality to the right demands that for a circular orbit r0 >
3
2RS . Substituting the above value of L2/r2

0 in (S20.19) we get:

RSc
2 − 3

2

RSc
2

(r0 − 3
2RS)

(r0 − 2RS) < 0 .

Cancelling the common factors of RSc
2 we find

1− 3

2

(r0 − 2RS)

(r0 − 3
2RS)

< 0 ,

which is equivalent to
3

2

(r0 − 2RS)

(r0 − 3
2RS)

> 1 .

For r0 >
3
2RS , we get

3(r0 − 2RS) > 2(r0 −
3

2
RS) → r0 > 3RS . (S20.20)

This is the desired condition for stable orbits in the Schwarzschild geometry.
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PROBLEM 21: GRAVITATIONAL BENDING OF LIGHT (30 points)

(a) (6 points) Note that

dr2 =
1

r2
(x dx+ y dy + z dz)

2

=
1

r2

(
x2 dx2 + y2 dy2 + z2 dz2 + 2xy dxdy + 2xz dx dz + 2yz dy dz

)
.

(S21.1)
By using this expression for (dr)2 in Eq. (P21.5), we have the full expression for ds2

written out, from which we can read off the components of gµν :

gtt = coefficient of dt2 = −c2
(

1− RSch

r

)
gxx = coefficient of dx2 = 1 +

RSch

r3
x2

gxy =
1

2
of coefficient of dxdy =

RSch

r3
xy .

(S21.2)

A number of people missed the factor of 1/2 in the value of gxy. It arises because
the general formula is written as ds2 = gµν dxµ dxν , which when expanded becomes

ds2 = gxxdx2 + gyydy2 + gzzdz
2 + gttdt

2 + gxydxdy + gyxdy dx+ . . . .

Since dxdy = dy dx, the coefficient of dxdy is gxy + gyx = 2gxy.

(b) (9 points) It will be useful to know the derivatives of r:

∂r

∂x
=

∂

∂x
(x2 + y2 + z2)1/2

=
1

2
(x2 + y2 + z2)−1/2 ∂

∂x
(x2 + y2 + z2) =

x

r
.

(S21.3)

Similarly,
∂r

∂y
=
y

r
and

∂r

∂z
=
z

r
, (S21.4)

and
dr

dλ
=
∂r

∂x

dx

dλ
+
∂r

∂y

dy

dλ
+
∂r

∂z

dz

dλ

=
x

r
.

(S21.5)
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In the 2nd line I used the value of ∂r/∂x from Eq. (S21.3), and the derivatives

dx

dλ
= 1 ,

dy

dλ
=

dz

dλ
= 0 (S21.6)

that can be found from Eq. (P21.8).

Now, to expand the left-hand side of the geodesic equation:

d

dλ

{
gµν

dxν

dλ

}
=

d

dλ

{
gyy

dy

dλ
+ gyx

dx

dλ

}
=

d

dλ

{[
1 +

RSch

r3
y2

]
dy

dλ
+
RSch

r3
xy

dx

dλ

}
=

d2y

dλ2
− 3

RSch

r4

x

r
xy

dx

dλ
+
RSch

r3

dx

dλ
y

dx

dλ

=
d2y

dλ2
− 3

RSchb

r5
x2 +

RSchb

r3
.

(S21.7)

Note that I dropped a term
RSchy

2

r3

d2y

dλ2

and a term
RSch

r3
xy

d2x

dλ2
,

which is justified because the acceleration d2y
dλ2 will be proportional to G, and RSch is

proportional to G, so this term is 2nd order in G. The problem stated that we are to
work to first order in G. No points were taken off, however, from students who retained
these or other negligible terms.

Note, however, that d2y dλ2 is not negligible, and appears in the answer. This is
because dy/dλ is not actually zero, but is of order G. dy/dλ is zero for the unperturbed
path, but in reality the photon picks up a small velocity in the y-direction, caused by
the gravitational attraction of the Sun and proportional to G. d2y/dλ2 will also be
proportional to G. When dy/dλ multiplies a factor proportional to RSch, the product is
of order G2 and hence negligible. But d2y/dλ2 by itself is of order G and is not negligible.

Note on propagation of errors: I normally do not take off points for propagating errors,
so for example a student who forgot the factor of 1/2 in determining gxy would get full
credit on part (b), even though the answer would contain terms that are wrong by a factor
of 1/2. However, it seems right to me to make an exception to this rule in cases where
an error on part (a) causes the consequent answer on a later part to become trivial. For
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example, if a student described a metric in part (a) which had no dependence on r, then
many of the terms in parts (b) and (c) would not be present. In such cases I still took
off points in parts (b) and (c), because it didn’t seem fair to me to give such a student
credit for calculating these terms, when the student exhibited no such capability.

(c) (9 points)

1

2

∂

∂y
(gστ )

dxσ

dλ

dxτ

dλ
=

1

2

∂

∂y
(gxx)

(
dx

dλ

)2

+
1

2

∂

∂y
(gtt)

(
dt

dλ

)2

=
1

2

∂

∂y

(
1 +

RSch

r3
x2

)
− 1

2
c2
∂

∂y

(
1− RSch

r

)(
1

c2

)
= −1

2

(
3
RSch

r4

y

r
x2

)
− 1

2

(
RSch

r2

y

r

)

= −3

2

RSchb

r5
x2 − 1

2

RSchb

r3
.

(S21.8)

(d) (2 points) Combining Eqs. (S21.7) and (S21.8), we find

d2y

dλ2
= −3

2

RSchb

r5
x2 − 1

2

RSchb

r3
+ 3

RSchb

r5
x2 − RSchb

r3

=
3

2
RSchb

[
x2

r5
− 1

r3

]
.

(S21.9)

(e) (4 points) The final value of dy/dλ is given by Eq. (P21.9), while the final value of
dx/dλ will be equal to 1, at least up to possible corrections proportional to G. Thus,
the final velocity will make an angle α relative to the horizontal, where

tanα =
dy/dλ|final

dx/dλ|final

=

∫ ∞
−∞

d2y

dλ2
dλ .

Since tanα will be proportional to G, the small angle approximation tanα = α will
apply, and

α ≈
∫ ∞
−∞

d2y

dλ2
dλ . (S21.10)
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Then, using Eqs. (S21.9) and combining with Eqs. (P21.4) and (P21.8),

α =
3

2
RSchb

∫ ∞
−∞

[
x2

r5
− 1

r3

]
dλ

=
3

2
RSchb

∫ ∞
−∞

[
λ2

(λ2 + b2)5/2
− 1

(λ2 + b2)3/2

]
dλ .

(S21.11)

You were not asked to carry out these integrals, but using the table of integrals given
with the problem, one finds

α =
3

2
RSchb

[
2

3b2
− 2

b2

]
= −2RSch

b
= −4GM

c2b
. (S21.12)

The minus sign indicates that the deflection is downward, as one would expect.

PROBLEM 22: PRESSURE AND ENERGY DENSITY OF MYSTERIOUS
STUFF

(a) If u ∝ 1/
√
V , then one can write

u(V + ∆V ) = u0

√
V

V + ∆V
.

(The above expression is proportional to 1/
√
V + ∆V , and reduces to u = u0 when

∆V = 0.) Expanding to first order in ∆V ,

u =
u0√

1 + ∆V
V

=
u0

1 + 1
2

∆V
V

= u0

(
1− 1

2

∆V

V

)
.

The total energy is the energy density times the volume, so

U = u(V + ∆V ) = u0

(
1− 1

2

∆V

V

)
V

(
1 +

∆V

V

)
= U0

(
1 +

1

2

∆V

V

)
,

where U0 = u0V . Then

∆U =
1

2

∆V

V
U0 .

(b) The work done by the agent must be the negative of the work done by the gas, which
is p∆V . So

∆W = −p∆V .
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(c) The agent must supply the full change in energy, so

∆W = ∆U =
1

2

∆V

V
U0 .

Combining this with the expression for ∆W from part (b), one sees immediately
that

p = −1

2

U0

V
= − 1

2
u0 .

PROBLEM 23: THE EFFECT OF PRESSURE ON COSMOLOGICAL EVO-
LUTION (25 points)

(a) (8 points) This problem is answered most easily by starting from the cosmological
formula for energy conservation, which I remember most easily in the form motivated
by dU = −p dV . Using the fact that the energy density u is equal to ρc2, the energy
conservation relation can be written

dU

dt
= −pdV

dt
=⇒ d

dt

(
ρc2a3

)
= −p d

dt

(
a3
)
.

Setting

ρ =
α

a8

for some constant α, the conservation of energy formula becomes

d

dt

(
αc2

a5

)
= −p d

dt

(
a3
)
,

which implies

−5
αc2

a6

da

dt
= −3pa2 da

dt
.

Thus

p =
5

3

αc2

a8
=

5

3
ρc2 .

Alternatively, one may start from the equation for the time derivative of ρ,

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.
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Since ρ = α
a8 , we take the time derivative to find ρ̇ = −8(ȧ/a)ρ, and therefore

−8
ȧ

a
ρ = −3

ȧ

a

(
ρ+

p

c2

)
,

and therefore

p =
5

3
ρc2.

(b) (9 points) For a flat universe, the Friedmann equation reduces to(
ȧ

a

)2

=
8π

3
Gρ .

Using ρ ∝ 1/a8, this implies that

ȧ =
β

a3
,

for some constant β. Rewriting this as

a3 da = β dt ,

we can integrate the equation to give
1

4
a4 = βt+ const ,

where the constant of integration has no effect other than to shift the origin of the
time variable t. Using the standard big bang convention that a = 0 when t = 0, the
constant of integration vanishes. Thus,

a ∝ t1/4 .

The arbitrary constant of proportionality in this answer is consistent with the
wording of the problem, which states that “You should be able to determine the
function a(t) up to a constant factor.” Note that we could have expressed the
constant of proportionality in terms of the constant α that we used in part (a),
but there would not really be any point in doing that. The constant α was not a
given variable. If the comoving coordinates are measured in “notches,” then a is
measured in meters per notch, and the constant of proportionality in our answer can
be changed by changing the arbitrary definition of the notch.

(c) (8 points) We start from the conservation of energy equation in the form

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.

Substituting ρ̇ = −n(ȧ/a)ρ and p = (2/3)ρc2, we have

−nHρ = −3H

(
5

3
ρ

)
and therefore

n = 5.
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QUIZ 2

PROBLEM 1: DID YOU DO THE READING? (30 points)

(a) (5 points) What is a necessary condition for two photons in a head-on collision to
be able to produce an electron-positron pair?

(i) The energy of the photons must exceed the “rest energy” of the electron-
positron pair, which is roughly 1.02 TeV.

(ii) The energy of the photons must exceed the “rest energy” of the electron-
positron pair, which is roughly 1.02 GeV.

(iii) The energy of the photons must be below the “rest energy” of the electron-
positron pair, which is roughly 1.02 keV.

(iv) The energy of the photons must exceed the “rest energy” of the electron-
positron pair, which is roughly 1.02 MeV.

(v) Two colliding massless objects cannot produce massive particles as an out-
come of their collision.

(b) (5 points) In Chapter 4, Recipe for a Hot Universe, Weinberg states that there are
three conserved quantities that must be specified in the recipe for the early universe.
What are they? [Grading: one correct = 2 pts; two correct = 4 pts; three correct =
5 pts.]

(i)

(ii)

(iii)

— Problem 1 continues on next page. —
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(c) (5 points) Why are “complicated” Feynman diagrams needed for calculations of the
strong interactions, whereas accurate predictions can be made for electromagnetism
with only the “simple” diagrams?

(i) Only the simplest Feynman diagrams in electromagnetism give a non-zero con-
tribution; the more complicated diagrams cancel each other out.

(ii) When calculating the rate for electromagnetic processes, such as the scattering
of two electrons, one needs to add an infinite number of contributions, each
one symbolized in a Feynman diagram. The addition of one more internal line
to the diagram multiplies its numerical value by a factor roughly equal to the
“fine structure constant,” about 1/137.036. Complicated diagrams therefore
give small contributions. For the strong interactions, however, the constant
that plays the role of the fine structure constant is roughly equal to one, so
complicated diagrams are not suppressed.

(iii) When calculating the rate for electromagnetic processes, such as the scattering
of two electrons, one needs to add an infinite number of contributions, each
one symbolized in a Feynman diagram. The addition of one more internal line
to the diagram multiplies its numerical value by a factor roughly equal to the
“fine structure constant,” which is about equal to one, meaning that adding
internal lines to a diagram doesn’t change its value significantly. For the strong
interactions, however, the constant that plays the role of the fine structure
constant is roughly equal to 137, so complicated diagrams are strongly enhanced.

(iv) Simple Feynman diagrams are mathematically ill-defined in the theory of strong
interactions, whereas in electromagnetism they give a sensible numerical result.

(v) Calculations for the strong interactions involve six quarks, while there are only
three charged leptons. If there were three more electron-like particles (in ad-
dition to the muon and the tau lepton), then electromagnetism would be as
complicated as the strong interactions.

— Problem 1 continues on next page. —



8.286 QUIZ 2, FALL 2020 p. 3

(d) (5 points) Consider the following observable phenomena:

(A) The motion of stars moving in large-radius circular orbits around the centers
of spiral galaxies.

(B) The motion of some galaxies relative to the galaxy clusters they inhabit.

(C) Gravitational lensing of light emitted by stars in nearby galaxies.

Which one of the following combinations constitutes observational evidence that dark
matter exists?

(i) Only (A).

(ii) Only (B).

(iii) Only (C).

(iv) (A) and (B).

(v) (A), (B), and (C).

(e) (5 points) Consider the following claims about hadrons:

(A) Electrons and neutrinos make up 90% of the Universe’s hadronic matter
content.

(B) They are the class of particles affected by strong interactions (i.e., by the
strong nuclear force).

(C) It is a synonym of “baryons.”

(D) They are theorized to be made up of more fundamental particles, called
“quarks.”

(E) They cannot be made up of more fundamental constituents, because if they
were, we should be able to break them up into their building blocks and
observe the hypothetical “quarks” directly.

Which combination of these claims is true?

(i) Only (A).

(ii) Only (B).

(iii) (B) and (D).

(iv) (B) and (E).

(v) (B), (C), and (D).

— Problem 1 continues on next page. —
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(f) (5 points) Which of the following is the range of typical binding energies per nucleon
in an atomic nucleus? (This is relevant to nuclear fusion and nuclear fission studies,
and to the epoch of Big Bang nucleosynthesis.)

(i) 1 eV – 10 eV.

(ii) 100 eV – 1 keV.

(iii) 10 keV – 100 keV.

(iv) 1 MeV – 10 MeV.

(v) 100 MeV – 1 GeV.

— End of Problem 1. —
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PROBLEM 2: GEODESICS ON THE SURFACE OF A SPHERE (25 points)

In this problem we will explore the geodesic equation for the metric describing the
surface of a sphere. We will describe the sphere as in Lecture Notes 5, with metric given
by

ds2 = R2
(
dθ2 + sin2 θ dφ2

)
, (2.1)

where R is the radius of the sphere. As given on the formula sheet, the geodesic equation
can be written as

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds
. (2.2)

(a) (5 points) Using the metric of Eq. (2.1), write explicitly the geodesic equation for
i = 1 = θ. By “explicitly,” we mean that the equation that you give should not
contain any instances of g, i, j, or k. All instances of the metric should be replaced
using the metric from Eq. (2.1), and all repeated indices should be summed explicitly.

(b) (5 points) Again using the metric of Eq. (2.1), write explicitly the geodesic equation
for i = 2 = φ.

(c) (5 points) Consider a curve that circles the sphere at fixed latitude,

θ(s) = θ0 , φ(s) = βs , (2.3)

where β and θ0 are constants. Use the geodesic equations you found in parts (a)
and (b) to find out if these curves are geodesics (i.e., see if they statisfy the geodesic
equations). For what values of θ0, if any, are these curves geodesics, and for what
values of θ0, if any, are they not?

— Problem 2 continues on next page. —
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(d) (5 points) Consider a curve that moves along a line of fixed longitude:

θ(s) = γs , φ(s) = φ0 , (2.4)

where γ and φ0 are constants. Use the equations you found in parts (a) and (b)
to find the values of φ0, if any, for which these curves are geodesics, and for what
values, if any, they are not.

(e) (2 points) The geodesic equations imply that there is a conserved quantity of the
form

L ≡ F (θ, φ)
dφ

ds
. (2.5)

(By “conserved,” we mean that this quantity is guaranteed to be constant along a
geodesic.) Find the function F (θ, φ) for which this is true. Note (a) that F (θ, φ) is
defined by the conservation statement only up to a multiplicative constant; and (b)
that a function need not actually vary as its argument is varied (i.e., q(x) = 5 is a
perfectly valid function of x).

(f) (3 points) Use your answers from part (e), (a), and (b) to find an equation for
geodesics of the form

d2θ

ds2
= expression , (2.6)

where the “expression” depends only on θ and the conserved quantity L. (This is
useful, since differential equations involving just one variable are generally easier to
solve than differential equations involving two variables.) You may leave F (θ, φ) in
your answer, if you have not evaluated it.

— End of Problem 2. —
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PROBLEM 3: TRAVEL IN THE SCHWARZSCHILD METRIC (20 points)

Consider a black hole of mass M , described by the Schwarzschild metric as written
on the formula sheets:

ds2 ≡ −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2(dθ2 + sin2 θ dφ2) ,

(3.1)

In this problem we will consider a set of different observers in this spacetime, labeled by
A, B, C, and D, as shown in the diagram above and described below.

(a) (5 points) Let observer A be stationary at an arbitrarily large value of r (you can
take rA =∞), and let observer B be stationary at

rB = 4RS , (3.2)

where RS is the Schwarzschild radius, RS = 2GM/c2. (Note that observer B needs
to be using rocket propulsion to prevent herself from falling into the black hole.)
Suppose that observer B is sending out pulses of electromagnetic radiation, at evenly
spaced intervals ∆τB , as measured on B’s local clock. What is the time interval ∆τA
that observer A will measure between the pulses that he receives?

(b) (5 points) Observer C is in orbit around the black hole, also at radius

rC = 4RS . (3.3)

The orbit is in the equatorial plane, with θ fixed at θ = π
2 , and φ changing with time

as
φ(t) = ωorb t . (3.4)

In Problem 3 of Problem Set 6 you showed that the orbital angular velocity ωorb,
for a circular orbit, must satisfy

rω2
orb =

GM

r2
. (3.5)

As measured on C’s local clock, how long does it take for C to complete one orbit
(i.e., for φ to change by 2π)?

— Problem 3 continues on next page. —
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(c) (5 points) Now consider an observer D on a spaceship traveling in a circle at the
same radius,

rD = 4RS , (3.6)

also in the equatorial plane, θ = π
2 . Using its rocket power, the spaceship travels

twice as fast as observer C, with

φ(t) = ωD t = 2ωorb t . (3.7)

As measured on D’s local clock, how long does it take for D to make one full circle
(i.e., for φ to change by 2π).

(d) (5 points) If a tape measure, at rest with respect to the Schwarzschild coordinates,
were stretched around the circle at radius r = 4RS , what circumference would it
measure?
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PROBLEM 4: PRESSURE AND ENERGY DENSITY OF MYSTERIOUS
STUFF (25 points)

The following problem was Problem 22 of the Review Problems for Quiz 2, and earlier it
was Problem 3, Quiz 3, 2002.

In Lecture Notes 6, with further calculations in Problem 4 of Problem Set 6, a
thought experiment involving a piston was used to show that p = 1

3ρc
2 for radiation. In

this problem you will apply the same technique to calculate the pressure of mysterious
stuff, which has the property that the energy density falls off in proportion to 1/

√
V as

the volume V is increased.

If the initial energy density of the mysterious stuff is u0 = ρ0c
2, then the initial

configuration of the piston can be drawn as

The piston is then pulled outward, so that its initial volume V is increased to V + ∆V .
You may consider ∆V to be infinitesimal, so ∆V 2 can be neglected.

(a) (15 points) Using the fact that the energy density of mysterious stuff falls off as
1/
√
V , find the amount ∆U by which the energy inside the piston changes when the

volume is enlarged by ∆V . Define ∆U to be positive if the energy increases.

(b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how much
work ∆W is done by the agent that pulls out the piston?

(c) (5 points) Use your results from (a) and (b) to express the pressure p of the mysterious
stuff in terms of its energy density u. (If you did not answer parts (a) and/or (b),
explain as best you can how you would determine the pressure if you knew the
answers to these two questions.)
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Problem Maximum Score Initials

1 30

2 25

3 20

4 25

TOTAL 100
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PROBLEM 1: DID YOU DO THE READING? (30 points)

(a) (5 points) What is a necessary condition for two photons in a head-on collision to
be able to produce an electron-positron pair?

(i) The energy of the photons must exceed the “rest energy” of the electron-
positron pair, which is roughly 1.02 TeV.

(ii) The energy of the photons must exceed the “rest energy” of the electron-
positron pair, which is roughly 1.02 GeV.

(iii) The energy of the photons must be below the “rest energy” of the electron-
positron pair, which is roughly 1.02 keV.

(iv) The energy of the photons must exceed the “rest energy” of the electron-
positron pair, which is roughly 1.02 MeV.

(v) Two colliding massless objects cannot produce massive particles as an out-
come of their collision.

[Comment: The condition in item (iv) is necessary, but it is not always sufficient. A
total energy exceeding 1.02 MeV will be sufficient to produce an electron-positron
pair in a head-on collision if the photons have equal energy. Otherwise one would
have to calculate the energy in the center-of-mass frame of reference (also called the
zero-momentum frame). If the total center-of-mass energy exceeds 1.02 MeV, then
there is enough energy to produce an electron-positron pair.]

(b) (5 points) In Chapter 4, Recipe for a Hot Universe, Weinberg states that there are
three conserved quantities that must be specified in the recipe for the early universe.
What are they? [Grading: one correct = 2 pts; two correct = 4 pts; three correct =
5 pts.]

(i) electric charge

(ii) baryon number

(iii) lepton number

[Comment: Some students included energy and/or momentum on this list. By
looking at Weinberg’s Chapter 4, it is easy to verify that these items were not on his
list. But it is less obvious why they do not belong on this list.
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In the context of general relativity, the energy density and momentum density of
everything except the gravitational field are well-defined, but they are obviously not
conserved. As in Newtonian mechanics, matter can exchange energy and momentum
with the gravitational field. To invoke energy or momentum conservation, we have
to be able to include the energy and momentum of the gravitational field. For
localized systems the metric approaches the Minkowski metric at large distances,
and for such systems it is known how to construct a total energy and momentum,
including gravity, that is conserved. But for our cosmological model, the metric does
not approach the Minkowski metric anywhere.

We have already constructed the most general possible homogeneous and isotropic
universe, described by the Robertson-Walker metric and evolving according to the
Friedmann equations. We did not have to specify either the value of the energy or the
value of the momentum. Since the Friedmann equations fully describe the evolution,
if there was a conserved energy or momentum, the conservation would have to be
a consequence of the Friedmann equations. However, the Friedmann equations can
in fact be used to show that, if one does not specify the pressure, then any closed
universe can evolve into any other, any open universe can evolve into any other, and
any flat universe can evolve into any other. So if there is a conserved energy, then all
closed universes must have the same energy, all open universes must have the same
energy, and all flat universes must have the same energy. Some physicists, including
Landau and Lifshitz (The Classical Theory of Fields, p. 335), adopt a definition of
energy that implies that the total energy of any closed universe is zero. Misner,
Thorne, and Wheeler, on the other hand, argue that the total energy of a closed
universe is undefined. I (A.G.) side with Landau and Lifshitz.]

(c) (5 points) Why are “complicated” Feynman diagrams needed for calculations of the
strong interactions, whereas accurate predictions can be made for electromagnetism
with only the “simple” diagrams?

