8.286 Lecture 3
September 12, 2013
THE DOPPLER EFFECT
and
SPECIAL RELATIVITY
\(\Delta \ell = v \Delta t_S \)
(1) Observer

(2) Source

\[\Delta l = v \Delta t_s \]
\(\Delta \ell = v \Delta t_s \)
(1) Observer

(2) \[\Delta l = v \Delta t_s \]

(3)

(4)
(1') \hspace{1cm} \text{Observer} \hspace{1cm} \text{Source}

(2')

(3')
\[(1') \]

Observer

Source

\[(2') \]

\[(3') \]

\[(4') \]

\[\Delta l = v \Delta t_O \]
(1')

Observer

Source

(2')

(3')

(4')

\[\Delta \ell = v \Delta t_O \]
(1) **TIME DILATION:** Any clock which is moving at speed v relative to a given reference frame will “appear” (to an observer using that reference frame) to run slower than normal by a factor denoted by the Greek letter γ (gamma), and given by

$$\gamma \equiv \frac{1}{\sqrt{1 - \beta^2}} , \quad \beta \equiv \frac{v}{c} . \quad (1.10)$$
\[(