(i) Only the simplest Feynman diagrams in electromagnetism give a non-zero con-
tribution; the more complicated diagrams cancel each other out.

(ii) When calculating the rate for electromagnetic processes, such as the scattering
of two electrons, one needs to add an infinite number of contributions, each
one symbolized in a Feynman diagram. The addition of one more internal line
to the diagram multiplies its numerical value by a factor roughly equal to the
“fine structure constant,” about 1/137.036. Complicated diagrams therefore
give small contributions. For the strong interactions, however, the constant
that plays the role of the fine structure constant is roughly equal to one, so
complicated diagrams are not suppressed.

(iii) When calculating the rate for electromagnetic processes, such as the scattering
of two electrons, one needs to add an infinite number of contributions, each
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one symbolized in a Feynman diagram. The addition of one more internal line
to the diagram multiplies its numerical value by a factor roughly equal to the
“fine structure constant,” which is about equal to one, meaning that adding
internal lines to a diagram doesn’t change its value significantly. For the strong
interactions, however, the constant that plays the role of the fine structure
constant is roughly equal to 137, so complicated diagrams are strongly enhanced.

(iv) Simple Feynman diagrams are mathematically ill-defined in the theory of strong
interactions, whereas in electromagnetism they give a sensible numerical result.

(v) Calculations for the strong interactions involve six quarks, while there are only
three charged leptons. If there were three more electron-like particles (in ad-
dition to the muon and the tau lepton), then electromagnetism would be as
complicated as the strong interactions.

(d) (5 points) Consider the following observable phenomena:

(A) The motion of stars moving in large-radius circular orbits around the centers
of spiral galaxies.

(B) The motion of some galaxies relative to the galaxy clusters they inhabit.

(C) Gravitational lensing of light emitted by stars in nearby galaxies.

Which one of the following combinations constitutes observational evidence that dark
matter exists?

(i) Only (A).

(ii) Only (B).

(iii) Only (C).

(iv) (A) and (B).

(v) (A), (B), and (C).

[Comment: Since (A), (B), and (C) are all correct, answer (v) received full credit.
But since the other answers are partially correct, answers (i), (ii), and (iii) received
1 point, and answer (iv) received 3 points.]

(e) (5 points) Consider the following claims about hadrons:

(A) Electrons and neutrinos make up 90% of the Universe’s hadronic matter
content.

(B) They are the class of particles affected by strong interactions (i.e., by the
strong nuclear force).

(C) It is a synonym of “baryons.”
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(D) They are theorized to be made up of more fundamental particles, called
“quarks.”

(E) They cannot be made up of more fundamental constituents, because if they
were, we should be able to break them up into their building blocks and
observe the hypothetical “quarks” directly.

Which combination of these claims is true?

(i) Only (A).

(ii) Only (B).

(iii) (B) and (D).

(iv) (B) and (E).

(v) (B), (C), and (D).

[Comment: Since (B) and (D) are both correct, answer (iii) received full credit.
But since answer (ii) is partially correct, it received 2 points.]

(f) (5 points) Which of the following is the range of typical binding energies per nucleon
in an atomic nucleus? (This is relevant to nuclear fusion and nuclear fission studies,
and to the epoch of Big Bang nucleosynthesis.)

(i) 1 eV – 10 eV.

(ii) 100 eV – 1 keV.

(iii) 10 keV – 100 keV.

(iv) 1 MeV – 10 MeV.

(v) 100 MeV – 1 GeV.
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PROBLEM 2: GEODESICS ON THE SURFACE OF A SPHERE (25 points)

In this problem we will explore the geodesic equation for the metric describing the
surface of a sphere. We will describe the sphere as in Lecture Notes 5, with metric given
by

ds2 = R2
(
dθ2 + sin2 θ dφ2

)
, (2.1)

where R is the radius of the sphere. As given on the formula sheet, the geodesic equation
can be written as

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds
. (2.2)

(a) (5 points) Using the metric of Eq. (2.1), write explicitly the geodesic equation for
i = 1 = θ. By “explicitly,” we mean that the equation that you give should not
contain any instances of g, i, j, or k. All instances of the metric should be replaced
using the metric from Eq. (2.1), and all repeated indices should be summed explicitly.

Answer: Taking i = θ in Eq. (2.1), and remembering that the metric is diagonal and that
only gφφ depends on θ, the equation simplifies to

d

ds

{
gθθ

dθ

ds

}
=

1

2

∂gφφ
∂θ

dφ

ds

dφ

ds
.

Using gθθ = R2 and gφφ = R2 sin2 θ, this becomes

d

ds

{
R2 dθ

ds

}
=

1

2

∂(R2 sin2 θ)

∂θ

(
dφ

ds

)2

.

Simplifying,

d2θ

ds2
= sin θ cos θ

(
dφ

ds

)2

.
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(b) (5 points) Again using the metric of Eq. (2.1), write explicitly the geodesic equation
for i = 2 = φ.

Answer: Taking i = φ and remembering that the metric is diagonal and that none of the
components of gφφ depend on φ, the geodesic equation simplifies to

d

ds

{
gφφ

dφ

ds

}
= 0 .

Again using gφφ = R2 sin2 θ, this becomes

d

ds

{
R2 sin2 θ

dφ

ds

}
= 0 .

The equation above is a perfectly acceptable answer. One might also recognize that
R2 can be factored out, giving

d

ds

{
sin2 θ

dφ

ds

}
= 0 .

If one wishes, one could expand the derivative using the product rule, giving

sin2 θ
d2φ

ds2
+ 2 sin θ cos θ

dθ

ds

dφ

ds
= 0 .

(c) (5 points) Consider a curve that circles the sphere at fixed latitude,

θ(s) = θ0 , φ(s) = βs , (2.3)

where β and θ0 are constants. Use the geodesic equations you found in parts (a)
and (b) to find out if these curves are geodesics (i.e., see if they statisfy the geodesic
equations). For what values of θ0, if any, are these curves geodesics, and for what
values of θ0, if any, are they not?

Answer: The φ equation is trivially satisfied, since

sin2 θ
dφ

ds
= sin2(θ0)β ,
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which is constant, so its derivative vanishes. The θ equation becomes

0 = β2 sin θ0 cos θ0 ,

which is satisfied for θ0 = π/2. Thus,

the curves are geodesics if and only if θ0 = π/2.

The geodesic equations are formally satisfied if θ0 = 0 or θ0 = π, since then sin θ0

vanishes. These are not actually geodesics, however, due to the singularity of the
polar coordinate system at θ = 0 and θ = π. For these values of θ, φ is undefined,
and the curve described by Eq. (2.3) degenerates into a point. (Although θ0 = 0 or
θ0 = π are not actually geodesics, no points were taken off for including them in the
answer.)

(d) (5 points) Consider a curve that moves along a line of fixed longitude:

θ(s) = γs , φ(s) = φ0 , (2.4)

where γ and φ0 are constants. Use the equations you found in parts (a) and (b)
to find the values of φ0, if any, for which these curves are geodesics, and for what
values, if any, they are not.

Answer:
The curves are geodesics for all values of φ0.

The θ equation is satisfied, since d2θ/ds2 = 0 and dφ/ds = 0, while dφ/ds = 0 alone
is sufficient to imply that the φ equation is satisfied.

(e) (2 points) The geodesic equations imply that there is a conserved quantity of the
form

L ≡ F (θ, φ)
dφ

ds
. (2.5)

(By “conserved,” we mean that this quantity is guaranteed to be constant along a
geodesic.) Find the function F (θ, φ) for which this is true. Note (a) that F (θ, φ) is
defined by the conservation statement only up to a multiplicative constant; and (b)
that a function need not actually vary as its argument is varied (i.e., q(x) = 5 is a
perfectly valid function of x).

Answer: The φ equation already has this form,

d

ds

{
sin2 θ

dφ

ds

}
= 0 =⇒ dL

ds
= 0 ,

for

L = sin2 θ
dφ

ds
,
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so

F (θ, φ) = sin2 θ .

It would of course also be correct to use F (θ, φ) = R2 sin2 θ, or more generally F (θ, φ)
can be any constant times sin2 θ.

(f) (3 points) Use your answers from part (e), (a), and (b) to find an equation for
geodesics of the form

d2θ

ds2
= expression , (2.6)

where the “expression” depends only on θ and the conserved quantity L. (This is
useful, since differential equations involving just one variable are generally easier to
solve than differential equations involving two variables.) You may leave F (θ, φ) in
your answer, if you have not evaluated it.

Answer: Using the definition of L chosen in the solution above for part (e), we can write

dφ

ds
=

L

sin2 θ
.

Substituting this into the geodesic equation for θ, we find

d2θ

ds2
=

cos θ

sin3 θ
L2 .

If L were defined with a different multiplicative constant, then this equation would
be modified accordingly.
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PROBLEM 3: TRAVEL IN THE SCHWARZSCHILD METRIC (20 points)

Consider a black hole of mass M , described by the Schwarzschild metric as written
on the formula sheets:

ds2 ≡ −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2(dθ2 + sin2 θ dφ2) .

(3.1)

In this problem we will consider a set of different observers in this spacetime, labeled by
A, B, C, and D, as shown in the diagram above and described below.

(a) (5 points) Let observer A be stationary at an arbitrarily large value of r (you can
take rA =∞), and let observer B be stationary at

rB = 4RS , (3.2)

where RS is the Schwarzschild radius, RS = 2GM/c2. (Note that observer B needs
to be using rocket propulsion to prevent herself from falling into the black hole.)
Suppose that observer B is sending out pulses of electromagnetic radiation, at evenly
spaced intervals ∆τB , as measured on B’s local clock. What is the time interval ∆τA
that observer A will measure between the pulses that he receives?

Answer: For B, the coordinate time interval between pulses, ∆tB , is related to the proper
time interval between pulses, ∆τB , by the metric relation

−c2 ∆τ2
B = −

(
1− 2GM

rBc2

)
c2∆t2B .

The other terms vanish, since B is stationary, so ∆r = ∆θ = ∆φ = 0. Using
rB = 4RS , it follows after a litle algebra that

∆tB =

√
4

3
∆τB .
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∆τB is the time interval that would be measured on B’s local clock. (If this is
not clear, it may help to read again the section The Generalization from Space to
Spacetime, in Lecture Notes 5. Note also that B’s clock is not free-falling, since B is
using a rocket to hold her position. In the section on Accelerating Clocks in Lecture
Notes 1, we discuss why it is reasonable to assume an “ideal clock” for which any
corrections due to acceleration can be neglected. If the corrections are not negligible,
then they depend on the detailed construction of the clock.)

Since the metric does not depend on time, each pulse traveling from B to A will take
the same amount of coordinate time for the trip. So the coordinate time interval at

A will be ∆tA = ∆tB , and hence ∆tA =
√

4
3 ∆τB . Finally, we note that for A, at

r = ∞, the metric reduces to the Minkowski metric, and since A is stationary, this
gives ∆τA = ∆tA. So finally,

∆τA =

√
4

3
∆τB .

(b) (5 points) Observer C is in orbit around the black hole, also at radius

rC = 4RS . (3.3)

The orbit is in the equatorial plane, with θ fixed at θ = π
2 , and φ changing with time

as
φ(t) = ωorb t . (3.4)

In Problem 3 of Problem Set 6 you showed that the orbital angular velocity ωorb,
for a circular orbit, must satisfy

rω2
orb =

GM

r2
. (3.5)

As measured on C’s local clock, how long does it take for C to complete one orbit
(i.e., for φ to change by 2π)?

Answer: From Eq. (3.4), it is clear that the coordinate time interval for one orbit is

∆torb =
2π

ωorb
,

so the problem is reduced to finding the relation between coordinate time and proper
time for C. For C, the metric relation becomes

−c2∆τ2
C = −

(
1− 2GM

rCc2

)
c2∆t2C + r2

C sin2 θC ∆φ2
C .
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Using ∆φC = ωorb ∆tC and then

r2
C ω

2
orb =

GM

rC
=

1

8
c2 ,

and also using sin2 θC = 1, one finds

−c2∆τ2
C = −3

4
c2 ∆t2C +

1

8
c2 ∆t2C = −5

8
c2 ∆t2C ,

so ∆τC =
√

5
8 ∆tC . Thus

∆τC =

√
5

2

π

ωorb
.

Using Eq. (3.5) and r = 4RS , one finds that

ωorb =
c3

16
√

2GM
,

which can be used to replace ωorb in the previous equation, resulting in

∆τC = 16
√

5π
GM

c3
.

(c) (5 points) Now consider an observer D on a spaceship traveling in a circle at the
same radius,

rD = 4RS , (3.6)

also in the equatorial plane, θ = π
2 . Using its rocket power, the spaceship travels

twice as fast as observer C, with

φ(t) = ωD t = 2ωorb t . (3.7)

As measured on D’s local clock, how long does it take for D to make one full circle
(i.e., for φ to change by 2π).

Answer: The clock time for one orbit is clearly

∆tD =
π

ωorb
,
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but we need to convert to proper time. For D, they are related by

−c2∆τ2
D = −

(
1− 2GM

rDc2

)
c2∆t2D + r2

D sin2 θD ∆φ2
D

= −3

4
c2∆t2D + r2

D(2ωorb ∆tD)2 .

Using r2
Dω

2
orb = 1

8 c
2, this becomes

−c2∆τ2
D = −3

4
c2∆t2D +

1

2
c2∆t2D = −1

4
c2∆t2D .

So

∆τD =
1

2
∆tD ,

and then for one orbit,

∆τD =
π

2ωorb
.

Using the previous equation for ωorb, this becomes

∆τD =
8
√

2πGM

c3
.

(d) (5 points) If a tape measure, at rest with respect to the Schwarzschild coordinates,
were stretched around the circle at radius r = 4RS , what circumference would it
measure?

Answer: For this case the metric reduces to

ds2 = r2 dφ2 ,

so

∆s = 2πr = 8πRS =
16πGM

c2
.
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PROBLEM 4: PRESSURE AND ENERGY DENSITY OF MYSTERIOUS
STUFF (25 points)

The following problem was Problem 22 of the Review Problems for Quiz 2, and earlier it
was Problem 3, Quiz 3, 2002.

In Lecture Notes 6, with further calculations in Problem 4 of Problem Set 6, a
thought experiment involving a piston was used to show that p = 1

3ρc
2 for radiation. In

this problem you will apply the same technique to calculate the pressure of mysterious
stuff, which has the property that the energy density falls off in proportion to 1/

√
V as

the volume V is increased.

If the initial energy density of the mysterious stuff is u0 = ρ0c
2, then the initial

configuration of the piston can be drawn as

The piston is then pulled outward, so that its initial volume V is increased to V + ∆V .
You may consider ∆V to be infinitesimal, so ∆V 2 can be neglected.

(a) (15 points) Using the fact that the energy density of mysterious stuff falls off as
1/
√
V , find the amount ∆U by which the energy inside the piston changes when the

volume is enlarged by ∆V . Define ∆U to be positive if the energy increases.

Answer: If u ∝ 1/
√
V , then one can write

u(V + ∆V ) = u0

√
V

V + ∆V
.

(The above expression is proportional to 1/
√
V + ∆V , and reduces to u = u0 when

∆V = 0.) Expanding to first order in ∆V ,

u =
u0√

1 + ∆V
V

=
u0

1 + 1
2

∆V
V

= u0

(
1− 1

2

∆V

V

)
.
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The total energy is the energy density times the volume, so

U = u(V + ∆V ) = u0

(
1− 1

2

∆V

V

)
V

(
1 +

∆V

V

)
= U0

(
1 +

1

2

∆V

V

)
,

where U0 = u0V . Then

∆U =
1

2

∆V

V
U0 .

(b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how much
work ∆W is done by the agent that pulls out the piston?

Answer: The work done by the agent must be the negative of the work done by the gas,
which is p∆V . So

∆W = −p∆V .

(c) (5 points) Use your results from (a) and (b) to express the pressure p of the mysterious
stuff in terms of its energy density u. (If you did not answer parts (a) and/or (b),
explain as best you can how you would determine the pressure if you knew the
answers to these two questions.)

Answer: The agent must supply the full change in energy, so

∆W = ∆U =
1

2

∆V

V
U0 .

Combining this with the expression for ∆W from part (b), one sees immediately
that

p = −1

2

U0

V
= − 1

2
u0 .
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coverage of the upcoming quiz will not necessarily match the coverage of any of the
quizzes from previous years. The coverage for each quiz in recent years is usually
described at the start of the review problems, as I did here.

QUIZ LOGISTICS: The logistics will be identical to Quizzes 1 and 2, except of course
for the dates. The quiz will be closed book, no calculators, no internet, and 85
minutes long. I assume that most of you will take it during our regular class time on
December 2, but you will have the option of starting it any time during a 24-hour
window from 11:05 am EST on December 2 to 11:05 am EST on Thursday, December
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each be expected to spend up to 85 minutes working on it, and then you will upload
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of processing you are doing can vary. If you have questions about the meaning of
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the questions, I will be available on Zoom during the December 2 class time, and
we will arrange for either Bruno or me to be available by email as much as possible
during the other quiz times. If you have any special circumstances that might make
this procedure difficult, or if you need a postponement beyond the 24-hour window,
please let me (guth@ctp.mit.edu) know.

PURPOSE OF THE REVIEW PROBLEMS: These review problems are not to
be handed in, but are being made available to help you study. They come mainly
from quizzes in previous years. In some cases the number of points assigned to the
problem on the quiz is listed — in all such cases it is based on 100 points for the full
quiz.

REVIEW SESSION AND OFFICE HOURS: A review session and special office
hours will be held to help you study for the quiz. Details will follow.

QUIZZES FROM PREVIOUS YEARS: In addition to this set of problems, you
will find on the course web page the actual quizzes that were given in 1994, 1996,
1998, 2000, 2002, 2004, 2005, 2007, 2009, 2011, 2013, 2016, and 2018. The relevant
problems from those quizzes have mostly been incorporated into these review prob-
lems, but you still may be interested in looking at the quizzes, mainly to see how
much material has been included in each quiz. The coverage of the upcoming quiz
will not necessarily match exactly the coverage from all previous years, but I believe
that all these review problems would be fair problems for the upcoming quiz. The
coverage for each quiz in recent years is usually described at the start of the review
problems, as I did here. In 2016 we finished Weinberg’s book by the time of Quiz 2,
but otherwise the coverage has been the same since 2016.
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INFORMATION TO BE GIVEN ON QUIZ:

For the third quiz, the following information will be made available to you:

DOPPLER SHIFT (Definition:)

1 + z ≡ ∆tobserver

∆tsource
=
λobserver

λsource
,

where ∆tobserver and ∆tsource are the period of the wave as measured by
the observer and by the source, respectively, and λobserver and λsource

are the wavelength of the wave, as measured by the observer and by
the source, respectively.

DOPPLER SHIFT (For motion along a line):

Nonrelativistic, u = wave speed, source moving at speed v away from
observer:

z = v/u

Nonrelativistic, observer moving at speed v away from source:

z =
v/u

1− v/u

Doppler shift for light (special relativity), β ≡ v/c, where c is the speed
of light and v is the velocity of recession, as measured by either the
source or the observer:

z =

√
1 + β

1− β
− 1

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=
a(tobserved)

a(temitted)

SPECIAL RELATIVITY:

Time Dilation. A clock that is moving at speed v relative to an inertial
reference frame appears to be running slowly, as measured in that
frame, by a factor γ:

γ ≡ 1√
1− β2

, β ≡ v/c
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Lorentz-Fitzgerald Contraction. A rod that is moving along its length,
relative to an inertial frame, appears to be contracted, as measured in
that frame, by the same factor:

γ ≡ 1√
1− β2

Relativity of Simultaneity. If two clocks that are synchronized in their
own reference frame, and separated by a distance `0 in their own frame,
are moving together, in the direction of the line separating them, at
speed v relative to an inertial frame, then measurements in the inertial
frame will show the trailing clock reading later by an amount

∆t =
β`0
c

Energy-Momentum Four-Vector:

pµ =

(
E

c
, ~p

)
, ~p = γm0~v , E = γm0c

2 =

√
(m0c2)

2
+ |~p|2 c2 ,

p2 ≡ |~p|2 −
(
p0
)2

= |~p|2 − E2

c2
= − (m0c)

2
.

KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-
VERSE:

Hubble’s Law: v = Hr ,
where v = recession velocity of a distant object, H = Hubble
expansion rate, and r = distance to the distant object.

Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1

Scale Factor: `p(t) = a(t)`c ,
where `p(t) is the physical distance between any two objects, a(t)
is the scale factor, and `c is the coordinate distance between the
objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.
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Light Rays in Comoving Coordinates: Light rays travel in straight
lines with physical speed c relative to any observer. In Cartesian

coordinates, coordinate speed
dx

dt
=

c

a(t)
. In general, ds2 =

gµνdxµdxν = 0.

Horizon Distance:

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′

=

{
3ct (flat, matter-dominated),

2ct (flat, radiation-dominated).

COSMOLOGICAL EVOLUTION:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
G

(
ρ+

3p

c2

)
a ,

ρm(t) =
a3(ti)

a3(t)
ρm(ti) (matter), ρr(t) =

a4(ti)

a4(t)
ρr(ti) (radiation).

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.

EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Flat (k = 0): a(t) ∝ t2/3

Ω = 1 .

Closed (k > 0): ct = α(θ − sin θ) ,
a√
k

= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
a√
κ

= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
κ

)3

,

κ ≡ −k > 0 .
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MINKOWSKI METRIC (Special Relativity):

ds2 ≡ −c2 dτ2 = −c2dt2 + dx2 + dy2 + dz2 .

ROBERTSON-WALKER METRIC:

ds2 ≡ −c2 dτ2 = −c2 dt2+a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Alternatively, for k > 0, we can define r =
sinψ√
k

, and then

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + ã2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
k. For k < 0 we can define r =

sinhψ√
−k

, and then

ds2 ≡ −c2 dτ2 = −c2 dt2+ã2(t)
{

dψ2 + sinh2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
−k. Note that ã can be called a if there is no need

to relate it to the a(t) that appears in the first equation above.

SCHWARZSCHILD METRIC:

ds2 ≡ −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2(dθ2 + sin2 θ dφ2) ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
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BLACK-BODY RADIATION:

Whenever kT � mc2 for any particle, where k is the Boltzmann constant,
T is the temperature, and m is the (rest) mass of the particle, in
thermal equilibrium there will be a black-body radiation, in which the
particle will make the following contributions to the energy density,
mass density, pressure, number density, and energy density:

u = g
π2

30

(kT )4

(h̄c)3
(energy density)

p =
1

3
u ρ = u/c2 (pressure, mass density)

n = g∗
ζ(3)

π2

(kT )3

(h̄c)3
(number density)

s = g
2π2

45

k4T 3

(h̄c)3
, (entropy density)

where

g ≡

{
1 per spin state for bosons (integer spin)

7/8 per spin state for fermions (half-integer spin)

g∗ ≡

{
1 per spin state for bosons

3/4 per spin state for fermions ,

and

ζ(3) =
1

13
+

1

23
+

1

33
+ · · · ≈ 1.202 .

The values of g and g∗ for photons, neutrinos, and electron-positron pairs
are as follows:

gγ = g∗γ = 2 ,

gν =
7

8︸ ︷︷ ︸
Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21

4
,

g∗ν =
3

4︸ ︷︷ ︸
Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
9

2
,
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ge+e− =
7

8︸ ︷︷ ︸
Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

=
7

2
,

g∗e+e− =
3

4︸ ︷︷ ︸
Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

= 3 .

Spectrum of Black-Body Radiation:

The energy density for radiation in the frequency interval between ν
and ν + dν is given by

ρν(ν)dν =
8π2 g h̄ν3

c3
1

e2πh̄ν/kT − 1
dν .

EVOLUTION OF A FLAT RADIATION-DOMINATED UNI-
VERSE:

ρ =
3

32πGt2

kT =

(
45h̄3c5

16π3gG

)1/4
1√
t

For mµ = 106 MeV� kT � me = 0.511 MeV, g = 10.75 and then

kT =
0.860 MeV√
t (in sec)

(
10.75

g

)1/4

After the freeze-out of electron-positron pairs,

Tν
Tγ

=

(
4

11

)1/3

.

COSMOLOGICAL CONSTANT:

uvac = ρvacc
2 =

Λc4

8πG
,

pvac = −ρvacc
2 = − Λc4

8πG
.
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GENERALIZED COSMOLOGICAL EVOLUTION:

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2 ,

where

x ≡ a(t)

a(t0)
≡ 1

1 + z
,

Ωk,0 ≡ −
kc2

a2(t0)H2
0

= 1− Ωm,0 − Ωrad,0 − Ωvac,0 .

Age of universe:

t0 =
1

H0

∫ 1

0

xdx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2

=
1

H0

∫ ∞
0

dz

(1 + z)
√

Ωm,0(1 + z)3 + Ωrad,0(1 + z)4 + Ωvac,0 + Ωk,0(1 + z)2
.

Look-back time:

tlook-back(z) =

1

H0

∫ z

0

dz′

(1 + z′)
√

Ωm,0(1 + z′)3 + Ωrad,0(1 + z′)4 + Ωvac,0 + Ωk,0(1 + z′)2
.

PHYSICAL CONSTANTS:

G = 6.674× 10−11 m3 · kg−1 · s−2 = 6.674× 10−8 cm3 · g−1 · s−2

k = Boltzmann’s constant = 1.381× 10−23 joule/K

= 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K

h̄ =
h

2π
= 1.055× 10−34 joule · s

= 1.055× 10−27 erg · s

= 6.582× 10−16 eV · s

c = 2.998× 108 m/s

= 2.998× 1010 cm/s

h̄c = 197.3 MeV-fm, 1 fm = 10−15 m

1 yr = 3.156× 107 s

1 eV = 1.602× 10−19 joule = 1.602× 10−12 erg

1 GeV = 109 eV = 1.783× 10−27 kg (where c ≡ 1)

= 1.783× 10−24 g .
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Planck Units: The Planck length `P , the Planck time tP , the Planck mass
mP , and the Planck energy Ep are given by

`P =

√
Gh̄

c3
= 1.616× 10−35 m ,

= 1.616× 10−33 cm ,

tP =

√
h̄G

c5
= 5.391× 10−44 s ,

mP =

√
h̄c

G
= 2.177× 10−8 kg ,

= 2.177× 10−5 g ,

EP =

√
h̄c5

G
= 1.221× 1019 GeV .

We do not have a complete quantum theory of gravity, but we expect
the Planck scale to be the scale at which the effects of quantum gravity
become significant. That is, we expect the effects of quantum gravity
to be important for processes that involve distances of order `P or
less, times of order tP or less, or particles with masses of order mP or
greater, or energies of order EP or greater.

CHEMICAL EQUILIBRIUM:

(This topic will NOT be included on Quiz 3, but the formulas are
nonetheless included here for logical completeness. They will be rele-
vant to Problem Set 9.)

General Ideal Gas, Relativistic or Not, Bosons or Fermions:

The number density of particles of type i with momenta within a
box of size d3p centered at ~p is given by

ni,~p (~p ) d3p =
ḡi

(2πh̄)3

d3p[
exp

(
Ei(p)−µi

kT

)
± 1
] ,

where

ḡi = number of spin states of particle

Ei(p) =
√
m2
i c

4 + p2c2 = energy of particle with momentum p

mi = mass of particle

µi = chemical potential

± = + for fermions, and − for bosons.
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Note that unlike the quantities g and g∗ defined in the section
on black-body radiation, ḡi simply counts spin states, with no
correction factor associated with fermions.

Chemical potentials are assigned initially to conserved quantities
(e.g., electric charge, baryon number, or lepton number), and are
a way of specifying how much of these quantities are present. The
chemical potential of any type of particle is the sum of the chemical
potentials of its conserved quantities. For example, a proton has
one unit of baryon number and one unit of electric charge, so
µp = µbaryon + µcharge.

The number density of particle i is given by

ni =
ḡi

(2πh̄)3

∫ ∞
0

4πp2 dp[
exp

(
E(p)−µi
kT

)
± 1
] ,

and the energy density is given by

ui =
ḡi

(2πh̄)3

∫ ∞
0

4πp2E(p) dp[
exp

(
E(p)−µi
kT

)
± 1
] .

Ideal Dilute Gas of Nonrelativistic Particles:

The nonrelativistic, dilute gas limit of the formula above for the
number density ni is given by

ni = ḡi
(2πmikT )3/2

(2πh̄)3
e(µi−mic2)/kT .

where ni = number density of particle

ḡi = number of spin states of particle

mi = mass of particle

µi = chemical potential

The formula above assumes that the gas is nonrelativistic (kT �
mic

2) and dilute (e(µi−mic2)/kT � 1).

For any reaction that is consistent with all conservation laws, the
sum of the µi on the left-hand side of the reaction equation must
equal the sum of the µi on the right-hand side. Consequently,
the product of the number densities on the left-hand side, divided
by the product of the number densities on the right-hand side,
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is always independent of all chemical potentials. For example,
since H + γ ←→ p+ e− (hydrogen atom + photon ←→ proton +
electron) is a possible reaction, µH +µγ = µp+µe− , and therefore

nH nγ
np ne−

can be evaluated using the formula above for number densities,
and all chemical potentials will cancel out. (Photons have no con-
served quantities, so µγ ≡ 0, so nH/(np ne−) is also independent
of any chemical potentials.)
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PROBLEM 1: DID YOU DO THE READING (2018)? (20 points)

(a) (5 points) Which one of the following statements about CMB is NOT correct?

(i) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.

(ii) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is <T> = 2.725K.

(iii) After the dipole distortion of the CMB is subtracted away, the temperature of
the CMB varies by 0.3 microKelvin across the sky.

(iv) The photons of the CMB have mostly been traveling on straight lines since they
were last scattered at t ≈ 370, 000 yr, at a location called the surface of last
scattering.

(b) (5 points) The nonuniformities in the cosmic microwave background allow us to
measure the ripples in the mass density of the universe at the time when the plasma
combined to form neutral atoms, about 300,000 - 400,000 years after the big bang.
These ripples are crucial for understanding what happened later, since they are the
seeds which led to the complicated tapestry of galaxies, clusters of galaxies, and
voids. Which of the following sentences describes how these ripples are created in
the context of inflationary models:

(i) Magnetic monopoles can form randomly during the grand unified theory phase
transition, resulting in nonuniformities in the mass density.

(ii) Cosmic strings, which are linelike topological defects, can form randomly during
the grand unified theory phase transition, resulting in nonuniformities in the
mass density.

(iii) They are generated by quantum fluctuations during inflation.

(iv) Since the early universe was very hot, there were large thermal fluctuations
which ultimately evolved into the ripples in the mass density.

(c) (5 points) In Chapter 8 of The First Three Minutes, Steven Weinberg describes
the future of the universe (assuming, as was thought then to be the case, that the
cosmological constant is zero). One possibility that he discusses is that the cosmic
matter density could be greater than the critical density. Assuming that we live in
such a universe, which of the following statements is NOT true?

(i) The universe is finite and its expansion will eventually cease, giving way to an
accelerating contraction.

(ii) Three minutes after the temperature reaches a thousand million degrees (109 K),
the laws of physics guarantee that the universe will crunch, and time will stop.
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(iii) During at least the early part of the contracting phase, we will be able to observe
both redshifts and blueshifts.

(iv) When the universe has recontracted to one-hundredth its present size, the radi-
ation background will begin to dominate the sky, with a temperature of about
300 K.

(d) (5 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(iv) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

(v) Photons from overdense regions at the surface of last scattering appear redder
because they must climb out of the gravitational potential well.

(vi) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

PROBLEM 2: DID YOU DO THE READING? (2016) (25 points)

Except for part (d), you should answer these questions by circling the one statement that
is correct.

(a) (5 points) In the Epilogue of The First Three Minutes, Steve Weinberg wrote: “The
more the universe seems comprehensible, the more it also seems pointless.” The
sentence was qualified, however, by a closing paragraph that points out that

(i) the quest of the human race to create a better life for all can still give meaning
to our lives.

(ii) if the universe cannot give meaning to our lives, then perhaps there is an afterlife
that will.

(iii) the complexity and beauty of the laws of physics strongly suggest that the
universe must have a purpose, even if we are not aware of what it is.

(iv) the effort to understand the universe gives human life some of the grace of
tragedy.

(b) (5 points) In the Afterword of The First Three Minutes, Weinberg discusses the
baryon number of the universe. (The baryon number of any system is the total
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number of protons and neutrons (and certain related particles known as hyperons)
minus the number of their antiparticles (antiprotons, antineutrons, antihyperons)
that are contained in the system.) Weinberg concluded that

(i) baryon number is exactly conserved, so the total baryon number of the universe
must be zero. While nuclei in our part of the universe are composed of protons
and neutrons, the universe must also contain antimatter regions in which nuclei
are composed of antiprotons and antineutrons.

(ii) there appears to be a cosmic excess of matter over antimatter throughout the
part of the universe we can observe, and hence a positive density of baryon
number. Since baryon number is conserved, this can only be explained by
assuming that the excess baryons were put in at the beginning.

(iii) there appears to be a cosmic excess of matter over antimatter throughout the
part of the universe we can observe, and hence a positive density of baryon num-
ber. This can be taken as a positive hint that baryon number is not conserved,
which can happen if there exist as yet undetected heavy “exotic” particles.

(iv) it is possible that baryon number is not exactly conserved, but even if that is the
case, it is not possible that the observed excess of matter over antimatter can be
explained by the very rare processes that violate baryon number conservation.

(c) (5 points) In discussing the COBE measurements of the cosmic microwave back-
ground, Ryden describes a dipole component of the temperature pattern, for which
the temperature of the radiation from one direction is found to be hotter than the
temperature of the radiation detected from the opposite direction.

(i) This discovery is important, because it allows us to pinpoint the direction of the
point in space where the big bang occurred.

(ii) This is the largest component of the CMB anisotropies, amounting to a 10%
variation in the temperature of the radiation.

(iii) In addition to the dipole component, the anisotropies also includes contributions
from a quadrupole, octupole, etc., all of which are comparable in magnitude.

(iv) This pattern is interpreted as a simple Doppler shift, caused by the net motion
of the COBE satellite relative to a frame of reference in which the CMB is
almost isotropic.

(d) (5 points) (CMB basic facts) Which one of the following statements about CMB is
not correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean square

temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.
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(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measurement
of an excess temperature of about 3.5 K that was isotropic, unpolarized, and
free from seasonal variations. In a companion paper written by Dicke, Peebles,
Roll and Wilkinson, the authors interpreted the radiation to be a relic of an
early, hot, dense, and opaque state of the universe.

(e) (5 points) Inflation is driven by a field that is by definition called the inflaton field.
In standard inflationary models, the field has the following properties:

(i) The inflaton is a scalar field, and during inflation the energy density of the
universe is dominated by its potential energy.

(ii) The inflaton is a vector field, and during inflation the energy density of the
universe is dominated by its potential energy.

(iii) The inflaton is a scalar field, and during inflation the energy density of the
universe is dominated by its kinetic energy.

(iv) The inflaton is a vector field, and during inflation the energy density of the
universe is dominated by its kinetic energy.

(v) The inflaton is a tensor field, which is responsible for only a small fraction of
the energy density of the universe during inflation.

PROBLEM 3: DID YOU DO THE READING (2013)? (35 points)

This was Problem 1 of Quiz 3, 2013.

(a) (5 points) Ryden summarizes the results of the COBE satellite experiment for the
measurements of the cosmic microwave background (CMB) in the form of three
important results. The first was that, in any particular direction of the sky, the
spectrum of the CMB is very close to that of an ideal blackbody. The FIRAS
instrument on the COBE satellite could have detected deviations from the blackbody
spectrum as small as ∆ε/ε ≈ 10−n, where n is an integer. To within ±1, what is n?

(b) (5 points) The second result was the measurement of a dipole distortion of the CMB
spectrum; that is, the radiation is slightly blueshifted to higher temperatures in one
direction, and slightly redshifted to lower temperatures in the opposite direction. To
what physical effect was this dipole distortion attributed?

(c) (5 points) The third result concerned the measurement of temperature fluctuations
after the dipole feature mentioned above was subtracted out. Defining

δT

T
(θ, φ) ≡ T (θ, φ)− 〈T 〉

〈T 〉
,
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where 〈T 〉 = 2.725 K, the average value of T , they found a root mean square fluctu-
ation, 〈(

δT

T

)2
〉1/2

,

equal to some number. To within an order of magnitude, what was that number?

(d) (5 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons from overdense regions at the surface of last scattering appear redder
because they must climb out of the gravitational potential well.

(iv) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

(v) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(vi) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

(e) (5 points) The flatness problem refers to the extreme fine-tuning that is needed in Ω
at early times, in order for it to be as close to 1 today as we observe. Starting with
the assumption that Ω today is equal to 1 within about 1%, one concludes that at
one second after the big bang,

|Ω− 1|t=1 sec < 10−m ,

where m is an integer. To within ± 3, what is m?

(f) (5 points) The total energy density of the present universe consists mainly of baryonic
matter, dark matter, and dark energy. Give the percentages of each, according to
the best fit obtained from the Planck 2013 data. You will get full credit if the first
(baryonic matter) is accurate to ±2%, and the other two are accurate to within ±5%.

(g) (5 points) Within the conventional hot big bang cosmology (without inflation), it
is difficult to understand how the temperature of the CMB can be correlated at
angular separations that are so large that the points on the surface of last scattering
was separated from each other by more than a horizon distance. Approximately
what angle, in degrees, corresponds to a separation on the surface last scattering of
one horizon length? You will get full credit if your answer is right to within a factor
of 2.
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PROBLEM 4: DID YOU DO THE READING (2009)? (25 points)

This problem was Problem 1, Quiz 3, 2009.

(a) (10 points) This question concerns some numbers related to the cosmic microwave
background (CMB) that one should never forget. State the values of these numbers,
to within an order of magnitude unless otherwise stated. In all cases the question
refers to the present value of these quantities.

(i) The average temperature T of the CMB (to within 10%).

(ii) The speed of the Local Group with respect to the CMB, expressed as a fraction
v/c of the speed of light. (The speed of the Local Group is found by measuring
the dipole pattern of the CMB temperature to determine the velocity of the
spacecraft with respect to the CMB, and then removing spacecraft motion, the
orbital motion of the Earth about the Sun, the Sun about the galaxy, and the
galaxy relative to the center of mass of the Local Group.)

(iii) The intrinsic relative temperature fluctuations ∆T/T , after removing the dipole
anisotropy corresponding to the motion of the observer relative to the CMB.

(iv) The ratio of baryon number density to photon number density, η = nbary/nγ .

(v) The angular size θH , in degrees, corresponding to what was the Hubble distance
c/H at the surface of last scattering. This answer must be within a factor of 3
to be correct.

(b) (3 points) Because photons outnumber baryons by so much, the exponential tail of
the photon blackbody distribution is important in ionizing hydrogen well after kTγ
falls below QH = 13.6 eV. What is the ratio kTγ/QH when the ionization fraction
of the universe is 1/2?

(i) 1/5 (ii) 1/50 (iii) 10−3 (iv) 10−4 (v) 10−5

(c) (2 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons from overdense regions at the surface of last scattering appear redder
because they must climb out of the gravitational potential well.

(iv) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.
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(v) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(vi) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

(d) (10 points) For each of the following statements, say whether it is true or false:

(i) Dark matter interacts through the gravitational, weak, and electromagnetic
forces. T or F ?

(ii) The virial theorem can be applied to a cluster of galaxies to find its total mass,
most of which is dark matter. T or F ?

(iii) Neutrinos are thought to comprise a significant fraction of the energy density of
dark matter. T or F ?

(iv) Magnetic monopoles are thought to comprise a significant fraction of the energy
density of dark matter. T or F ?

(v) Lensing observations have shown that MACHOs cannot account for the dark
matter in galactic halos, but that as much as 20% of the halo mass could be in
the form of MACHOs. T or F ?

PROBLEM 5: DID YOU DO THE READING (2007)? (25 points)

The following problem was Problem 1, Quiz 3, in 2007. Each part was worth 5 points.

(a) (CMB basic facts) Which one of the following statements about CMB is not correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean square

temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measurement
of an excess temperature of about 3.5 K that was isotropic, unpolarized, and
free from seasonal variations. In a companion paper written by Dicke, Peebles,
Roll and Wilkinson, the authors interpreted the radiation to be a relic of an
early, hot, dense, and opaque state of the universe.

(b) (CMB experiments) The current mean energy per CMB photon, about 6× 10−4 eV,
is comparable to the energy of vibration or rotation for a small molecule such as H2O.
Thus microwaves with wavelengths shorter than λ ∼ 3 cm are strongly absorbed by
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water molecules in the atmosphere. To measure the CMB at λ < 3 cm, which one
of the following methods is not a feasible solution to this problem?

(i) Measure CMB from high-altitude balloons, e.g. MAXIMA.

(ii) Measure CMB from the South Pole, e.g. DASI.

(iii) Measure CMB from the North Pole, e.g. BOOMERANG.

(iv) Measure CMB from a satellite above the atmosphere of the Earth, e.g. COBE,
WMAP and PLANCK.

(c) (Temperature fluctuations) The creation of temperature fluctuations in CMB by
variations in the gravitational potential is known as the Sachs-Wolfe effect. Which
one of the following statements is not correct concerning this effect?

(i) A CMB photon is redshifted when climbing out of a gravitational potential well,
and is blueshifted when falling down a potential hill.

(ii) At the time of last scattering, the nonbaryonic dark matter dominated the en-
ergy density, and hence the gravitational potential, of the universe.

(iii) The large-scale fluctuations in CMB temperatures arise from the gravitational
effect of primordial density fluctuations in the distribution of nonbaryonic dark
matter.

(iv) The peaks in the plot of temperature fluctuation ∆T vs. multipole l are due to
variations in the density of nonbaryonic dark matter, while the contributions
from baryons alone would not show such peaks.

(d) (Dark matter candidates) Which one of the following is not a candidate of nonbary-
onic dark matter?

(i) massive neutrinos

(ii) axions

(iii) matter made of top quarks (a type of quarks with heavy mass of about 171
GeV).

(iv) WIMPs (Weakly Interacting Massive Particles)

(v) primordial black holes

(e) (Signatures of dark matter) By what methods can signatures of dark matter be
detected? List two methods. (Grading: 3 points for one correct answer, 5 points for
two correct answers. If you give more than two answers, your score will be based
on the number of right answers minus the number of wrong answers, with a lower
bound of zero.)
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∗PROBLEM 6: TIME EVOLUTION OF A UNIVERSE INCLUDING A
HYPOTHETICAL KIND OF MATTER (30 points)

The following problem was Problem 2, Quiz 3, 2018.

Suppose that a flat universe includes nonrelativistic matter, radiation, and also mys-
ticium, where the mass density of mysticium behaves as

ρmyst ∝
1

a5(t)

as the universe expands. In this problem we will define

x(t) ≡ a(t)

a(t0)
,

where t0 is the present time. For the following questions, you need not evaluate any
of the integrals that might arise, but they must be integrals of explicit functions with
explicit limits of integration; remember that a(t) is not given. You may express your
answers in terms of the present value of the Hubble expansion rate, H0, and the various
contributions to the present value of Ω: Ωm,0, Ωrad,0, and Ωmyst,0.

(a) (7 points) Write an expression for the Hubble expansion rate H(t).

(b) (7 points) Write an expression for the current age of the universe.

(c) (3 points) Write an expression for the time t(x) in terms of the value of x.

(d) (3 points) Write an expression for the total mass density ρ(x) as a function of x.

(e) (10 points) Write an expression for the physical horizon distance, `p,hor.

∗PROBLEM 7: THE CONSEQUENCES OF AN ALT-PHOTON (25 points)

Suppose that, in addition to the particles that are known to exist, there also existed
an alt-photon, which has exactly the properties of a photon: it is massless, has two spin
states (or polarization states), and has the same interactions with other particles that
photons do. Like photons, it is its own antiparticle.

(a) (5 points) In thermal equilibrium at temperature T , what is the total energy density
of alt-photons?

(b) (5 points) In thermal equilibrium at temperature T , what is the number density of
alt-photons?

(c) (10 points) In this situation, what would be the temperature ratios Tν/Tγ and
Tν/Taltγ today?

(d) (5 points) Would the existence of this particle increase or decrease the abundance of
helium, or would it have no effect?
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PROBLEM 8: NUMBER DENSITIES IN THE COSMIC BACKGROUND
RADIATION

Today the temperature of the cosmic microwave background radiation is 2.7◦K.
Calculate the number density of photons in this radiation. What is the number density
of thermal neutrinos left over from the big bang?

PROBLEM 9: PROPERTIES OF BLACK-BODY RADIATION (25 points)

The following problem was Problem 4, Quiz 3, 1998.

In answering the following questions, remember that you can refer to the formulas
at the front of the exam. Since you were not asked to bring calculators, you may leave
your answers in the form of algebraic expressions, such as π32/

√
5ζ(3).

(a) (5 points) For the black-body radiation (also called thermal radiation) of photons at
temperature T , what is the average energy per photon?

(b) (5 points) For the same radiation, what is the average entropy per photon?

(c) (5 points) Now consider the black-body radiation of a massless boson which has spin
zero, so there is only one spin state. Would the average energy per particle and
entropy per particle be different from the answers you gave in parts (a) and (b)? If
so, how would they change?

(d) (5 points) Now consider the black-body radiation of electron neutrinos at tempera-
ture T . These particles are fermions with spin 1/2, and we will assume that they
are massless and have only one possible spin state. What is the average energy per
particle for this case?

(e) (5 points) What is the average entropy per particle for the black-body radiation of
neutrinos, as described in part (d)?

PROBLEM 10: A NEW SPECIES OF LEPTON

The following problem was Problem 2, Quiz 3, 1992, worth 25 points.

Suppose the calculations describing the early universe were modified by including an
additional, hypothetical lepton, called an 8.286ion. The 8.286ion has roughly the same
properties as an electron, except that its mass is given by mc2 = 0.750 MeV.

Parts (a)-(c) of this question require numerical answers, but since you were not
told to bring calculators, you need not carry out the arithmetic. Your answer should
be expressed, however, in “calculator-ready” form— that is, it should be an expression
involving pure numbers only (no units), with any necessary conversion factors included.
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(For example, if you were asked how many meters a light pulse in vacuum travels in 5
minutes, you could express the answer as 2.998× 108 × 5× 60.)

a) (5 points) What would be the number density of 8.286ions, in particles per cubic
meter, when the temperature T was given by kT = 3 MeV?

b) (5 points) Assuming (as in the standard picture) that the early universe is accurately
described by a flat, radiation-dominated model, what would be the value of the mass
density at t = .01 sec? You may assume that 0.75 MeV � kT � 100 MeV, so the
particles contributing significantly to the black-body radiation include the photons,
neutrinos, e+-e− pairs, and 8.286ion-anti8286ion pairs. Express your answer in the
units of g/cm3.

c) (5 points) Under the same assumptions as in (b), what would be the value of kT , in
MeV, at t = .01 sec?

d) (5 points) When nucleosynthesis calculations are modified to include the effect of the
8.286ion, is the production of helium increased or decreased? Explain your answer
in a few sentences.

e) (5 points) Suppose the neutrinos decouple while kT � 0.75 MeV. If the 8.286ions
are included, what does one predict for the value of Tν/Tγ today? (Here Tν denotes
the temperature of the neutrinos, and Tγ denotes the temperature of the cosmic
background radiation photons.)

∗PROBLEM 11: A NEW THEORY OF THE WEAK INTERACTIONS (40
points)

This problem was Problem 3, Quiz 3, 2009.

Suppose a New Theory of the Weak Interactions (NTWI) was proposed, which dif-
fers from the standard theory in two ways. First, the NTWI predicts that the weak
interactions are somewhat weaker than in the standard model. In addition, the theory
implies the existence of new spin- 1

2 particles (fermions) called the R+ and R−, with a rest
energy of 50 MeV (where 1 MeV = 106 eV). This problem will deal with the cosmological
consequences of such a theory.

The NTWI will predict that the neutrinos in the early universe will decouple at
a higher temperature than in the standard model. Suppose that this decoupling takes
place at kT ≈ 200 MeV. This means that when the neutrinos cease to be thermally
coupled to the rest of matter, the hot soup of particles would contain not only photons,
neutrinos, and e+-e− pairs, but also µ+, µ−, π+, π−, and π0 particles, along with the
R+-R− pairs. (The muon is a particle which behaves almost identically to an electron,
except that its rest energy is 106 MeV. The pions are the lightest of the mesons, with
zero angular momentum and rest energies of 135 MeV and 140 MeV for the neutral and
charged pions, respectively. The π+ and π− are antiparticles of each other, and the π0
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is its own antiparticle. Zero angular momentum implies a single spin state.) You may
assume that the universe is flat.

(a) (10 points) According to the standard particle physics model, what is the mass
density ρ of the universe when kT ≈ 200 MeV? What is the value of ρ at this
temperature, according to NTWI? Use either g/cm3 or kg/m3. (If you wish, you can
save time by not carrying out the arithmetic. If you do this, however, you should
give the answer in “calculator-ready” form, by which I mean an expression involving
pure numbers (no units), with any necessary conversion factors included, and with
the units of the answer specified at the end. For example, if asked how far light
travels in 5 minutes, you could answer 2.998× 108 × 5× 60 m.)

(b) (10 points) According to the standard model, the temperature today of the thermal
neutrino background should be (4/11)1/3Tγ , where Tγ is the temperature of the
thermal photon background. What does the NTWI predict for the temperature of
the thermal neutrino background?

(c) (10 points) According to the standard model, what is the ratio today of the number
density of thermal neutrinos to the number density of thermal photons? What is
this ratio according to NTWI?

(d) (10 points) Since the reactions which interchange protons and neutrons involve neu-
trinos, these reactions “freeze out” at roughly the same time as the neutrinos decou-
ple. At later times the only reaction which effectively converts neutrons to protons
is the free decay of the neutron. Despite the fact that neutron decay is a weak inter-
action, we will assume that it occurs with the usual 15 minute mean lifetime. Would
the helium abundance predicted by the NTWI be higher or lower than the prediction
of the standard model? To within 5 or 10%, what would the NTWI predict for the
percent abundance (by weight) of helium in the universe? (As in part (a), you can
either carry out the arithmetic, or leave the answer in calculator-ready form.)

Useful information: The proton and neutron rest energies are given by mp c
2 =

938.27 MeV and mn c
2 = 939.57 MeV, with (mn −mp)c

2 = 1.29 MeV. The mean
lifetime for the neutron decay, n→ p+ e− + ν̄e , is given by τ = 886 s.

PROBLEM 12: DOUBLING OF ELECTRONS (10 points)

The following was on Quiz 3, 2011 (Problem 4):

Suppose that instead of one species of electrons and their antiparticles, suppose there
was also another species of electron-like and positron-like particles. Suppose that the new
species has the same mass and other properties as the electrons and positrons. If this
were the case, what would be the ratio Tν/Tγ of the temperature today of the neutrinos
to the temperature of the CMB photons.
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PROBLEM 13: TIME SCALES IN COSMOLOGY

In this problem you are asked to give the approximate times at which various im-
portant events in the history of the universe are believed to have taken place. The times
are measured from the instant of the big bang. To avoid ambiguities, you are asked to
choose the best answer from the following list:

10−43 sec.
10−37 sec.
10−12 sec.
10−5 sec.
1 sec.
4 mins.
10,000 – 1,000,000 years.
2 billion years.
5 billion years.
10 billion years.
13 billion years.
20 billion years.

For this problem it will be sufficient to state an answer from memory, without explanation.
The events which must be placed are the following:

(a) the beginning of the processes involved in big bang nucleosynthesis;

(b) the end of the processes involved in big bang nucleosynthesis;

(c) the time of the phase transition predicted by grand unified theories, which takes
place when kT ≈ 1016 GeV;

(d) “recombination”, the time at which the matter in the universe converted from
a plasma to a gas of neutral atoms;

(e) the phase transition at which the quarks became confined, believed to occur
when kT ≈ 300 MeV.

Since cosmology is fraught with uncertainty, in some cases more than one answer will
be acceptable. You are asked, however, to give ONLY ONE of the acceptable answers.

PROBLEM 14: EVOLUTION OF FLATNESS (15 points)

The following problem was Problem 3, Quiz 3, 2004.

The “flatness problem” is related to the fact that during the evolution of the standard
cosmological model, Ω is always driven away from 1.
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(a) (9 points) During a period in which the universe is matter-dominated (meaning that
the only relevant component is nonrelativistic matter), the quantity

Ω− 1

Ω

grows as a power of t, provided that Ω is near 1. Show that this is true, and derive
the power. (Stating the right power without a derivation will be worth 3 points.)

(b) (6 points) During a period in which the universe is radiation-dominated, the same
quantity will grow like a different power of t. Show that this is true, and derive the
power. (Stating the right power without a derivation will again be worth 3 points.)

In each part, you may assume that the universe was always dominated by the specified
form of matter.

∗PROBLEM 15: THE SLOAN DIGITAL SKY SURVEY z = 5.82 QUASAR
(40 points)

The following problem was Problem 4, Quiz 3, 2004.

On April 13, 2000, the Sloan Digital Sky Survey announced the discovery of what
was then the most distant object known in the universe: a quasar at z = 5.82. To explain
to the public how this object fits into the universe, the SDSS posted on their website an
article by Michael Turner and Craig Wiegert titled “How Can An Object We See Today
be 27 Billion Light Years Away If the Universe is only 14 Billion Years Old?” Using a
model with H0 = 65 km-s−1-Mpc−1, Ωm = 0.35, and ΩΛ = 0.65, they claimed

(a) that the age of the universe is 13.9 billion years.

(b) that the light that we now see was emitted when the universe was 0.95 billion years
old.

(c) that the distance to the quasar, as it would be measured by a ruler today, is 27
billion light-years.

(d) that the distance to the quasar, at the time the light was emitted, was 4.0 billion
light-years.

(e) that the present speed of the quasar, defined as the rate at which the distance
between us and the quasar is increasing, is 1.8 times the velocity of light.

The goal of this problem is to check all of these conclusions, although you are of course
not expected to actually work out the numbers. Your answers can be expressed in terms
of H0, Ωm, ΩΛ, and z. Definite integrals need not be evaluated.

Note that Ωm represents the present density of nonrelativistic matter, expressed as
a fraction of the critical density; and ΩΛ represents the present density of vacuum energy,
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expressed as a fraction of the critical density. In answering each of the following questions,
you may consider the answer to any previous part — whether you answered it or not —
as a given piece of information, which can be used in your answer.

(a) (15 points) Write an expression for the age t0 of this model universe?

(b) (5 points) Write an expression for the time te at which the light which we now receive
from the distant quasar was emitted.

(c) (10 points) Write an expression for the present physical distance `phys,0 to the quasar.

(d) (5 points) Write an expression for the physical distance `phys,e between us and the
quasar at the time that the light was emitted.

(e) (5 points) Write an expression for the present speed of the quasar, defined as the
rate at which the distance between us and the quasar is increasing.

PROBLEM 16: SECOND HUBBLE CROSSING (40 points)

This problem was Problem 3, Quiz 3, 2007. In 2018 we have not yet talked about Hubble
crossings and the evolution of density perturbations, so this problem would not be fair as
worded. Actually, however, you have learned how to do these calculations, so the problem
would be fair if it described in more detail what needs to be calculated.

In Problem Set 9 (2007) we calculated the time tH1(λ) of the first Hubble crossing
for a mode specified by its (physical) wavelength λ at the present time. In this problem
we will calculate the time tH2(λ) of the second Hubble crossing, the time at which the
growing Hubble length cH−1(t) catches up to the physical wavelength, which is also
growing. At the time of the second Hubble crossing for the wavelengths of interest, the
universe can be described very simply: it is a radiation-dominated flat universe. However,
since λ is defined as the present value of the wavelength, the evolution of the universe
between tH2(λ) and the present will also be relevant to the problem. We will need to
use methods, therefore, that allow for both the matter-dominated era and the onset of
the dark-energy-dominated era. As in Problem Set 9 (2007), the model universe that we
consider will be described by the WMAP 3-year best fit parameters:

Hubble expansion rate H0 = 73.5 km · s−1 ·Mpc−1

Nonrelativistic mass density Ωm = 0.237
Vacuum mass density Ωvac = 0.763
CMB temperature Tγ,0 = 2.725 K

The mass densities are defined as contributions to Ω, and hence describe the mass density
of each constituent relative to the critical density. Note that the model is exactly flat,
so you need not worry about spatial curvature. Here you are not expected to give a
numerical answer, so the above list will serve only to define the symbols that can appear
in your answers, along with λ and the physical constants G, h̄, c, and k.
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(a) (5 points) For a radiation-dominated flat universe, what is the Hubble length `H(t) ≡
cH−1(t) as a function of time t?

(b) (10 points) The second Hubble crossing will occur during the interval

30 sec� t� 50, 000 years,

when the mass density of the universe is dominated by photons and neutrinos. During
this era the neutrinos are a little colder than the photons, with Tν = (4/11)1/3Tγ .
The total energy density of the photons and neutrinos together can be written as

utot = g1
π2

30

(kTγ)4

(h̄c)3
.

What is the value of g1? (For the following parts you can treat g1 as a given variable
that can be left in your answers, whether or not you found it.)

(c) (10 points) For times in the range described in part (b), what is the photon temper-
ature Tγ(t) as a function of t?

(d) (15 points) Finally, we are ready to find the time tH2(λ) of the second Hubble
crossing, for a given value of the physical wavelength λ today. Making use of the
previous results, you should be able to determine tH2(λ). If you were not able to
answer some of the previous parts, you may leave the symbols `H(t), g1, and/or
Tγ(t) in your answer.

PROBLEM 17: THE EVENT HORIZON FOR OUR UNIVERSE (25 points)

The following problem was Problem 3 from Quiz 3, 2013.

We have learned that the expansion history of our universe can be described in terms
of a small set of numbers: Ωm,0, the present contribution to Ω from nonrelativistic matter;
Ωrad,0, the present contribution to Ω from radiation; Ωvac, the present contribution to
Ω from vacuum energy; and H0, the present value of the Hubble expansion rate. The
best estimates of these numbers are consistent with a flat universe, so we can take k = 0,
Ωm,0 + Ωrad,0 + Ωvac = 1, and we can use the flat Robertson-Walker metric,

ds2 = −c2 dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
.

(a) (5 points) Suppose that we are at the origin of the coordinate system, and that at
the present time t0 we emit a spherical pulse of light. It turns out that there is a
maximum coordinate radius r = rmax that this pulse will ever reach, no matter how
long we wait. (The pulse will never actually reach rmax, but will reach all r such that
0 < r < rmax.) rmax is the coordinate of what is called the event horizon: events
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that happen now at r ≥ rmax will never be visible to us, assuming that we remain at
the origin. Assuming for this part that the function a(t) is a known function, write
an expression for rmax. Your answer should be expressed as an integral, which can
involve a(t), t0, and any of the parameters defined in the preamble. [Advice: If you
cannot answer this, you should still try part (c).]

(b) (10 points) Since a(t) is not known explicitly, the answer to the previous part is
difficult to use. Show, however, that by changing the variable of integration, you can
rewrite the expression for rmax as a definite integral involving only the parameters
specified in the preamble, without any reference to the function a(t), except perhaps
to its present value a(t0). You are not expected to evaluate this integral. [Hint: One
method is to use

x =
a(t)

a(t0)

as the variable of integration, just as we did when we derived the first of the expres-
sions for t0 shown in the formula sheets.]

(c) (10 points) Astronomers often describe distances in terms of redshifts, so it is useful
to find the redshift of the event horizon. That is, if a light ray that originated at
r = rmax arrived at Earth today, what would be its redshift zeh (eh = event horizon)?
You are not asked to find an explicit expression for zeh, but instead an equation that
could be solved numerically to determine zeh. For this part you can treat rmax

as given, so it does not matter if you have done parts (a) and (b). You will get
half credit for a correct answer that involves the function a(t), and full credit for a
correct answer that involves only explicit integrals depending only on the parameters
specified in the preamble, and possibly a(t0).

PROBLEM 18: THE EFFECT OF PRESSURE ON COSMOLOGICAL EVO-
LUTION (25 points)

The following problem was Problem 2 of Quiz 3, 2016. It was also Problem 2 of Problem
Set 7 (2016), except that some numerical constants have been changed, so the answers
will not be identical.

A radiation-dominated universe behaves differently from a matter-dominated uni-
verse because the pressure of the radiation is significant. In this problem we explore the
role of pressure for several fictitious forms of matter.

(a) (8 points) For the first fictitious form of matter, the mass density ρ decreases as the
scale factor a(t) grows, with the relation

ρ(t) ∝ 1

a8(t)
.
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What is the pressure of this form of matter? [Hint: the answer is proportional to
the mass density.]

(b) (9 points) Find the behavior of the scale factor a(t) for a flat universe dominated
by the form of matter described in part (a). You should be able to determine the
function a(t) up to a constant factor.

(c) (8 points) Now consider a universe dominated by a different form of fictitious matter,
with a pressure given by

p =
2

3
ρc2 .

As the universe expands, the mass density of this form of matter behaves as

ρ(t) ∝ 1

an(t)
.

Find the power n.

∗PROBLEM 19: THE FREEZE-OUT OF A FICTITIOUS PARTICLE X
(25 points)

The following problem was Problem 3 of Quiz 3, 2016.

Suppose that, in addition to the particles that are known to exist, there also existed a
family of three spin-1 particles, X+, X−, and X0, all with masses 0.511 MeV/c2, exactly
the same as the electron. The X− is the antiparticle of the X+, and the X0 is its own
antiparticle. Since the X’s are spin-1 particles with nonzero mass, each particle has three
spin states.

The X’s do not interact with neutrinos any more strongly than the electrons and
positrons do, so when the X’s freeze out, all of their energy and entropy are given to the
photons, just like the electron-positron pairs.

(a) (5 points) In thermal equilibrium when kT � 0.511 MeV/c2, what is the total energy
density of the X+, X−, and X0 particles?

(b) (5 points) In thermal equilibrium when kT � 0.511 MeV/c2, what is the total
number density of the X+, X−, and X0 particles?

(c) (10 points) The X particles and the electron-positron pairs freeze out of the thermal
equilibrium radiation at the same time, as kT decreases from values large compared
to 0.511 MeV/c2 to values that are small compared to it. If the X’s, electron-positron
pairs, photons, and neutrinos were all in thermal equilibrium before this freeze-out,
what will be the ratio Tν/Tγ , the ratio of the neutrino temperature to the photon
temperature, after the freeze-out?

(d) (5 points) If the mass of theX’s was, for example, 0.100 MeV/c2, so that the electron-
positron pairs froze out first, and then the X’s froze out, would the final ratio Tν/Tγ
be higher, lower, or the same as the answer to part (c)? Explain your answer in a
sentence or two.
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PROBLEM 20: THE TIME td OF DECOUPLING (25 points)

The following problem was Problem 4 of Quiz 3, 2016.

The process by which the photons of the cosmic microwave background stop scatter-
ing and begin to travel on straight lines is called decoupling, and it happens at a photon
temperature of about Td ≈ 3, 000 K. In Lecture Notes 6 we estimated the time td of
decoupling, working in the approximation that the universe has been matter-dominated
from that time to the present. We found a value of 370,000 years. In this problem we
will remove this approximation, although we will not carry out the numerical evaluation
needed to compare with the previous answer.

(a) (5 points) Let us define

x(t) ≡ a(t)

a(t0)
,

as on the formula sheets, where t0 is the present time. What is the value of xd ≡
x(td)? Assume that the entropy of photons is conserved from time td to the present,
and let T0 denote the present photon temperature.

(b) (5 points) Assume that the universe is flat, and that Ωm,0, Ωrad,0, and Ωvac,0 denote
the present contributions to Ω from nonrelativistic matter, radiation, and vacuum
energy, respectively. Let H0 denote the present value of the Hubble expansion rate.
Write an expression in terms of these quantities for dx/dt, the derivative of x with
respect to t. Hint: you may use formulas from the formula sheet without derivation,
so this problem should require essentially no work. To receive full credit, your answer
should include only terms that make a nonzero contribution to the answer.

(c) (5 points) Write an expression for td. If your answer involves an integral, you need
not try to evaluate it, but you should be sure that the limits of integration are clearly
shown.

(d) (10 points) Now suppose that in addition to the constituents described in part (b),
the universe also contains some of the fictitious material from part (a) of Problem
18 (Quiz 3 Review Problems, 2020), with

ρ(t) ∝ 1

a8(t)
.

Denote the present contribution to Ω from this fictitious material as Ωf,0. The
universe is still assumed to be flat, so the numerical values of Ωm,0, Ωrad,0, and
Ωvac,0 must sum to a smaller value than in parts (b) and (c). With this extra
contribution to the mass density of the universe, what is the new expression for td?
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SOLUTIONS

PROBLEM 1: DID YOU DO THE READING (2018)? (20 points)

(a) (5 points) Which one of the following statements about CMB is NOT correct?

(i) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.

(ii) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is <T> = 2.725K.

(iii) After the dipole distortion of the CMB is subtracted away, the temperature of

the CMB varies by 0.3 microKelvin across the sky.

(iv) The photons of the CMB have mostly been traveling on straight lines since they
were last scattered at t ≈ 370, 000 yr, at a location called the surface of last
scattering.

[Comment: The actual variation is about 30 microKelvin, or maybe a few times that
much. Ryden quotes the COBE root mean square fractional variation of the CMB
temperature as

<

(
δT

T

)2

>1/2 = 1.1× 10−5

as Eq. (8.8) (2nd Edition), which gives a value of about 30 microKelvin, given that
T ≈ 3 K. In Lecture Notes 2 we quoted a value of 4.14× 10−5 computed from Planck
data. The root mean square fluctuations increase with better angular resolution,
because fluctuations with small angular wavelengths are not seen unless the resolution
is high.

(b) (5 points) The nonuniformities in the cosmic microwave background allow us to
measure the ripples in the mass density of the universe at the time when the plasma
combined to form neutral atoms, about 300,000 - 400,000 years after the big bang.
These ripples are crucial for understanding what happened later, since they are the
seeds which led to the complicated tapestry of galaxies, clusters of galaxies, and
voids. Which of the following sentences describes how these ripples are created in
the context of inflationary models:

(i) Magnetic monopoles can form randomly during the grand unified theory phase
transition, resulting in nonuniformities in the mass density.

(ii) Cosmic strings, which are linelike topological defects, can form randomly during
the grand unified theory phase transition, resulting in nonuniformities in the
mass density.
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(iii) They are generated by quantum fluctuations during inflation.

(iv) Since the early universe was very hot, there were large thermal fluctuations
which ultimately evolved into the ripples in the mass density.

(c) (5 points) In Chapter 8 of The First Three Minutes, Steven Weinberg describes
the future of the universe (assuming, as was thought then to be the case, that the
cosmological constant is zero). One possibility that he discusses is that the cosmic
matter density could be greater than the critical density. Assuming that we live in
such a universe, which of the following statements is NOT true?

(i) The universe is finite and its expansion will eventually cease, giving way to an
accelerating contraction.

(ii) Three minutes after the temperature reaches a thousand million degrees (109 K),

the laws of physics guarantee that the universe will crunch, and time will stop.

(iii) During at least the early part of the contracting phase, we will be able to observe
both redshifts and blueshifts.

(iv) When the universe has recontracted to one-hundredth its present size, the radi-
ation background will begin to dominate the sky, with a temperature of about
300 K.

[Comment: Weinberg is very clear no speculations about the end of the universe are
guaranteed to be true: “Does time really have to stop some three minutes after the
temperature reaches a thousand million degrees? Obviously, we cannot be sure. All
the uncertainties that we met in the preceding chapter, in trying to explore the first
hundredth of a second, will return to perplex us as we look into the last hundredth of
a second.”]

(d) (5 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(iv) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

(v) Photons from overdense regions at the surface of last scattering appear redder

because they must climb out of the gravitational potential well.

(vi) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

[Comment: Ryden discusses the Sachs-Wolfe effect on pp. 161–162 (2nd Edition).]
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PROBLEM 2: DID YOU DO THE READING (2016)? (25 points)

Except for part (d), you should answer these questions by circling the one statement that
is correct.

(a) (5 points) In the Epilogue of The First Three Minutes, Steve Weinberg wrote: “The
more the universe seems comprehensible, the more it also seems pointless.” The
sentence was qualified, however, by a closing paragraph that points out that

(i) the quest of the human race to create a better life for all can still give meaning
to our lives.

(ii) if the universe cannot give meaning to our lives, then perhaps there is an afterlife
that will.

(iii) the complexity and beauty of the laws of physics strongly suggest that the
universe must have a purpose, even if we are not aware of what it is.

(iv) the effort to understand the universe gives human life some of the grace of

tragedy.

(b) (5 points) In the Afterword of The First Three Minutes, Weinberg discusses the
baryon number of the universe. (The baryon number of any system is the total
number of protons and neutrons (and certain related particles known as hyperons)
minus the number of their antiparticles (antiprotons, antineutrons, antihyperons)
that are contained in the system.) Weinberg concluded that

(i) baryon number is exactly conserved, so the total baryon number of the universe
must be zero. While nuclei in our part of the universe are composed of protons
and neutrons, the universe must also contain antimatter regions in which nuclei
are composed of antiprotons and antineutrons.

(ii) there appears to be a cosmic excess of matter over antimatter throughout the
part of the universe we can observe, and hence a positive density of baryon
number. Since baryon number is conserved, this can only be explained by
assuming that the excess baryons were put in at the beginning.

(iii) there appears to be a cosmic excess of matter over antimatter throughout the

part of the universe we can observe, and hence a positive density of baryon num-
ber. This can be taken as a positive hint that baryon number is not conserved,
which can happen if there exist as yet undetected heavy “exotic” particles.

(iv) it is possible that baryon number is not exactly conserved, but even if that is the
case, it is not possible that the observed excess of matter over antimatter can be
explained by the very rare processes that violate baryon number conservation.

Explanation: All students were given credit for this part, whether they answered it
correctly or not. I was in San Francisco when I made up this quiz, and due
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to poor planning I did not have my copy of The First Three Minutes. So I
found a version online, but I could only find the British version, published by
Flamingo/Fontana Paperbacks, rather than the US version published by Basic
Books. I assumed that the “Afterword” in the two versions would be the same,
but I was wrong! So this question was based on a different “Afterword” than
the one that you read. 55% of you still got it right, but obviously the question
was not fair. Apologies.

(c) (5 points) In discussing the COBE measurements of the cosmic microwave back-
ground, Ryden describes a dipole component of the temperature pattern, for which
the temperature of the radiation from one direction is found to be hotter than the
temperature of the radiation detected from the opposite direction.

(i) This discovery is important, because it allows us to pinpoint the direction of the
point in space where the big bang occurred.

(ii) This is the largest component of the CMB anisotropies, amounting to a 10%
variation in the temperature of the radiation.

(iii) In addition to the dipole component, the anisotropies also include contributions
from a quadrupole, octupole, etc., all of which are comparable in magnitude.

(iv) This pattern is interpreted as a simple Doppler shift, caused by the net motion

of the COBE satellite relative to a frame of reference in which the CMB is
almost isotropic.

Explanation: (i) is nonsense, since the conventional big bang theory descibes a com-
pletely homogeneous universe, which has no single point at which the big bang
occurred. (ii) is wrong, because the variations in the temperature of the CMB
are much smaller than 10%. The dipole term has a magnitude of about 1/1000
of the mean temperature. (iii) is wrong because the dipole is not comparable to
the other terms, because they have magnitudes of only about 1/100,000 of the
mean.

(d) (5 points) (CMB basic facts) Which one of the following statements about CMB is
not correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean square

temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.
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(iv) In their groundbreaking paper, Wilson and Penzias reported the measurement
of an excess temperature of about 3.5 K that was isotropic, unpolarized, and
free from seasonal variations. In a companion paper written by Dicke, Peebles,
Roll and Wilkinson, the authors interpreted the radiation to be a relic of an
early, hot, dense, and opaque state of the universe.

Explanation: The right value is〈(
δT

T

)2
〉1/2

= 1.1× 10−5 .

(e) (5 points) Inflation is driven by a field that is by definition called the inflaton field.
In standard inflationary models, the field has the following properties:

(i) The inflaton is a scalar field, and during inflation the energy density of the

universe is dominated by its potential energy.

(ii) The inflaton is a vector field, and during inflation the energy density of the
universe is dominated by its potential energy.

(iii) The inflaton is a scalar field, and during inflation the energy density of the
universe is dominated by its kinetic energy.

(iv) The inflaton is a vector field, and during inflation the energy density of the
universe is dominated by its kinetic energy.

(v) The inflaton is a tensor field, which is responsible for only a small fraction of
the energy density of the universe during inflation.

Explanation: These facts were mentioned in both Section 11.5 (The Physics of In-
flation) of Ryden’s book, and also in the article that you were asked to read
called Inflation and the New Era of High-Precision Cosmology, written by me
for the Physics Department 2002 newsletter.

PROBLEM 3: DID YOU DO THE READING (2013)? (35 points)

(a) (5 points) Ryden summarizes the results of the COBE satellite experiment for the
measurements of the cosmic microwave background (CMB) in the form of three
important results. The first was that, in any particular direction of the sky, the
spectrum of the CMB is very close to that of an ideal blackbody. The FIRAS
instrument on the COBE satellite could have detected deviations from the blackbody
spectrum as small as ∆ε/ε ≈ 10−n, where n is an integer. To within ±1, what is n?

Answer: n = 4
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(b) (5 points) The second result was the measurement of a dipole distortion of the CMB
spectrum; that is, the radiation is slightly blueshifted to higher temperatures in one
direction, and slightly redshifted to lower temperatures in the opposite direction. To
what physical effect was this dipole distortion attributed?

Answer: The large dipole in the CMB is attributed to the motion of the satellite
relative to the frame in which the CMB is very nearly isotropic. (The entire Local
Group is moving relative to this frame at a speed of about 0.002c.)

(c) (5 points) The third result concerned the measurement of temperature fluctuations
after the dipole feature mentioned above was subtracted out. Defining

δT

T
(θ, φ) ≡ T (θ, φ)− 〈T 〉

〈T 〉
,

where 〈T 〉 = 2.725 K, the average value of T , they found a root mean square fluctu-
ation, 〈(

δT

T

)2
〉1/2

,

equal to some number. To within an order of magnitude, what was that number?

Answer: 〈(
δT

T

)2
〉1/2

= 1.1× 10−5 .

(d) (5 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons from overdense regions at the surface of last scattering appear redder

because they must climb out of the gravitational potential well.

(iv) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

(v) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(vi) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

(e) (5 points) The flatness problem refers to the extreme fine-tuning that is needed in Ω
at early times, in order for it to be as close to 1 today as we observe. Starting with
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the assumption that Ω today is equal to 1 within about 1%, one concludes that at
one second after the big bang,

|Ω− 1|t=1 sec < 10−m ,

where m is an integer. To within ± 3, what is m?

Answer: m = 18. (See the derivation in Lecture Notes 8.)

(f) (5 points) The total energy density of the present universe consists mainly of baryonic
matter, dark matter, and dark energy. Give the percentages of each, according to
the best fit obtained from the Planck 2013 data. You will get full credit if the first
(baryonic matter) is accurate to ±2%, and the other two are accurate to within ±5%.

Answer: Baryonic matter: 5%. Dark matter: 26.5%. Dark energy: 68.5%. The
Planck 2013 numbers were given in Lecture Notes 7. To the requested accuracy,
however, numbers such as Ryden’s Benchmark Model would also be satisfactory.

(g) (5 points) Within the conventional hot big bang cosmology (without inflation), it
is difficult to understand how the temperature of the CMB can be correlated at
angular separations that are so large that the points on the surface of last scattering
was separated from each other by more than a horizon distance. Approximately
what angle, in degrees, corresponds to a separation on the surface last scattering of
one horizon length? You will get full credit if your answer is right to within a factor
of 2.

Answer: Ryden gives 1◦ as the angle subtended by the Hubble length on the surface
of last scattering. For a matter-dominated universe, which would be a good model
for our universe, the horizon length is twice the Hubble length. Any number from
1◦ to 5◦ was considered acceptable.

PROBLEM 4: DID YOU DO THE READING (2009)? (25 points)

(a) (10 points) This question concerns some numbers related to the cosmic microwave
background (CMB) that one should never forget. State the values of these numbers,
to within an order of magnitude unless otherwise stated. In all cases the question
refers to the present value of these quantities.

(i) The average temperature T of the CMB (to within 10%). 2.725 K

(ii) The speed of the Local Group with respect to the CMB, expressed as a fraction
v/c of the speed of light. (The speed of the Local Group is found by measuring
the dipole pattern of the CMB temperature to determine the velocity of the
spacecraft with respect to the CMB, and then removing spacecraft motion, the
orbital motion of the Earth about the Sun, the Sun about the galaxy, and the
galaxy relative to the center of mass of the Local Group.)



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2020 p. 40

The dipole anisotropy corresponds to a “peculiar velocity” (that is, velocity which
is not due to the expansion of the universe) of 630 ± 20 km s−1, or in terms of

the speed of light, v/c ≈ 2× 10−3 .

(iii) The intrinsic relative temperature fluctuations ∆T/T , after removing the dipole
anisotropy corresponding to the motion of the observer relative to the CMB.

1.1× 10−5

(iv) The ratio of baryon number density to photon number density, η = nbary/nγ .

The WMAP 5-year value for η = nb/nγ = (6.225± 0.170)× 10−10 , which to

closest order of magnitude is 10−9.

(v) The angular size θH , in degrees, corresponding to what was the Hubble distance
c/H at the surface of last scattering. This answer must be within a factor of 3

to be correct. ∼ 1◦

(b) (3 points) Because photons outnumber baryons by so much, the exponential tail of
the photon blackbody distribution is important in ionizing hydrogen well after kTγ
falls below QH = 13.6 eV. What is the ratio kTγ/QH when the ionization fraction
of the universe is 1/2?

(i) 1/5 (ii) 1/50 (iii) 10−3 (iv) 10−4 (v) 10−5

This is not a number one has to commit to memory if one can remember the
temperature of (re)combination in eV, or if only in K along with the conversion
factor (k ≈ 10−4 eV K−1). One can then calculate that near recombination,
kTγ/QH ≈ (10−4 eV K−1)(3000 K)/(13.6 eV) ≈ 1/45.

(c) (2 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons from overdense regions at the surface of last scattering appear redder

because they must climb out of the gravitational potential well.

(iv) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

(v) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.
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(vi) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

Explanation: Denser regions have a deeper (more negative) gravitational poten-
tial. Photons which travel through a spatially varying potential acquire a redshift
or blueshift depending on whether they are going up or down the potential, re-
spectively. Photons originating in the denser regions start at a lower potential
and must climb out, so they end up being redshifted relative to their original
energies.

(d) (10 points) For each of the following statements, say whether it is true or false:

(i) Dark matter interacts through the gravitational, weak, and electromagnetic

forces. T or F ?

(ii) The virial theorem can be applied to a cluster of galaxies to find its total mass,

most of which is dark matter. T or F ?

(iii) Neutrinos are thought to comprise a significant fraction of the energy density of

dark matter. T or F ?

(iv) Magnetic monopoles are thought to comprise a significant fraction of the energy

density of dark matter. T or F ?

(v) Lensing observations have shown that MACHOs cannot account for the dark
matter in galactic halos, but that as much as 20% of the halo mass could be in

the form of MACHOs. T or F ?

PROBLEM 5: DID YOU DO THE READING? (2007) (25 points)

The following parts are each worth 5 points.

(a) (CMB basic facts) Which one of the following statements about CMB is not correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean square

temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measurement
of an excess temperature of about 3.5 K that was isotropic, unpolarized, and
free from seasonal variations. In a companion paper written by Dicke, Peebles,
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Roll and Wilkinson, the authors interpreted the radiation to be a relic of an
early, hot, dense, and opaque state of the universe.

Explanation: After subtracting the dipole contribution, the temperature fluctua-
tion is about 1.1× 10−5.

(b) (CMB experiments) The current mean energy per CMB photon, about 6× 10−4 eV,
is comparable to the energy of vibration or rotation for a small molecule such as H2O.
Thus microwaves with wavelengths shorter than λ ∼ 3 cm are strongly absorbed by
water molecules in the atmosphere. To measure the CMB at λ < 3 cm, which one
of the following methods is not a feasible solution to this problem?

(i) Measure CMB from high-altitude balloons, e.g. MAXIMA.

(ii) Measure CMB from the South Pole, e.g. DASI.

(iii) Measure CMB from the North Pole, e.g. BOOMERANG.

(iv) Measure CMB from a satellite above the atmosphere of the Earth, e.g. COBE,
WMAP and PLANCK.

Explanation: The North Pole is at sea level. In contrast, the South Pole is
nearly 3 kilometers above sea level. BOOMERANG is a balloon-borne experi-
ment launched from Antarctica.

(c) (Temperature fluctuations) The creation of temperature fluctuations in CMB by
variations in the gravitational potential is known as the Sachs-Wolfe effect. Which
one of the following statements is not correct concerning this effect?

(i) A CMB photon is redshifted when climbing out of a gravitational potential well,
and is blueshifted when falling down a potential hill.

(ii) At the time of last scattering, the nonbaryonic dark matter dominated the en-
ergy density, and hence the gravitational potential, of the universe.

(iii) The large-scale fluctuations in CMB temperatures arise from the gravitational
effect of primordial density fluctuations in the distribution of nonbaryonic dark
matter.

(iv) The peaks in the plot of temperature fluctuation ∆T vs. multipole l are due to

variations in the density of nonbaryonic dark matter, while the contributions
from baryons alone would not show such peaks.

Explanation: These peaks are due to the acoustic oscillations in the photon-
baryon fluid.

(d) (Dark matter candidates) Which one of the following is not a candidate of nonbary-
onic dark matter?

(i) massive neutrinos
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(ii) axions

(iii) matter made of top quarks (a type of quarks with heavy mass of about 171

GeV).

(iv) WIMPs (Weakly Interacting Massive Particles)

(v) primordial black holes

Explanation: Matter made of top quarks is so unstable that it is seen only fleet-
ingly as a product in high energy particle collisions.

(e) (Signatures of dark matter) By what methods can signatures of dark matter be
detected? List two methods. (Grading: 3 points for one correct answer, 5 points for
two correct answers. If you give more than two answers, your score will be based
on the number of right answers minus the number of wrong answers, with a lower
bound of zero.)

Answers:

(i) Galaxy rotation curves. (I.e., measurements of the orbital speed of stars in spiral
galaxies as a function of radius R show that these curves remain flat at radii
far beyond the visible stellar disk. If most of the matter were contained in the
disk, then these velocities should fall off as 1/

√
R.)

(ii) Use the virial theorem to estimate the mass of a galaxy cluster. (For example,
the virial analysis shows that only 2% of the mass of the Coma cluster consists
of stars, and only 10% consists of hot intracluster gas.

(iii) Gravitational lensing. (For example, the mass of a cluster can be estimated from
the distortion of the shapes of the galaxies behind the cluster.)

(iv) CMB temperature fluctuations. (I.e., the analysis of the intensity of the fluc-
tuations as a function of multipole number shows that Ωtot ≈ 1, and that dark
energy contributes ΩΛ ≈ 0.7, baryonic matter contributes Ωbary ≈ 0.04, and
dark matter contributes Ωdark matter ≈ 0.26.)

There are other possible answers as well, but these are the ones discussed by Ryden
in Chapters 8 and 9.

PROBLEM 6: TIME EVOLUTION OF A UNIVERSE INCLUDING A HY-
POTHETICAL KIND OF MATTER (30 points)

Suppose that a flat universe includes nonrelativistic matter, radiation, and also mys-
ticium, where the mass density of mysticium behaves as

ρmyst ∝
1

a5(t)
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as the universe expands. In this problem we will define

x(t) ≡ a(t)

a(t0)
,

where t0 is the present time. For the following questions, you need not evaluate any
of the integrals that might arise, but they must be integrals of explicit functions with
explicit limits of integration; remember that a(t) is not given. You may express your
answers in terms of the present value of the Hubble expansion rate, H0, and the various
contributions to the present value of Ω: Ωm,0, Ωrad,0, and Ωmyst,0.

(a) (7 points) Write an expression for the Hubble expansion rate H(x).

(b) (7 points) Write an expression for the current age of the universe.

(c) (3 points) Write an expression for the time t(x) in terms of the value of x.

(d) (3 points) Write an expression for the total mass density ρ(x) as a function of x.

(e) (10 points) Write an expression for present value of the physical horizon distance,
`p,hor(t0).

Solution:

(a) Since the universe is flat, the first Friedmann equation becomes

H2 =
8π

3
Gρ ,

but then we can write ρ as

H2 =
8π

3
G

{
ρm,0

[
a(t0)

a(t)

]3

+ ρrad,0

[
a(t0)

a(t)

]4

+ ρmyst,0

[
a(t0)

a(t)

]5
}

.

Now use

ρc,0 =
3H2

0

8πG
and Ω ≡ ρ

ρc
,

so

H2 =
H2

0

ρc,0

{
ρm,0

[
a(t0)

a(t)

]3

+ ρrad,0

[
a(t0)

a(t)

]4

+ ρmyst,0

[
a(t0)

a(t)

]5
}

= H2
0

{
Ωm,0
x3

+
Ωrad,0

x4
+

Ωmyst,0

x5

}
.

Finally,

H(x) =
H0

x2

√
Ωm,0x+ Ωrad,0 +

Ωmyst,0

x
.
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(b) To find the current age t0, we start with

H =
ȧ

a
=
ẋ

x
=⇒ dx

dt
= xH =⇒ dt =

dx

xH
.

So t0 can be found by integrating over the range of x, from 0 to 1:

t0 =

∫ 1

0

dx

xH(x)

=
1

H0

∫ 1

0

xdx√
Ωm,0x+ Ωrad,0 +

Ωmyst,0

x

.

(c) To find the time t corresponding to some value of x other than 1, one simply integrates
dt from x′ = 0 to x′ = x:

t(x) =

∫ x

0

dx′

x′H(x′)

=
1

H0

∫ x

0

x′ dx′√
Ωm,0x′ + Ωrad,0 +

Ωmyst,0

x′

.

(d) From the first Friedmann equation,

H2 =
8π

3
Gρ =⇒ ρ =

3

8πG
H2(x) .

Given the answer in part (a), this becomes

ρ(x) =
3

8πG

H2
0

x4

[
Ωm,0x+ Ωrad,0 +

Ωmyst,0

x

]
.

(e) The general formula for the physical horizon distance is given on the formula sheet:

`p,hor(t) = a(t)

∫ t

0

c

a(t′)
dt′ .
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Here we are not given the function a(t), but we can change the variable of integration
to integrate over x:

dt′ =
dt′

da
da =

1

ȧ
da =

1

a

a

ȧ
da =

da

aH(x)
.

So

`p,hor(t0) = a(t0)

∫ a(t0)

0

cda

a2H(a)

=

∫ 1

0

cdx

x2H(x)

=
c

H0

∫ 1

0

dx√
Ωm,0x+ Ωrad,0 +

Ωmyst,0

x

.

PROBLEM 7: THE CONSEQUENCES OF AN ALT-PHOTON (25 points)

Suppose that, in addition to the particles that are known to exist, there also existed
an alt-photon, which has exactly the properties of a photon: it is massless, has two spin
states (or polarization states), and has the same interactions with other particles that
photons do. Like photons, it is its own antiparticle.

(a) (5 points) In thermal equilibrium at temperature T , what is the total energy density
of alt-photons?

(b) (5 points) In thermal equilibrium at temperature T , what is the number density of
alt-photons?

(c) (10 points) In this situation, what would be the temperature ratios Tν/Tγ and
Tν/Taltγ today?

(d) (5 points) Would the existence of this particle increase or decrease the abundance of
helium, or would it have no effect?

Solution:

(a) The energy density will be the same as for photons, since there is no difference. The
general formula is

u = g
π2

30

(kT )4

(h̄c)3
,
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as given on the formula sheets, and g = 2 for alt-photons (or photons), since there
are two polarization states, and the particles are bosons. So

ualtγ =
π2

15

(kT )4

(h̄c)3
. (4.1)

(b) For the number density, the general formula is

n = g∗
ζ(3)

π2

(kT )3

(h̄c)3
,

where g∗ = 2 since again the alt-photons are bosons with two polarization states. So

naltγ = 2
ζ(3)

π2

(kT )3

(h̄c)3
. (4.2)

(c) As in the actual scenario, the event that causes a temperature difference is the
disappearance of the electron-positron pairs from the thermal equilibrium mix, which
occurs as kT changes from values large compared to mec

2 = 0.511 MeV to values
that are small compared to it. The key point is that this disappearance occurs after
the neutrinos have decoupled from the other particles, so all of the entropy from the
electron-positron pairs is given to the photons, and none is given to the neutrinos.
In this case the entropy is given to both the photons and the alt-photons.

The general formula for entropy density is on the formula sheet, and it can be
rewritten as

s = AgT 3 , (4.3)

where

A =
2π2

45

k4

(h̄c)3
. (4.4)

The value of A will in fact not be needed for this problem.

Since the neutrinos have decoupled by the time the e+e− pairs disappear, the entropy
of neutrinos and the entropy of everything else will be separately conserved. Entropy
conservation means that the entropy per comoving volume does not change. During
the period before e+e− freeze-out, g is constant, so the constancy of entropy per
comoving volume implies that

S = sVphys = gT 3AVphys = ga3T 3AVcoord , (4.5)
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so S/Vcoord = const implies that a3T 3 is constant, and so aT is constant. Here T
is the common temperature of photons, alt-photons, electrons and positrons, and
neutrinos, all of which were in thermal equilibrium during this period. Since aT is
constant during this period, we can give the constant a name,

aT = [aT ]before . (4.6)

For the neutrinos, the formula sheet tells us that

gν =
7

8︸ ︷︷ ︸
Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21

4
, (4.7)

while

ge+e− =
7

8︸ ︷︷ ︸
Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

=
7

2
. (4.8)

Thus

gelse = gγ + galtγ + ge+e− = 2 + 2 +
7

2
=

15

2
. (4.9)

Thus before the e+e− freezeout, the two conserved quantities were

Sν
Vcoord

= Agν [aT ]3before ,
Selse

Vcoord
= Agelse[aT ]3before . (4.10)

After e+e− freezeout, the temperature of the neutrinos Tν will no longer be the
same as the temperature Tγ of the photons and alt-photons, and of course e+e−

pairs will no longer be present. But Tγ and Taltγ will be equal to each other, since
they have the same interactions; we know that the interactions of the photons keep
them in thermal equilibrium until tdecoupling ∼ 380, 000 years, so both the photons
and the alt-photons will remain in thermal equilibrium until long after the era of
e+e− freezeout, which is of order 1–10 seconds. Thus the two conserved quantities
will be

Sν
Vcoord

= Agν [aTν ]3after ,
Selse

Vcoord
= A(gγ + galtγ)[aTγ ]3after . (4.11)

By equating the values of Sν/Vcoord before and after, we see that

[aTν ]after = [aT ]before , (4.12)

and then by equating the values of Selse/Vcoord before and after, we see that

[aTγ ]after =

(
gelse

gγ + galtγ

)1/3

[aT ]before =

(
gelse

gγ + galtγ

)1/3

[aTν ]after , (4.13)
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where we used Eq. (4.12) in the last step. It follows that

[
Tν
Tγ

]
after

=

(
gγ + galtγ

gelse

)1/3

=

(
2 + 2

15
2

)1/3

=

(
8

15

)1/3

. (4.14)

(d) It would increase the abundance of helium. The main effect of the alt-photon would
be to increase the expansion rate of the universe, which in turn would cause the
neutrinos to decouple earlier from the thermal equilibrium mix, which in turn would
mean that the ratio nn/np, the ratio of neutrons to protons, would become frozen
at a larger value. The increased expansion rate would also mean less time available
for free neutron decay, which further increases the number of neutrons that remain
when the temperature falls low enough for helium formation to complete. Essentially
all the neutrons become bound into helium, so more neutrons implies more helium.

PROBLEM 8: NUMBER DENSITIES IN THE COSMIC BACKGROUND
RADIATION

In general, the number density of a particle in the black-body radiation is given by

n = g∗
ξ(3)

π2

(
kT

h̄c

)3

For photons, one has g∗ = 2. Then

k = 1.381× 10−16erg/◦K

T = 2.7 ◦K

h̄ = 1.055× 10−27erg-sec

c = 2.998× 1010cm/sec


=⇒

(
kT

h̄c

)3

= 1.638× 103cm−3 .

Then using ξ(3) ' 1.202, one finds

nγ = 399/cm3 .

For the neutrinos,

g∗ν = 2× 3

4
=

3

2
per species.
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The factor of 2 is to account for ν and ν̄, and the factor of 3/4 arises from the Pauli
exclusion principle. So for three species of neutrinos one has

g∗ν =
9

2
.

Using the result

T 3
ν =

4

11
T 3
γ

from Problem 8 of Problem Set 3 (2000), one finds

nν =

(
g∗ν
g∗γ

)(
Tν
Tγ

)3

nγ

=

(
9

4

)(
4

11

)
399cm−3

=⇒ nν = 326/cm3 (for all three species combined).

PROBLEM 9: PROPERTIES OF BLACK-BODY RADIATION

(a) The average energy per photon is found by dividing the energy density by the number
density. The photon is a boson with two spin states, so g = g∗ = 2. Using the
formulas on the front of the exam,

E =

g
π2

30

(kT )4

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=
π4

30ζ(3)
kT .

You were not expected to evaluate this numerically, but it is interesting to know that

E = 2.701 kT .

Note that the average energy per photon is significantly more than kT , which is often
used as a rough estimate.
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(b) The method is the same as above, except this time we use the formula for the entropy
density:

S =

g
2π2

45

k4T 3

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=
2π4

45ζ(3)
k .

Numerically, this gives 3.602 k, where k is the Boltzmann constant.

(c) In this case we would have g = g∗ = 1. The average energy per particle and
the average entropy particle depends only on the ratio g/g∗, so there would be

no difference from the answers given in parts (a) and (b).

(d) For a fermion, g is 7/8 times the number of spin states, and g∗ is 3/4 times the
number of spin states. So the average energy per particle is

E =

g
π2

30

(kT )4

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=

7

8

π2

30

(kT )4

(h̄c)3

3

4

ζ(3)

π2

(kT )3

(h̄c)3

=
7π4

180ζ(3)
kT .

Numerically, E = 3.1514 kT .

Warning: the Mathematician General has determined
that the memorization of this number may adversely
affect your ability to remember the value of π.

If one takes into account both neutrinos and antineutrinos, the average energy per
particle is unaffected — the energy density and the total number density are both
doubled, but their ratio is unchanged.
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Note that the energy per particle is higher for fermions than it is for bosons. This
result can be understood as a natural consequence of the fact that fermions must
obey the exclusion principle, while bosons do not. Large numbers of bosons can
therefore collect in the lowest energy levels. In fermion systems, on the other hand,
the low-lying levels can accommodate at most one particle, and then additional
particles are forced to higher energy levels.

(e) The values of g and g∗ are again 7/8 and 3/4 respectively, so

S =

g
2π2

45

k4T 3

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=

7

8

2π2

45

k4T 3

(h̄c)3

3

4

ζ(3)

π2

(kT )3

(h̄c)3

=
7π4

135ζ(3)
k .

Numerically, this gives S = 4.202 k.

PROBLEM 10: A NEW SPECIES OF LEPTON

a) The number density is given by the formula at the start of the exam,

n = g∗
ζ(3)

π2

(kT )3

(h̄c)3
.

Since the 8.286ion is like the electron, it has g∗ = 3; there are 2 spin states for the
particles and 2 for the antiparticles, giving 4, and then a factor of 3/4 because the
particles are fermions. So
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Then

Answer = 3
ζ(3)

π2
×
(

3× 106 × 102

6.582× 10−16 × 2.998× 1010

)3

.

You were not asked to evaluate this expression, but the answer is 1.29× 1039.

b) For a flat cosmology κ = 0 and one of the Einstein equations becomes(
ȧ

a

)2

=
8π

3
Gρ .

During the radiation-dominated era a(t) ∝ t1/2, as claimed on the front cover of the
exam. So,

ȧ

a
=

1

2t
.

Using this in the above equation gives

1

4t2
=

8π

3
Gρ .

Solve this for ρ,

ρ =
3

32πGt2
.

The question asks the value of ρ at t = 0.01 sec. With G = 6.6732 ×
10−8 cm3 sec−2 g−1, then

ρ =
3

32π × 6.6732× 10−8 × (0.01)2

in units of g/cm3. You weren’t asked to put the numbers in, but, for reference, doing
so gives ρ = 4.47× 109 g/cm3.

c) The mass density ρ = u/c2, where u is the energy density. The energy density for
black-body radiation is given in the exam,

u = ρc2 = g
π2

30

(kT )4

(h̄c)3
.

We can use this information to solve for kT in terms of ρ(t) which we found above
in part (b). At a time of 0.01 sec, g has the following contributions:

Photons: g = 2

e+e−: g = 4× 7
8 = 3 1

2

νe, νµ, ντ : g = 6× 7
8 = 5 1

4

8.286ion− anti8.286ion g = 4× 7
8 = 3 1

2
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gtot = 14
1

4
.

Solving for kT in terms of ρ gives

kT =

[
30

π2

1

gtot
h̄3c5ρ

]1/4

.

Using the result for ρ from part (b) as well as the list of fundamental constants from
the cover sheet of the exam gives

kT =

[
90× (1.055× 10−27)3 × (2.998× 1010)5

14.24× 32π3 × 6.6732× 10−8 × (0.01)2

]1/4

× 1

1.602× 10−6

where the answer is given in units of MeV. Putting in the numbers yields kT = 8.02
MeV.

d) The production of helium is increased. At any given temperature, the additional
particle increases the energy density. Since H ∝ ρ1/2, the increased energy density
speeds the expansion of the universe— the Hubble constant at any given temperature
is higher if the additional particle exists, and the temperature falls faster. The
weak interactions that interconvert protons and neutrons “freeze out” when they
can no longer keep up with the rate of evolution of the universe. The reaction
rates at a given temperature will be unaffected by the additional particle, but the
higher value of H will mean that the temperature at which these rates can no longer
keep pace with the universe will occur sooner. The freeze-out will therefore occur
at a higher temperature. The equilibrium value of the ratio of neutron to proton
densities is larger at higher temperatures: nn/np ∝ exp(−∆mc2/kT ), where nn and
np are the number densities of neutrons and protons, and ∆m is the neutron-proton
mass difference. Consequently, there are more neutrons present to combine with
protons to build helium nuclei. In addition, the faster evolution rate implies that
the temperature at which the deuterium bottleneck breaks is reached sooner. This
implies that fewer neutrons will have a chance to decay, further increasing the helium
production.

e) After the neutrinos decouple, the entropy in the neutrino bath is conserved separately
from the entropy in the rest of the radiation bath. Just after neutrino decoupling,
all of the particles in equilibrium are described by the same temperature which cools
as T ∝ 1/a. The entropy in the bath of particles still in equilibrium just after the
neutrinos decouple is

S ∝ grestT
3(t)a3(t)

where grest = gtot−gν = 9. By today, the e+−e− pairs and the 8.286ion-anti8.286ion
pairs have annihilated, thus transferring their entropy to the photon bath. As a result
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the temperature of the photon bath is increased relative to that of the neutrino bath.
From conservation of entropy we have that the entropy after annihilations is equal
to the entropy before annihilations

gγT
3
γ a

3(t) = grestT
3(t)a3(t) .

So,

Tγ
T (t)

=

(
grest

gγ

)1/3

.

Since the neutrino temperature was equal to the temperature before annihilations,
we have that

Tν
Tγ

=

(
2

9

)1/3

.

PROBLEM 11: A NEW THEORY OF THE WEAK INTERACTIONS (40
points)

(a) In the standard model, the black-body radiation at kT ≈ 200 MeV contains the
following contributions:

Photons: g = 2

e+e−: g = 4× 7
8 = 3 1

2

νe, νµ, ντ : g = 6× 7
8 = 5 1

4

µ+µ−: g = 4× 7
8 = 3 1

2

π+π−π0 g = 3


gTOT = 17

1

4

The mass density is then given by

ρ =
u

c2
= gTOT

π2

30

(kT )4

h̄3c5
.

In kg/m3, one can evaluate this expression by

ρ =

(
17

1

4

)
π2

30

[
200× 106 eV× 1.602× 10−19 J

eV

]4

(1.055× 10−34 J-s)
3

(2.998× 108 m/s)
5 .
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Checking the units,

[ρ] =
J4

J3-s3-m5-s−5
=

J-s2

m5

=

(
kg-m2-s−2

)
s2

m5
= kg/m

3
.

So, the final answer would be

ρ =

(
17

1

4

)
π2

30

[
200× 106 × 1.602× 10−19

]4
(1.055× 10−34)

3
(2.998× 108)

5

kg

m3
.

You were not expected to evaluate this, but with a calculator one would find

ρ = 2.10× 1018 kg/m
3
.

In g/cm3, one would evaluate this expression by

ρ =

(
17

1

4

)
π2

30

[
200× 106 eV× 1.602× 10−12 erg

eV

]4

(1.055× 10−27 erg-s)
3

(2.998× 1010 cm/s)
5 .

Checking the units,

[ρ] =
erg4

erg3-s3-cm5-s−5
=

erg-s2

cm5

=

(
g-cm2-s−2

)
s2

cm5
= g/cm

3
.

So, in this case the final answer would be

ρ =

(
17

1

4

)
π2

30

[
200× 106 × 1.602× 10−12

]4
(1.055× 10−27)

3
(2.998× 1010)

5

g

cm3
.

No evaluation was requested, but with a calculator you would find

ρ = 2.10× 1015 g/cm
3
,
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which agrees with the answer above.

Note: A common mistake was to leave out the conversion factor 1.602× 10−19 J/eV
(or 1.602 × 10−12 erg/eV), and instead to use h̄ = 6.582× 10−16 eV-s. But if one
works out the units of this answer, they turn out to be eV-sec2/m5 (or eV-sec2/cm5),
which is a most peculiar set of units to measure a mass density.

In the NTWI, we have in addition the contribution to the mass density from R+-R−

pairs, which would act just like e+-e− pairs or µ+-µ− pairs, with g = 31
2 . Thus

gTOT = 20 3
4 , so

ρ =

(
20

3

4

)
π2

30

[
200× 106 × 1.602× 10−19

]4
(1.055× 10−34)

3
(2.998× 108)

5

kg

m3

or

ρ =

(
20

3

4

)
π2

30

[
200× 106 × 1.602× 10−12

]4
(1.055× 10−27)

3
(2.998× 1010)

5

g

cm3
.

Numerically, the answer in this case would be

ρNTWI = 2.53× 1018 kg/m
3

= 2.53× 1015 g/cm
3
.

(b) As long as the universe is in thermal equilibrium, entropy is conserved. The entropy
in a given volume of the comoving coordinate system is

a3(t)s Vcoord ,

where s is the entropy density and a3Vcoord is the physical volume. So

a3(t)s

is conserved. After the neutrinos decouple,

a3sν and a3sother

are separately conserved, where sother is the entropy of everything except neutrinos.

Note that s can be written as
s = gAT 3 ,
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where A is a constant. Before the disappearance of the e, µ, R, and π particles from
the thermal equilibrium radiation,

sν =

(
5

1

4

)
AT 3

sother =

(
15

1

2

)
AT 3 .

So
sν

sother
=

5 1
4

15 1
2

.

If a3sν and a3sother are conserved, then so is sν/sother. By today, the entropy previ-
ously shared among the various particles still in equilibrium after neutrino decoupling
has been transfered to the photons so that

sother = sphotons = 2AT 3
γ .

The entropy in neutrinos is still

sν =

(
5

1

4

)
AT 3

ν .

Since sν/sother is constant we know that(
5 1

4

)
T 3
ν

2T 3
γ

=
sν

sother
=

5 1
4

15 1
2

=⇒ Tν =

(
4

31

)1/3

Tγ .

(c) One can write

n = g∗BT 3 ,

where B is a constant. Here g∗γ = 2, and g∗ν = 6 × 3
4 = 4 1

2 . In the standard model,
one has today

nν
nγ

=
g∗νT

3
ν

g∗γT
3
γ

=

(
4 1

2

)
2

4

11
=

9

11
.
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In the NTWI,

nν
nγ

=

(
4 1

2

)
2

4

31
=

9

31
.

(d) At kT = 200 MeV, the thermal equilibrium ratio of neutrons to protons is given by

nn

np
= e−1.29 MeV/200 MeV ≈ 1 .

In the standard theory this ratio would decrease rapidly as the universe cooled and
kT fell below the p-n mass difference of 1.29 MeV, but in the NTWI the ratio freezes
out at the high temperature corresponding to kT = 200 MeV, when the ratio is
about 1. When kT falls below 200 MeV in the NTWI, the neutrino interactions

n+ νe ↔ p+ e− and n+ e+ ↔ p+ ν̄e

that maintain the thermal equilibrium balance between protons and neutrons no
longer occur at a significant rate, so the ratio n/np is no longer controlled by ther-
mal equilibrium. After kT falls below 200 MeV, the only process that can convert
neutrons to protons is the rather slow process of free neutron decay, with a decay
time τd of about 890 s. Thus, when the deuterium bottleneck breaks at about 200
s, the number density of neutrons will be considerably higher than in the standard
model. Since essentially all of these neutrons will become bound into He nuclei, the
higher neutron abundance of the NTWI implies a

higher predicted He abundance.

To estimate the He abundance, note that if we temporarily ignore free neutron decay,
then the neutron-proton ratio would be frozen at about 1 and would remain 1 until
the time of nucleosynthesis. At the time of nucleosynthesis essentially all of these
neutrons would be bound into He nuclei (each with 2 protons and 2 neutrons). For
an initial 1:1 ratio of neutrons to protons, all the neutrons and protons can be bound
into He nuclei, with no protons left over in the form of hydrogen, so Y would equal
1. However, the free neutron decay process will cause the ratio nn/np to fall below
1 before the start of nucleosynthesis, so the predicted value of Y would be less than
1.

To calculate how much less, note that Ryden estimates the start of nucleosynthe-
sis at the time when the temperature reaches Tnuc, which is the temperature for
which a thermal equilibrium calculation gives nD/nn = 1. This corresponds to what
Weinberg refers to as the breaking of the deuterium bottleneck. The temperature
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Tnuc is calculated in terms of η = nB/nγ and physical constants, so it would not be
changed by the NTWI. The time when this temperature is reached, however, would
be changed slightly by the change in the ratio Tν/Tγ . Since this effect is rather
subtle, no points will be taken off if you omitted it. However, to be as accurate
as possible, one should recognize that nucleosynthesis occurs during the radiation-
dominated era, but long after the e+-e− pairs have disappeared, so the black-body
radiation consists of photons at temperature Tγ and neutrinos at a lower temperature
Tν . The energy density is given by

u =
π2

30

(kTγ)4

(h̄c)3

[
2 +

(
21

4

)(
Tν
Tγ

)4
]
≡ geff

π2

30

(kTγ)4

(h̄c)3
,

where

geff = 2 +

(
21

4

)(
Tν
Tγ

)4

.

For the standard model

gsm
eff = 2 +

(
21

4

)(
4

11

)4/3

,

and for the NTWI

gNTWI
eff = 2 +

(
21

4

)(
4

31

)4/3

.

The relation between time and temperature in a flat radiation-dominated universe
is given in the formula sheets as

kT =

(
45h̄3c5

16π3gG

)1/4
1√
t
.

Thus,

t ∝ 1

g
1/2
eff T 2

.

In the standard model Ryden estimates the time of nucleosynthesis as tsmnuc ≈ 200 s,
so in the NTWI it would be longer by the factor

tNTWI
nuc =

√
gsm

eff

gNTWI
eff

tsmnuc .

While of coure you were not expected to work out the numerics, this gives

tNTWI
nuc = 1.20 tsmnuc .
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Note that Ryden gives tnuc ≈ 200s, while Weinberg places it at 3 3
4 minutes ≈ 225 s,

which is close enough.

To follow the effect of this free decay, it is easiest to do it by considering the ratio
neutrons to baryon number, nn/nB , since nB does not change during this period.
At freeze-out, when kT ≈ 200 MeV,

nn
nB
≈ 1

2
.

Just before nucleosynthesis, at time tnuc, the ratio will be

nn
nB
≈ 1

2
e−tnuc/τd .

If free decay is ignored, we found Y = 1. Since all the surviving neutrons are bound
into He, the corrected value of Y is simply deceased by multiplying by the fraction
of neutrons that do not undergo decay. Thus, the prediction of NTWI is

Y = e−tnuc/τd = exp

−
√

gsm
eff

gNTWI
eff

200

890

 ,

where gsm
eff and gNTWI

eff are given above. When evaluated numerically, this would give

Y = Predicted He abundance by weight ≈ 0.76 .

PROBLEM 12: DOUBLING OF ELECTRONS (10 points)

The entropy density of black-body radiation is given by

s = g

[
2π2

45

k4

(h̄c)3

]
T 3

= g C T 3 ,

where C is a constant. At the time when the electron-positron pairs disappear,
the neutrinos are decoupled, so their entropy is conserved. All of the entropy from
electron-positron pairs is given to the photons, and none to the neutrinos. The same
will be true here, for both species of electron-positron pairs.
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The conserved neutrino entropy can be described by Sν ≡ a3sν , which indicates the
entropy per cubic notch, i.e., entropy per unit comoving volume. We introduce the
notation n− and n+ for the new electron-like and positron-like particles, and also
the convention that

Primed quantities: values after e+e−n+n− annihilation

Unprimed quantities: values before e+e−n+n− annihilation.

For the neutrinos,

S′ν = Sν =⇒ gνC (a′T ′ν)
3

= gνC (aTν)
3

=⇒

a′T ′ν = aTν .

For the photons, before e+e−n+n− annihilation we have

Tγ = Te+e−n+n− = Tν ; gγ = 2, ge+e− = gn+n− = 7/2 .

When the e+e− and n+n− pairs annihilate, their entropy is added to the photons:

S′γ = Se+e− + Sn+n− + Sγ =⇒ 2C
(
a′T ′γ

)3
=

(
2 + 2 · 7

2

)
C (aTγ)

3
=⇒

a′T ′γ =

(
9

2

)1/3

aTγ ,

so aTγ increases by a factor of (9/2)1/3.

Before e+e− annihilation the neutrinos were in thermal equilibrium with the photons,
so Tγ = Tν . By considering the two boxed equations above, one has

T ′ν =

(
2

9

)1/3

T ′γ .

This ratio would remain unchanged until the present day.
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PROBLEM 13: TIME SCALES IN COSMOLOGY

(a) 1 sec. [This is the time at which the weak interactions begin to “freeze out”, so that
free neutron decay becomes the only mechanism that can interchange protons and
neutrons. From this time onward, the relative number of protons and neutrons is no
longer controlled by thermal equilibrium considerations.]

(b) 4 mins. [By this time the universe has become so cool that nuclear reactions are no
longer initiated.]

(c) 10−37 sec. [We learned in Lecture Notes 7 that kT was about 1 MeV at t = 1 sec.
Since 1 GeV = 1000 MeV, the value of kT that we want is 1019 times higher. In the
radiation-dominated era T ∝ a−1 ∝ t−1/2, so we get 10−38 sec.]

(d) 10,000 – 1,000,000 years. [This number was estimated in Lecture Notes 7 as 200,000
years.]

(e) 10−5 sec. [As in (c), we can use t ∝ T−2, with kT ≈ 1 MeV at t = 1 sec.]

PROBLEM 14: EVOLUTION OF FLATNESS (15 points)

(a) We start with the Friedmann equation from the formula sheet on the quiz:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
.

The critical density is the value of ρ corresponding to k = 0, so

H2 =
8π

3
Gρc .

Using this expression to replace H2 on the left-hand side of the Friedmann equation,
and then dividing by 8πG/3, one finds

ρc = ρ− 3kc2

8πGa2
.

Rearranging,
ρ− ρc
ρ

=
3kc2

8πGa2ρ
.

On the left-hand side we can divide the numerator and denominator by ρc, and then
use the definition Ω ≡ ρ/ρc to obtain

Ω− 1

Ω
=

3kc2

8πGa2ρ
. (1)
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For a matter-dominated universe we know that ρ ∝ 1/a3(t), and so

Ω− 1

Ω
∝ a(t) .

If the universe is nearly flat we know that a(t) ∝ t2/3, so

Ω− 1

Ω
∝ t2/3 .

(b) Eq. (1) above is still true, so our only task is to re-evaluate the right-hand side. For
a radiation-dominated universe we know that ρ ∝ 1/a4(t), so

Ω− 1

Ω
∝ a2(t) .

If the universe is nearly flat then a(t) ∝ t1/2, so

Ω− 1

Ω
∝ t .

PROBLEM 15: THE SLOAN DIGITAL SKY SURVEY z = 5.82 QUASAR
(40 points)

(a) Since Ωm + ΩΛ = 0.35 + 0.65 = 1, the universe is flat. It therefore obeys a simple
form of the Friedmann equation,

H2 =

(
ȧ

a

)2

=
8π

3
G(ρm + ρΛ) ,

where the overdot indicates a derivative with respect to t, and the term proportional
to k has been dropped. Using the fact that ρm ∝ 1/a3(t) and ρΛ = const, the energy
densities on the right-hand side can be expressed in terms of their present values
ρm,0 and ρΛ ≡ ρΛ,0. Defining

x(t) ≡ a(t)

a(t0)
,



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2020 p. 65

one has (
ẋ

x

)2

=
8π

3
G
(ρm,0
x3

+ ρΛ

)
=

8π

3
Gρc,0

(
Ωm,0
x3

+ ΩΛ,0

)
= H2

0

(
Ωm,0
x3

+ ΩΛ,0

)
.

Here we used the facts that

Ωm,0 ≡
ρm,0
ρc,0

; ΩΛ,0 ≡
ρΛ

ρc,0
,

and

H2
0 =

8π

3
Gρc,0 .

The equation above for (ẋ/x)2 implies that

ẋ = H0 x

√
Ωm,0
x3

+ ΩΛ,0 ,

which in turn implies that

dt =
1

H0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.

Using the fact that x changes from 0 to 1 over the life of the universe, this relation
can be integrated to give

t0 =

∫ t0

0

dt =
1

H0

∫ 1

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.

The answer can also be written as

t0 =
1

H0

∫ 1

0

xdx√
Ωm,0x+ ΩΛ,0x4

or

t0 =
1

H0

∫ ∞
0

dz

(1 + z)
√

Ωm,0(1 + z)3 + ΩΛ,0

,
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where in the last answer I changed the variable of integration using

x =
1

1 + z
; dx = − dz

(1 + z)2
.

Note that the minus sign in the expression for dx is canceled by the interchange of
the limits of integration: x = 0 corresponds to z = ∞, and x = 1 corresponds to
z = 0.

Your answer should look like one of the above boxed answers. You were not expected
to complete the numerical calculation, but for pedagogical purposes I will continue.
The integral can actually be carried out analytically, giving

∫ 1

0

xdx√
Ωm,0x+ ΩΛ,0x4

=
2

3
√

ΩΛ,0

ln

(√
Ωm + ΩΛ,0 +

√
ΩΛ,0√

Ωm

)
.

Using
1

H0
=

9.778× 109

h0
yr ,

where H0 = 100h0 km-sec−1-Mpc−1, one finds for h0 = 0.65 that

1

H0
= 15.043× 109 yr .

Then using Ωm = 0.35 and ΩΛ,0 = 0.65, one finds

t0 = 13.88× 109 yr .

So the SDSS people were right on target.

(b) Having done part (a), this part is very easy. The dynamics of the universe is of
course the same, and the question is only slightly different. In part (a) we found the
amount of time that it took for x to change from 0 to 1. The light from the quasar
that we now receive was emitted when

x =
1

1 + z
,

since the cosmological redshift is given by

1 + z =
a(tobserved)

a(temitted)
.
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Using the expression for dt from part (a), the amount of time that it took the universe
to expand from x = 0 to x = 1/(1 + z) is given by

te =

∫ te

0

dt =
1

H0

∫ 1/(1+z)

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.

Again one could write the answer other ways, including

t0 =
1

H0

∫ ∞
z

dz′

(1 + z′)
√

Ωm,0(1 + z′)3 + ΩΛ,0

.

Again you were expected to stop with an expression like the one above. Continuing,
however, the integral can again be done analytically:∫ xmax

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

=
2

3
√

ΩΛ,0

ln

(√
Ωm + ΩΛ,0x3

max +
√

ΩΛ,0 x
3/2
max√

Ωm

)
.

Using xmax = 1/(1 + 5.82) = .1466 and the other values as before, one finds

te =
0.06321

H0
= 0.9509× 109 yr .

So again the SDSS people were right.

(c) To find the physical distance to the quasar, we need to figure out how far light can
travel from z = 5.82 to the present. Since we want the present distance, we multiply
the coordinate distance by a(t0). For the flat metric

ds2 = −c2 dτ2 = −c2dt2 + a2(t)
{

dr2 + r2(dθ2 + sin2 θ dφ2)
}
,

the coordinate velocity of light (in the radial direction) is found by setting ds2 = 0,
giving

dr

dt
=

c

a(t)
.

So the total coordinate distance that light can travel from te to t0 is

`c =

∫ t0

te

c

a(t)
dt .
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This is not the final answer, however, because we don’t explicitly know a(t). We
can, however, change variables of integration from t to x, using

dt =
dt

dx
dx =

dx

ẋ
.

So

`c =
c

a(t0)

∫ 1

xe

dx

x ẋ
,

where xe is the value of x at the time of emission, so xe = 1/(1 + z). Using the
equation for ẋ from part (a), this integral can be rewritten as

`c =
c

H0a(t0)

∫ 1

1/(1+z)

dx

x2

√
Ωm,0
x3 + ΩΛ,0

.

Finally, then

`phys,0 = a(t0) `c =
c

H0

∫ 1

1/(1+z)

dx

x2

√
Ωm,0
x3 + ΩΛ,0

.

Alternatively, this result can be written as

`phys,0 =
c

H0

∫ 1

1/(1+z)

dx√
Ωm,0 x+ ΩΛ,0 x4

,

or by changing variables of integration to obtain

`phys,0 =
c

H0

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Continuing for pedagogical purposes, this time the integral has no analytic form, so
far as I know. Integrating numerically,∫ 5.82

0

dz′√
0.35 (1 + z′)3 + 0.65

= 1.8099 ,
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and then using the value of 1/H0 from part (a),

`phys,0 = 27.23 light-yr .

Right again.

(d) `phys,e = a(te)`c, so

`phys,e =
a(te)

a(t0)
`phys,0 =

`phys,0

1 + z
.

Numerically this gives

`phys,e = 3.992× 109 light-yr .

The SDSS announcement is still okay.

(e) The speed defined in this way obeys the Hubble law exactly, so

v = H0 `phys,0 = c

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Then

v

c
=

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Numerically, we have already found that this integral has the value

v

c
= 1.8099 .

The SDSS people get an A.
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PROBLEM 16: SECOND HUBBLE CROSSING (40 points)

(a) From the formula sheets, we know that for a flat radiation-dominated universe,

a(t) ∝ t1/2 .

Since

H =
ȧ

a
,

(which is also on the formula sheets),

H =
1

2t
.

Then

`H(t) ≡ cH−1(t) = 2ct .

(b) We are told that the energy density is dominated by photons and neutrinos, so we
need to add together these two contributions to the energy density. For photons, the
formula sheet reminds us that gγ = 2, so

uγ = 2
π2

30

(kTγ)4

(h̄c)3
.

For neutrinos the formula sheet reminds us that

gν =
7

8︸ ︷︷ ︸
Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21

4
,

so

uν =
21

4

π2

30

(kTν)4

(h̄c)3
.

Combining these two expressions and using Tν = (4/11)1/3 Tγ , one has

u = uγ + uν =

[
2 +

21

4

(
4

11

)4/3
]
π2

30

(kTγ)4

(h̄c)3
,

so finally

g1 = 2 +
21

4

(
4

11

)4/3

.
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(c) The Friedmann equation tells us that, for a flat universe,

H2 =
8π

3
Gρ ,

where in this case H = 1/(2t) and

ρ =
u

c2
= g1

π2

30

(kTγ)4

h̄3c5
.

Thus (
1

2t

)2

=
8πG

3
g1
π2

30

(kTγ)4

h̄3c5
.

Solving for Tγ ,

Tγ =
1

k

(
45h̄3c5

16π3g1G

)1/4
1√
t
.

(d) The condition for Hubble crossing is

λ(t) = cH−1(t) ,

and the first Hubble crossing always occurs during the inflationary era. Thus any
Hubble crossing during the radiation-dominated era must be the second Hubble
crossing.

If λ is the present physical wavelength of the density perturbations under discussion,
the wavelength at time t is scaled by the scale factor a(t):

λ(t) =
a(t)

a(t0)
λ .

Between the second Hubble crossing and now, there have been no freeze-outs of
particle species. Today the entropy of the universe is still dominated by photons and
neutrinos, so the conservation of entropy implies that aTγ has remained essentially
constant between then and now. Thus,

λ(t) =
Tγ,0
Tγ(t)

λ .

Using the previous results for cH−1(t) and for Tγ(t), the condition λ(t) = cH−1(t)
can be rewritten as

kTγ,0

(
16π3g1G

45h̄3c5

)1/4 √
t λ = 2ct .
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Solving for t, the time of second Hubble crossing is found to be

tH2(λ) = (kTγ,0λ)2

(
π3g1G

45h̄3c9

)1/2

.

Extension: You were not asked to insert numbers, but it is of course interesting to
know where the above formula leads. If we take λ = 106 lt-yr, it gives

tH2(106 lt-yr) = 1.04× 107 s = 0.330 year .

For λ = 1 Mpc,

tH2(1 Mpc) = 1.11× 108 s = 3.51 year .

Taking λ = 2.5× 106 lt-yr, the distance to Andromeda, the nearest spiral galaxy,

tH2(2.5× 106 lt-yr) = 6.50× 107 sec = 2.06 year .

PROBLEM 17: THE EVENT HORIZON FOR OUR UNIVERSE (25 points)

(a) In a spherical pulse each light ray is moving radially outward, so dθ = dφ = 0. A
light ray travels along a null trajectory, meaning that ds2 = 0, so we have

ds2 = −c2 dt2 + a2(t) dr2 = 0 . (3.1)

from which it follows that
dr

dt
= ± c

a(t)
. (3.2)

We are interested in a radial pulse that starts at r = 0 at time t = t0, so the limiting
value of r is given by

rmax =

∫ ∞
t0

c

a(t)
dt . (3.3)

(b) Changing variables of integration to

x =
a(t)

a(t0)
, (3.4)
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the integral becomes

rmax =

∫ ∞
1

c

a(t)

dt

dx
dx =

c

a(t0)

∫ ∞
1

1

x

dt

dx
dx , (3.5)

where we used the fact that t = t0 corresponds to x = a(t0)/a(t0) = 1. As given to
us on the formula sheet, the first-order Friedmann equation can be written as

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2 . (3.6)

Using this substitution,

rmax =
c

a(t0)H0

∫ ∞
1

dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

, (3.7)

where we have used Ωk,0 = 0, since the universe is taken to be flat.

(c) To find the value of the redshift for the light that we are presently receiving from
coordinate distance rmax, we can begin by noticing that the time of emission te can
be determined by the equation which implies that the coordinate distance traveled
by a light pulse between times te and t0 must equal rmax. Using Eq. (3.2) for the
coordinate velocity of light, this equation reads∫ t0

te

c

a(t)
dt = rmax . (3.8)

The “half-credit” answer to the quiz problem would include the above equation,
followed by the statement that the redshift zeh can be determined from

z =
a(t0)

a(te)
− 1 . (3.9)

The “full-credit” answer is obtained by changing the variable of integration as in
part (b), so Eq. (3.8) becomes

rmax =

∫ 1

xe

c

a(t)

dt

dx
dx

=
c

a(t0)

∫ 1

xe

1

x

dt

dx
dx ,

(3.10)
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where xe is the value of x corresponding to t = te. Then using Eq. (3.6) with
Ωk,0 = 0, we find

rmax =
c

a(t0)H0

∫ 1

xe

dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

. (3.11)

To complete the answer in this language, we use

z =
1

xe
− 1 . (3.12)

Eqs. (3.11) and (3.12) constitute a full answer to the question, but one could go
further and replace rmax using Eq. (3.7), finding

∫ ∞
1

dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

=

∫ 1

xe

dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

.

(3.13)

In this form the answer depends only on the values of ΩX,0.

You were of course not asked to evaluate this formula numerically, but you might
be interested in knowing that the Planck 2013 values Ωm,0 = 0.315, Ωvac,0 = 0.685,
and Ωrad,0 = 9.2 × 10−5 lead to zeh = 1.87. Thus, no event that is happening now
(i.e., at the same value of the cosmic time) in a galaxy at redshift larger than 1.87
will ever be visible to us or our descendants, even in principle.

PROBLEM 18: THE EFFECT OF PRESSURE ON COSMOLOGICAL EVO-
LUTION (25 points)

(a) (8 points) This problem is answered most easily by starting from the cosmological
formula for energy conservation, which I remember most easily in the form motivated
by dU = −p dV . Using the fact that the energy density u is equal to ρc2, the energy
conservation relation can be written

dU

dt
= −pdV

dt
=⇒ d

dt

(
ρc2a3

)
= −p d

dt

(
a3
)
.
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Setting

ρ =
α

a8

for some constant α, the conservation of energy formula becomes

d

dt

(
αc2

a5

)
= −p d

dt

(
a3
)
,

which implies

−5
αc2

a6

da

dt
= −3pa2 da

dt
.

Thus

p =
5

3

αc2

a8
=

5

3
ρc2 .

Alternatively, one may start from the equation for the time derivative of ρ,

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.

Since ρ = α
a8 , we take the time derivative to find ρ̇ = −8(ȧ/a)ρ, and therefore

−8
ȧ

a
ρ = −3

ȧ

a

(
ρ+

p

c2

)
,

and therefore

p =
5

3
ρc2.

(b) (9 points) For a flat universe, the Friedmann equation reduces to(
ȧ

a

)2

=
8π

3
Gρ .

Using ρ ∝ 1/a8, this implies that

ȧ =
β

a3
,

for some constant β. Rewriting this as

a3 da = β dt ,
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we can integrate the equation to give

1

4
a4 = βt+ const ,

where the constant of integration has no effect other than to shift the origin of the
time variable t. Using the standard big bang convention that a = 0 when t = 0, the
constant of integration vanishes. Thus,

a ∝ t1/4 .

The arbitrary constant of proportionality in this answer is consistent with the
wording of the problem, which states that “You should be able to determine the
function a(t) up to a constant factor.” Note that we could have expressed the
constant of proportionality in terms of the constant α that we used in part (a),
but there would not really be any point in doing that. The constant α was not a
given variable. If the comoving coordinates are measured in “notches,” then a is
measured in meters per notch, and the constant of proportionality in our answer can
be changed by changing the arbitrary definition of the notch.

(c) (8 points) We start from the conservation of energy equation in the form

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.

Substituting ρ̇ = −n(ȧ/a)ρ and p = (2/3)ρc2, we have

−nHρ = −3H

(
5

3
ρ

)
and therefore

n = 5.

PROBLEM 19: THE FREEZE-0UT OF A FICTITIOUS PARTICLE X (25
points)

(a) (5 points) The formula sheet tells us that the energy density of black-body radiation
is

u = g
π2

30

(kT )4

(h̄c)3
,
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where

g ≡
{

1 per spin state for bosons (integer spin)
7/8 per spin state for fermions (half-integer spin) .

Since the X is spin-1, and 1 is an integer, the X particles are bosons and g = 1 per
spin state. There are 3 species, X+, X−, and X0, and each species we are told has
three spin states, so there are a total of 9 spin states, so g = 9. Thus,

u = 9
π2

30

(kT )4

(h̄c)3
.

Alternatively, one could count the X+ and X− as one species with a distinct
particle and antiparticle, so gX+X− is given by

gX+X− = 1︸ ︷︷ ︸
Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 3︸ ︷︷ ︸
Spin states

= 6 .

The X0 is its own antiparticle, which means that the particle/antiparticle factor is
one, so

gX0 = 1︸ ︷︷ ︸
Fermion
factor

× 1︸ ︷︷ ︸
Species

× 1︸ ︷︷ ︸
Particle/

antiparticle

× 3︸ ︷︷ ︸
Spin states

= 3 ,

so the total g for X+, X−, and X0 is again equal to 9.

(b) (5 points) The formula sheet tells us that the number density of particles in black-
body radiation is

n = g∗
ζ(3)

π2

(kT )3

(h̄c)3
,

where

g∗ ≡
{

1 per spin state for bosons
3/4 per spin state for fermions .

For bosons g∗ = g, so g∗ for the X particles is 9. Then

nX = 9
ζ(3)

π2

(kT )3

(h̄c)3
.
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(c) (10 points) We are told that, when the X particles freeze out, all of their energy and
entropy is given to the photons. We use entropy rather than energy to determine
the final temperature of the photons, because the entropy in a comoving volume is
simply conserved, while the energy density varies as

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.

Thus, to track the energy, we need to know exactly how p behaves, and the behavior
of p during freeze-out is complicated, and we have not calculated it in this course.

The formula sheet tells us that the entropy density of a constituent of black-body
radiation is given by

s = g
2π2

45

k4T 3

(h̄c)3
.

If we consider some fixed coordinate volume Vcoord, the corresponding physical vol-
ume is Vphys = Vcoord a

3(t), where a(t) is the scale factor. The total entropy of
neutrinos in Vcoord is then

Sν = gν
2π2

45

k4T 3
ν (t)

(h̄c)3
Vcoord a

3(t) .

The quantities Tν(t) and a(t) depend on time, but the expression on the right-hand-
side does not, since entropy is conserved. For brevity I will write

Sν = gνA(t)T 3
ν (t) , (1)

where

A(t) ≡ 2π2

45

k4

(h̄c)3
Vcoord a

3(t) .

The e+e− pairs and the X’s contribute to the black-body radiation only before
the freeze-out, when kT � 0.511 MeV/c2. Let tb denote any time before the freeze-
out. Before the freeze-out, the total entropy of photons, e+e− pairs, and X particles
is given by

Sbefore,γeX = (gγ + ge+e− + gX)A(tb)T
3
γ (tb) . (2)

I can call the temperature Tγ , because the e+e− pairs and the X’s (as well as the
neutrinos) are all in thermal equilibrium at this point, so they all have the same
temperature.

Using ta to denote an arbitrary time after the freeze-out, the entropy of the
photons during this time period can be written

Safter,γ = gγA(ta)T 3
γ (ta) . (3)
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But since the e+e− pairs and X particles give all their entropy to the photons, we

have

Safter,γ = Sbefore,γeX . (4)

Then using Eqs. (2) and (3) we find

gγA(ta)T 3
γ (ta) = (gγ + ge+e− + gX)A(tb)T

3
γ (tb) . (5)

We can rewrite the last factor in Eq. (5) by remembering that Eq. (1) holds at all

times, and that Tν(tb) = Tγ(tb). So,

A(tb)T
3
γ (tb) = A(tb)T

3
ν (tb) =

Sν
gν

= A(ta)T 3
ν (ta) . (6)

Substituting Eq. (6) into Eq. (5), we have

gγA(ta)T 3
γ (ta) = (gγ + ge+e− + gX)A(ta)T 3

ν (ta) ,

from which we see that

T 3
γ (ta) =

gγ + ge+e− + gX
gγ

T 3
ν (ta) ,

and therefore

Tν(ta)

Tγ(ta)
=

(
gγ

gγ + ge+e− + gX

)1/3

=

(
2

2 + 7
2 + 9

)1/3

=

(
4

29

)1/3

.

(d) (5 points) The answer would be the same, since it was completely determined by the

conservation equation, Eq. (4) in the above answer. Regardless of the order in which

the freeze-outs occurred, the total entropy from the e+e− pairs and the X’s would

ultimately be given to the photons, so the amount of heating of the photons would

be the same.
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PROBLEM 20: THE TIME td OF DECOUPLING (25 points)

(a) (5 points) If the entropy of photons is conserved, then the entropy density falls as

s ∝ 1

a3(t)
.

Since s ∝ T 3, it follows that

T ∝ 1

a(t)
.

Thus, the ratio of the scale factors is equal to the inverse of the ratio temperatures:

xd =
T0

Td
.

(b) (5 points) The formula sheet reminds us that

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2 ,

where

Ωk,0 ≡ −
kc2

a2(t0)H2
0

= 1− Ωm,0 − Ωrad,0 − Ωvac,0 .

So for a flat universe Ωk,0 = 0, and we have

dx

dt
=
H0

x

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 .

(c) (5 points) The answer to part (b) can be rewritten as

dt =
x dx

H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

.

td is the time that elapses from when the universe has x = 0 to when it has x = xd,
so

td =
1

H0

∫ xd

0

x dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

.
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You were of course not asked to evaluate this integral numerically, but we will
do that now. We take T0 = 2.7255 K from Fixsen et al. (cited in Lecture Notes
6) and the Planck 2015 best fit values of H0 = 67.7 km-s−1-Mpc−1, Ωm,0 = 0.309,
Ωvac,0 = 0.691. The energy density of radiation (photons plus neutrinos) can then
be calculated to give Ωrad,0 = 9.2 × 10−5 (see Eq. (6.23) of Lecture Notes 6 and
the text of the 2nd paragraph of p. 12 of Lecture Notes 7). To keep our model
universe exactly flat, I am modifying Ωvac,0 to set it equal to 0.691−Ωrad,0, which is
well within the uncertainties. Numerical integration then gives 366,000 years, very
close to our original estimate. Of course this number is still approximate, since we
started with Td ≈ 3000 K. In any case, the decoupling of the photons in the CMB is
actually a gradual process. In 2003 I modified a standard program called CMBFast
to calculate the probability distribution of the time of last scattering (published in
https://arxiv.org/abs/astro-ph/0306275), with the following results:

The parameters used were Ωvac,0 = 0.70, Ωm,0 = 0.30, H0 = 68 km-s−1-Mpc−1. The
peak of the curve is at 367,000 years, and the median is at 388,000 years.

(d) (10 points) The derivation starts with the first-order Friedmann equation. Since we
are describing a flat universe, we can start with the Friedmann equation for a flat
universe,

H2 =
8π

3
Gρ .

Now we use the facts that ρm ∝ 1/a3, ρrad ∝ 1/a4, ρvac ∝ 1, and ρf ∝ 1/a8 to write

H2 =
8π

3
G
[ρm,0
x3

+
ρrad,0

x4
+ ρvac,0 +

ρf,0
x8

]
.

Then we use

ρm,0 = ρcΩm,0 =
3H2

0

8πG
Ωm,0,

https://arxiv.org/abs/astro-ph/0306275
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with similar relations for the other components of the mass density, to rewrite the
Friedmann equation as

H2 = H2
0

[
Ωm,0
x3

+
Ωrad,0

x4
+ Ωvac,0 +

Ωf,0
x8

]
.

Next we rewrite H2 as

H2 =

(
ȧ

a

)2

=

(
ẋ

x

)2

,

so (
ẋ

x

)2

= H2
0

[
Ωm,0
x3

+
Ωrad,0

x4
+ Ωvac,0 +

Ωf,0
x8

]
,

which can be rewritten as

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 +

Ωf,0
x4

.

From here the derivation is identical to that in part (c), leading to

td =
1

H0

∫ xd

0

x dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 +

Ωf,0
x4

,

which can also be written more neatly as

td =
1

H0

∫ xd

0

x3 dx√
Ωm,0x5 + Ωrad,0x4 + Ωvac,0x8 + Ωf,0

.
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QUIZ 3

PROBLEM 1: DID YOU DO THE READING? (25 points)

(a) (5 points) In what sense is the Big Bang theory incomplete?

(i) It doesn’t explain the origin of our universe. It only explains what happened
after the “big bang.”

(ii) It doesn’t explain how matter clumped into galaxies.

(iii) It is incompatible with our observation of a homogeneous cosmic microwave
background (CMB).

(iv) It always leads to a Big Crunch at the end of time, which is incompatible with
the accelerated expansion we observe today.

(v) It isn’t incomplete in any way; it is a fully self-contained theory that explains
why the universe is as flat and homogeneous as we observe it.

(b) (5 points) The cosmic microwave background is nearly isotropic, up to some small
fluctuations. Is our observation of these fluctuations from Earth affected by the
motion of our galaxy?

(i) No, because our galaxy isn’t located at any special point in space, so the universe
we observe must be statistically homogeneous in every direction. That is to say,
after averaging over small patches of the sky, every direction looks exactly the
same.

(ii) No, because we can always consider the reference frame where our galaxy is at
rest, and the fact that there is local thermal equilibrium in our universe means
that we will observe a homogeneous pattern of radiation once we go to the
locally equilibrated frame.

(iii) Yes. The rapid motion of our galaxy, because of its massive kinetic energy, leads
to a strong gravitational field that distorts the CMB in such a way that most
CMB photons we observe had their trajectory bent by more than 90 degrees.

(iv) Yes. Galaxies generally have “peculiar” velocities (small departures from a
completely uniform Hubble expansion). This means that the CMB we observe is
not perfectly isotropic because we are moving relative to the frame of reference in
which the CMB is isotropic, leading to what is known as the “dipole distortion”
of the CMB.

(v) No, because the peculiar velocity of the Milky way is too small to produce any
significant distortion in our observations of the CMB.

— Problem 1 continues on next page. —



(c) (5 points) Which of the following sequences of events is correctly ordered from earliest
to latest?

(i) Radiation-matter equality, Inflation, Nucleosynthesis

(ii) Last scattering surface, Recombination, Formation of galaxies

(iii) Radiation-matter equality, Recombination, Photon decoupling

(iv) Nucleosynthesis, Recombination, Inflation

(v) Inflation, Formation of galaxies, Last scattering surface

(d) (5 points) What problematic aspects of the conventional Big Bang theory does the
inflationary theory explain? Consider the following possibilities:

(A) The flatness problem

(B) The horizon problem

(C) The monopole problem

Which one of the following combinations is the best answer to the question?

(i) Only (A)

(ii) Only (B)

(iii) Only (C)

(iv) (A) and (B)

(v) (A), (B), and (C)

(e) (5 points) Ryden gives the equation of motion for the inflaton field as

φ̈+ 3H(t) φ̇ = −h̄c3 dV
dφ

.

Ryden explains that the inflaton field normally reaches terminal velocity. Explain in
a sentence or two what this means.

2



PROBLEM 2: A NEW THEORY OF THE WEAK INTERACTIONS (40
points)

This problem was Problem 11 of the Review Problems for Quiz 3 (2020).

Suppose a New Theory of the Weak Interactions (NTWI) was proposed, which dif-
fers from the standard theory in two ways. First, the NTWI predicts that the weak
interactions are somewhat weaker than in the standard model. In addition, the theory
implies the existence of new spin- 12 particles (fermions) called the R+ and R−, with a rest
energy of 50 MeV (where 1 MeV = 106 eV). This problem will deal with the cosmological
consequences of such a theory.

The NTWI will predict that the neutrinos in the early universe will decouple at
a higher temperature than in the standard model. Suppose that this decoupling takes
place at kT ≈ 200 MeV. This means that when the neutrinos cease to be thermally
coupled to the rest of matter, the hot soup of particles would contain not only photons,
neutrinos, and e+-e− pairs, but also µ+, µ−, π+, π−, and π0 particles, along with the
R+-R− pairs. (The muon is a particle which behaves almost identically to an electron,
except that its rest energy is 106 MeV. The pions are the lightest of the mesons, with
zero angular momentum and rest energies of 135 MeV and 140 MeV for the neutral and
charged pions, respectively. The π+ and π− are antiparticles of each other, and the π0

is its own antiparticle. Zero angular momentum implies a single spin state.) You may
assume that the universe is flat.

(a) (10 points) According to the standard particle physics model, what is the mass
density ρ of the universe when kT ≈ 200 MeV? What is the value of ρ at this
temperature, according to NTWI? Use either g/cm3 or kg/m3. (Calculators should
NOT be used, but you can save time by not carrying out the arithmetic. If you
do this, you should give the answer in “calculator-ready” form, by which I mean an
expression involving pure numbers (no units), with any necessary conversion factors
included, and with the units of the answer specified at the end. For example, if asked
how far light travels in 5 minutes, you could answer 2.998× 108 × 5× 60 m.)

(b) (10 points) According to the standard model, the temperature today of the thermal
neutrino background should be (4/11)1/3Tγ , where Tγ is the temperature of the
thermal photon background. What does the NTWI predict for the temperature of
the thermal neutrino background?

— Problem 2 continues on next page. —
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(c) (10 points) According to the standard model, what is the ratio today of the number
density of thermal neutrinos to the number density of thermal photons? What is
this ratio according to NTWI?

(d) (10 points) Since the reactions which interchange protons and neutrons involve neu-
trinos, these reactions “freeze out” at roughly the same time as the neutrinos decou-
ple. At later times the only reaction which effectively converts neutrons to protons is
the free decay of the neutron. Despite the fact that neutron decay is a weak interac-
tion, we will assume that it occurs with the usual 886-second mean lifetime. Would
the helium abundance predicted by the NTWI be higher or lower than the prediction
of the standard model? To within 5 or 10%, what would the NTWI predict for the
percent abundance (by weight) of helium in the universe? (As in part (a), you can
leave the answer in calculator-ready form.)

Useful information: The proton and neutron rest energies are given by mp c
2 =

938.27 MeV and mn c
2 = 939.57 MeV, with (mn −mp)c

2 = 1.29 MeV. The mean
lifetime for the neutron decay, n → p + e− + ν̄e , is given by τn = 886 s. In the
standard model of cosmology, the deuterium bottleneck breaks at tDB ≈ 200 s.

4



PROBLEM 3: A MESSAGE FROM A DISTANT GALAXY (35 points)

Our universe, at the present time, is well-described as a flat universe with a Hubble
expansion rateH0. Nonrelativistic matter comprises a fraction Ωm,0 of the critical density,
radiation comprises a fraction Ωr,0, and vacuum energy comprises a fraction Ωv,0. For
the following questions, you may leave your answers in terms of integrals that you do not
evaluate, but you should be sure to specify the limits of integration. The answer to each
part can be expressed in terms of the given variables, and/or the variables that represent
the answers to any previous part.

(a) (5 points) Suppose that a galaxy G is observed at a redshift zG. What was the
cosmic time of emission te of the light that we are now receiving from G? (“Cosmic
time” is the time variable of the Robertson-Walker metric.)

(b) (10 points) What is the present value of the physical distance `p,0 to the galaxy G?

(c) (10 points) Suppose that a civilization in galaxy G sends us a light signal, originating
at the present cosmic time. The light signal will reach us at a time called tr. Write
an equation that would determine the value of ar ≡ a(tr), the scale factor at the
time that we receive the signal. You will be happy to know that you are not expected
to solve this equation. NOTE ADDED: besides the variables previously mentioned,
your answer might also depend on a(t0).

(d) (10 points) At what cosmic time tr would we receive the signal from the galaxy G?

Problem Maximum Score Initials

1 25

2 40

3 35

TOTAL 100

5
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PROBLEM 1: DID YOU DO THE READING? (25 points)

(a) (5 points) In what sense is the Big Bang theory incomplete?

(i) It doesn’t explain the origin of our universe. It only explains what happened
after the “big bang.”

(ii) It doesn’t explain how matter clumped into galaxies.

(iii) It is incompatible with our observation of a homogeneous cosmic microwave
background (CMB).

(iv) It always leads to a Big Crunch at the end of time, which is incompatible with
the accelerated expansion we observe today.

(v) It isn’t incomplete in any way; it is a fully self-contained theory that explains
why the universe is as flat and homogeneous as we observe it.

(b) (5 points) The cosmic microwave background is nearly isotropic, up to some small
fluctuations. Is our observation of these fluctuations from Earth affected by the
motion of our galaxy?

(i) No, because our galaxy isn’t located at any special point in space, so the universe
we observe must be statistically homogeneous in every direction. That is to say,
after averaging over small patches of the sky, every direction looks exactly the
same.

(ii) No, because we can always consider the reference frame where our galaxy is at
rest, and the fact that there is local thermal equilibrium in our universe means
that we will observe a homogeneous pattern of radiation once we go to the
locally equilibrated frame.

(iii) Yes. The rapid motion of our galaxy, because of its massive kinetic energy, leads
to a strong gravitational field that distorts the CMB in such a way that most
CMB photons we observe had their trajectory bent by more than 90 degrees.

(iv) Yes. Galaxies generally have “peculiar” velocities (small departures from a
completely uniform Hubble expansion). This means that the CMB we observe
is not perfectly isotropic because we are moving relative to the frame of refer-
ence in which the CMB is isotropic, leading to what is known as the “dipole
distortion” of the CMB.

(v) No, because the peculiar velocity of the Milky way is too small to produce any
significant distortion in our observations of the CMB.
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(c) (5 points) Which of the following sequences of events is correctly ordered from earliest
to latest?

(i) Radiation-matter equality, Inflation, Nucleosynthesis

(ii) Last scattering surface, Recombination, Formation of galaxies

(iii) Radiation-matter equality, Recombination, Photon decoupling

(iv) Nucleosynthesis, Recombination, Inflation

(v) Inflation, Formation of galaxies, Last scattering surface

(d) (5 points) What problematic aspects of the conventional Big Bang theory does the
inflationary theory explain? Consider the following possibilities:

(A) The flatness problem

(B) The horizon problem

(C) The monopole problem

Which one of the following combinations is the best answer to the question?

(i) Only (A)

(ii) Only (B)

(iii) Only (C)

(iv) (A) and (B)

(v) (A), (B), and (C)

(e) (5 points) Ryden gives the equation of motion for the inflaton field as

φ̈+ 3H(t) φ̇ = −h̄c3 dV
dφ

.

Ryden explains that the inflaton field normally reaches terminal velocity. Explain in
a sentence or two what this means.

If we pretend that φ represents the position coordinate of a particle moving in one
dimension, the equation would describe a particle of mass 1 moving in the potential
energy function h̄c3V (φ), with a drag term 3H(t) φ̇. If the force is changing slowly
or not at all, the particle will accelerate until the drag force is equal in magnitude
to the force due to the potential energy, and then the φ̈ term will become negligible:

3H(t) φ̇ ' −h̄c3 dV
dφ

.
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PROBLEM 2: A NEW THEORY OF THE WEAK INTERACTIONS (40
points)

This problem was Problem 11 of the Review Problems for Quiz 3 (2020).

Suppose a New Theory of the Weak Interactions (NTWI) was proposed, which dif-
fers from the standard theory in two ways. First, the NTWI predicts that the weak
interactions are somewhat weaker than in the standard model. In addition, the theory
implies the existence of new spin- 1

2 particles (fermions) called the R+ and R−, with a rest
energy of 50 MeV (where 1 MeV = 106 eV). This problem will deal with the cosmological
consequences of such a theory.

The NTWI will predict that the neutrinos in the early universe will decouple at
a higher temperature than in the standard model. Suppose that this decoupling takes
place at kT ≈ 200 MeV. This means that when the neutrinos cease to be thermally
coupled to the rest of matter, the hot soup of particles would contain not only photons,
neutrinos, and e+-e− pairs, but also µ+, µ−, π+, π−, and π0 particles, along with the
R+-R− pairs. (The muon is a particle which behaves almost identically to an electron,
except that its rest energy is 106 MeV. The pions are the lightest of the mesons, with
zero angular momentum and rest energies of 135 MeV and 140 MeV for the neutral and
charged pions, respectively. The π+ and π− are antiparticles of each other, and the π0

is its own antiparticle. Zero angular momentum implies a single spin state.) You may
assume that the universe is flat.

(a) (10 points) According to the standard particle physics model, what is the mass
density ρ of the universe when kT ≈ 200 MeV? What is the value of ρ at this
temperature, according to NTWI? Use either g/cm3 or kg/m3. (Calculators should
NOT be used, but you can save time by not carrying out the arithmetic. If you
do this, you should give the answer in “calculator-ready” form, by which I mean an
expression involving pure numbers (no units), with any necessary conversion factors
included, and with the units of the answer specified at the end. For example, if asked
how far light travels in 5 minutes, you could answer 2.998× 108 × 5× 60 m.)

(b) (10 points) According to the standard model, the temperature today of the thermal
neutrino background should be (4/11)1/3Tγ , where Tγ is the temperature of the
thermal photon background. What does the NTWI predict for the temperature of
the thermal neutrino background?

(c) (10 points) According to the standard model, what is the ratio today of the number
density of thermal neutrinos to the number density of thermal photons? What is
this ratio according to NTWI?

(d) (10 points) Since the reactions which interchange protons and neutrons involve neu-
trinos, these reactions “freeze out” at roughly the same time as the neutrinos decou-
ple. At later times the only reaction which effectively converts neutrons to protons is
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the free decay of the neutron. Despite the fact that neutron decay is a weak interac-
tion, we will assume that it occurs with the usual 886-second mean lifetime. Would
the helium abundance predicted by the NTWI be higher or lower than the prediction
of the standard model? To within 5 or 10%, what would the NTWI predict for the
percent abundance (by weight) of helium in the universe? (As in part (a), you can
leave the answer in calculator-ready form.)

Useful information: The proton and neutron rest energies are given by mp c
2 =

938.27 MeV and mn c
2 = 939.57 MeV, with (mn −mp)c

2 = 1.29 MeV. The mean
lifetime for the neutron decay, n → p + e− + ν̄e , is given by τn = 886 s. In the
standard model of cosmology, the deuterium bottleneck breaks at tDB ≈ 200 s.

Answer:

(a) In the standard model, the black-body radiation at kT ≈ 200 MeV contains the
following contributions:

Photons: g = 2

e+e−: g = 4× 7
8 = 3 1

2

νe, νµ, ντ : g = 6× 7
8 = 5 1

4

µ+µ−: g = 4× 7
8 = 3 1

2

π+π−π0 g = 3


gTOT = 17

1

4

The mass density is then given by

ρ =
u

c2
= gTOT

π2

30

(kT )4

h̄3c5
.

In kg/m3, one can evaluate this expression by

ρ =

(
17

1

4

)
π2

30

[
200× 106 eV× 1.602× 10−19 J

eV

]4

(1.055× 10−34 J-s)
3

(2.998× 108 m/s)
5 .

Checking the units,

[ρ] =
J4

J3-s3-m5-s−5
=

J-s2

m5

=

(
kg-m2-s−2

)
s2

m5
= kg/m

3
.
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So, the final answer would be

ρ =

(
17

1

4

)
π2

30

[
200× 106 × 1.602× 10−19

]4
(1.055× 10−34)

3
(2.998× 108)

5

kg

m3
.

You were not expected to evaluate this, but with a calculator one would find

ρ = 2.10× 1018 kg/m
3
.

Alternatively, in g/cm3, one would evaluate this expression by

ρ =

(
17

1

4

)
π2

30

[
200× 106 eV× 1.602× 10−12 erg

eV

]4

(1.055× 10−27 erg-s)
3

(2.998× 1010 cm/s)
5 .

Checking the units,

[ρ] =
erg4

erg3-s3-cm5-s−5
=

erg-s2

cm5

=

(
g-cm2-s−2

)
s2

cm5
= g/cm

3
.

So, in this case the final answer would be

ρ =

(
17

1

4

)
π2

30

[
200× 106 × 1.602× 10−12

]4
(1.055× 10−27)

3
(2.998× 1010)

5

g

cm3
.

No evaluation was requested, but with a calculator you would find

ρ = 2.10× 1015 g/cm
3
,

which agrees with the answer in kg/m3.

Note: A common mistake was to leave out the conversion factor 1.602× 10−19 J/eV
(or 1.602 × 10−12 erg/eV), and instead to use h̄ = 6.582× 10−16 eV-s. But if one
works out the units of this answer, they turn out to be eV-sec2/m5 (or eV-sec2/cm5),
which is a most peculiar set of units to measure a mass density.
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In the NTWI, we have in addition the contribution to the mass density from R+-R−

pairs, which would act just like e+-e− pairs or µ+-µ− pairs, with g = 31
2 . Thus

gTOT = 20 3
4 , so

ρ =

(
20

3

4

)
π2

30

[
200× 106 × 1.602× 10−19

]4
(1.055× 10−34)

3
(2.998× 108)

5

kg

m3

or

ρ =

(
20

3

4

)
π2

30

[
200× 106 × 1.602× 10−12

]4
(1.055× 10−27)

3
(2.998× 1010)

5

g

cm3
.

Numerically, the answer in this case would be

ρNTWI = 2.53× 1018 kg/m
3

= 2.53× 1015 g/cm
3
.

(b) As long as the universe is in thermal equilibrium, entropy is conserved. The entropy
in a given volume of the comoving coordinate system is

a3(t)s Vcoord ,

where s is the entropy density and a3Vcoord is the physical volume. So

a3(t)s

is conserved. After the neutrinos decouple,

a3sν and a3sother

are separately conserved, where sother is the entropy of everything except neutrinos.

Note that s can be written as
s = gAT 3 ,

where A is a constant. Before the disappearance of the e, µ, R, and π particles from
the thermal equilibrium radiation,

sν = gνAT
3 =

(
5

1

4

)
AT 3

sbefore
other = gbefore

other AT 3 = (gγ + ge+e− + gµ+µ− + gR+R− + gπ) =

(
15

1

2

)
AT 3 .
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After the temperature falls well below kT = mec
2, the black-body radiation other

than neutrinos will be only photons, so

sν = gνAT
3 =

(
5

1

4

)
AT 3

ν

safter
other = gafter

otherAT
3
γ = gγAT

3
γ = 2AT 3

γ .

The conservation of a3sother then implies that

(
a3sother

)before
=
(
a3sother

)after
,

so

gbefore
other

(
a3T 3

γ

)before
= gafter

other

(
a3T 3

γ

)after
,

and then

(aTγ)
before

=

(
gafter

other

gbefore
other

)1/3

(aTγ)
after

.

Before the freeze-outs the neutrinos were at the same temperature as the photons, so(
aTγ

)before
=
(
aTν

)before
, and since there is no change in gν ,

(
aTν

)before
=
(
aTν

)after
.

So (
aTν

)after
=

(
gafter

other

gbefore
other

)1/3 (
aTγ

)after
,

and therefore, after the freeze-outs,

Tν =

(
gafter

other

gbefore
other

)1/3

Tγ .

Since gafter
other = 2 and gbefore

other = 15 1
2 , we have

Tν =

(
4

31

)1/3

Tγ (after freeze-outs).

(c) One can write

n = g∗BT 3 ,
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where B is a constant. Here g∗γ = 2, and g∗ν = 6 × 3
4 = 4 1

2 . In the standard model,
one has today

nν
nγ

=
g∗νT

3
ν

g∗γT
3
γ

=

(
4 1

2

)
2

4

11
=

9

11
.

In the NTWI,

nν
nγ

=

(
4 1

2

)
2

4

31
=

9

31
.

(d) At kT = 200 MeV, the thermal equilibrium ratio of neutrons to protons is given by

nn

np
= e−1.29 MeV/200 MeV ≈ 1 .

In the standard theory this ratio would decrease rapidly as the universe cooled and
kT fell below the p-n mass difference of 1.29 MeV, but in the NTWI the ratio freezes
out at the high temperature corresponding to kT = 200 MeV, when the ratio is
about 1. When kT falls below 200 MeV in the NTWI, the neutrino interactions

n+ νe ↔ p+ e− and n+ e+ ↔ p+ ν̄e

that maintain the thermal equilibrium balance between protons and neutrons no
longer occur at a significant rate, so the ratio nn/np is no longer controlled by
thermal equilibrium. After kT falls below 200 MeV, the only process that can convert
neutrons to protons is the rather slow process of free neutron decay, with a decay
time τn of about 886 s. Thus, when the deuterium bottleneck breaks at about 200
s, the number density of neutrons will be considerably higher than in the standard
model. Since essentially all of these neutrons will become bound into He nuclei, the
higher neutron abundance of the NTWI implies a

higher predicted He abundance.

To estimate the He abundance, note that if we temporarily ignore free neutron decay,
then the neutron-proton ratio would be frozen at about 1 and would remain 1 until
the time of nucleosynthesis. At the time of nucleosynthesis essentially all of these
neutrons would be bound into He nuclei (each with 2 protons and 2 neutrons). For
an initial 1:1 ratio of neutrons to protons, all the neutrons and protons can be bound
into He nuclei, with no protons left over in the form of hydrogen, so Y would equal
1. However, the free neutron decay process will cause the ratio nn/np to fall below
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1 before the start of nucleosynthesis, so the predicted value of Y would be less than
1.

To calculate how much less, note that Ryden estimates the start of nucleosynthe-
sis at the time when the temperature reaches Tnuc, which is the temperature for
which a thermal equilibrium calculation gives nD/nn = 1. This corresponds to what
Weinberg refers to as the breaking of the deuterium bottleneck. The temperature
Tnuc is calculated in terms of η = nB/nγ and physical constants, so it would not be
changed by the NTWI. The time when this temperature is reached, however, would
be changed slightly by the change in the ratio Tν/Tγ . Since this effect is rather
subtle, no points will be taken off if you omitted it. However, to be as accurate
as possible, one should recognize that nucleosynthesis occurs during the radiation-
dominated era, but long after the e+-e− pairs have disappeared, so the black-body
radiation consists of photons at temperature Tγ and neutrinos at a lower temperature
Tν . The energy density is given by

u =
π2

30

(kTγ)4

(h̄c)3

[
2 +

(
21

4

)(
Tν
Tγ

)4
]
≡ geff

π2

30

(kTγ)4

(h̄c)3
,

where

geff = 2 +

(
21

4

)(
Tν
Tγ

)4

.

For the standard model

gsm
eff = 2 +

(
21

4

)(
4

11

)4/3

,

and for the NTWI

gNTWI
eff = 2 +

(
21

4

)(
4

31

)4/3

.

The relation between time and temperature in a flat radiation-dominated universe
is given in the formula sheets as

kT =

(
45h̄3c5

16π3gG

)1/4
1√
t
.

Thus,

t ∝ 1

g
1/2
eff T 2

.

In the standard model Ryden estimates the time of nucleosynthesis as tsmnuc ≈ 200 s,
so in the NTWI it would be longer by the factor

tNTWI
nuc =

√
gsm

eff

gNTWI
eff

tsmnuc .
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While of coure you were not expected to work out the numerics, this gives

tNTWI
nuc = 1.20 tsmnuc .

For purposes of grading, taking tNTWI
nuc ≈ tNTWI

nuc ≈ 200s was considered acceptable.

Note that Ryden gives tnuc ≈ 200s, while Weinberg places it at 3 3
4 minutes ≈ 225 s,

which is close enough.

To follow the effect of this free decay, it is easiest to do it by considering the ratio
of neutrons to baryon number, nn/nB , since nB does not change during this period.
At freeze-out, when kT ≈ 200 MeV,

nn
nB
≈ 1

2
.

Just before nucleosynthesis, at time tnuc, the ratio will be

nn
nB
≈ 1

2
e−tnuc/τn .

If free decay is ignored, we found Y = 1. Since all the surviving neutrons are bound
into He, the corrected value of Y is simply deceased by multiplying by the fraction
of neutrons that do not undergo decay. Thus, the prediction of NTWI is

Y = e−tnuc/τd = exp

−
√

gsm
eff

gNTWI
eff

200

886

 ,

where gsm
eff and gNTWI

eff are given above. As stated above, no credit was lost for

omitting the factor
√
gsm

eff /g
NTWI
eff .

When evaluated numerically, this would give

Y = Predicted He abundance by weight ≈ 0.76 .
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PROBLEM 3: A MESSAGE FROM A DISTANT GALAXY (35 points)

Our universe, at the present time, is well-described as a flat universe with a Hubble
expansion rateH0. Nonrelativistic matter comprises a fraction Ωm,0 of the critical density,
radiation comprises a fraction Ωr,0, and vacuum energy comprises a fraction Ωv,0. For
the following questions, you may leave your answers in terms of integrals that you do not
evaluate, but you should be sure to specify the limits of integration. The answer to each
part can be expressed in terms of the given variables, and/or the variables that represent
the answers to any previous part.

(a) (5 points) Suppose that a galaxy G is observed at a redshift zG. What was the
cosmic time of emission te of the light that we are now receiving from G? (“Cosmic
time” is the time variable of the Robertson-Walker metric.)

(b) (10 points) What is the present value of the physical distance `p,0 to the galaxy G?

(c) (10 points) Suppose that a civilization in galaxy G sends us a light signal, originating
at the present cosmic time. The light signal will reach us at a time called tr. Write
an equation that would determine the value of ar ≡ a(tr), the scale factor at the
time that we receive the signal. You will be happy to know that you are not expected
to solve this equation. NOTE ADDED: besides the variables previously mentioned,
your answer might also depend on a(t0).

(d) (10 points) At what cosmic time tr would we receive the signal from the galaxy G?

Answer:

(a) For these questions the formulas on the Formula Sheets under GENERALIZED
COSMOLOGICAL EVOLUTION are relevant, but with Ωk,0 ≡ 0. Since tlook-back(z)
is defined as the amount of cosmic time by which the time of emission is earlier than
the present time, one way to answer this question is to write

te = t0 − tlook-back(zG) , (3.1)

where each quantity on the right-hand side can be written in terms of given quantities
by using formulas on the formula sheet:

t0 =
1

H0

∫ ∞
0

dz

(1 + z)
√

Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωv,0
,

tlook-back(zG) =
1

H0

∫ z

0

dz

(1 + z)
√

Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωv,0
.

(3.2)
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The two terms can be combined to give

te =
1

H0

∫ ∞
zG

dz

(1 + z)
√

Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωv,0
. (3.3)

Alternatively, one can go back to basics and start with the first order Friedmann
equation, which for a flat universe is given by

H2 =

(
ȧ

a

)2

=
8π

3
Gρ . (3.4)

Defining x(t) ≡ a(t)/a(t0), this can be rewritten as(
ẋ

x

)2

=
8π

3
Gρ . (3.5)

Expressing ρ = ρm + ρr + ρv, we can express each component as a fraction of
ρc = 3H2/(8πG) (as given in the Formula Sheet):

ρ(t0) =
3H2

0

8πG
(Ωm,0 + Ωr,0 + Ωv,0) . (3.6)

Knowing that ρm ∝ 1/a3, ρr ∝ 1/a4, and ρv ∝ a0, we can write

ρ(t) =
3H2

0

8πG

[
Ωm,0
x3

+
Ωr,0
x4

+ Ωv,0

]
, (3.7)

which can be used in Eq. (3.5) to give

ẋ

x
= H0

√
Ωm,0
x3

+
Ωr,0
x4

+ Ωv,0 , (3.8)

which we can multiply by x2 just to avoid the awkward denominators:

x
dx

dt
= H0F (x) , (3.9)

where

F (x) ≡
√

Ωm,0 x+ Ωr,0 + Ωv,0x4 . (3.10)

Eqs. (3.9) and (3.10) match the first equation in GENERALIZED COSMOLOGICAL
EVOLUTION in the formula sheet, which could have also been taken as a starting
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point. The equation can be written as a relation between time intervals and intervals
in x:

dt =
1

H0

xdx

F (x)
. (3.11)

x is related to the redshift z by x = 1/(1 + z), so the value of x at time te is

xG =
1

1 + zG
. (3.12)

Eq. (3.11) can then be integrated. As t varies from 0 to te, x varies from 0 to xG, so

te =
1

H0

∫ xG

0

x dx

F (x)
, (3.13)

where xG and F (x) are given by Eqs. (3.12) and (3.10). By a redefinition of the
variable of integration, this formula can be seen to be equivalent to Eq. (3.3).

(b) The coordinate velocity of light is given by

dr

dt
=

c

a(t)
. (3.14)

The total coordinate distance between us and G is the coordinate distance that light
can travel during the interval from te to t0, so

`c =

∫ t0

te

dr

dt
dt . (3.15)

Rewriting as an integral over x,

`c =

∫ t0

te

c

a(t)
dt =

c

a(t0)

∫ t0

te

1

x
dt =

c

a(t0)H0

∫ 1

xG

dx

F (x)
, (3.16)

where I used Eq. (3.11) to express dt in terms of dx, and I replaced the limits of
integration, te and t0, by the corresponding values of x, xG and 1. The physical
distance to the galaxy today is then

`p,0 = a(t0)`c =
c

H0

∫ 1

xG

dx

F (x)
, (3.17)

where again xG and F (x) are given by Eqs. (3.12) and (3.10).
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(c) Eq. (16) tells us that light can travel a coordinate distance `c during the time interval
in which x changes from xG and 1. The light signal from G must travel the same
coordinate distance during the time interval in which x changes from 1 to xr ≡
a(tr)/a(t0), which is given by an analogous formula:

`c =
c

a(t0)H0

∫ xr

1

dx

F (x)
. (3.18)

Comparing Eqs. (3.16) and (3.18), we see that

a(tr) = xr a(t0) , (3.19)

where xr is determined by the equation

∫ xr

1

dx

F (x)
=

∫ 1

xG

dx

F (x)
, (3.20)

where F (x) is defined by Eq. (3.10).

(d) The time of receipt would be the present time plus the transit time, so

tr = t0 +

∫ tr

t0

dt

= t0 +
1

H0

∫ xr

1

xdx

F (x)
,

(3.21)

where I used Eq. (3.11) to express dt in terms of dx, and where xr is determined by
Eq. (3.20).
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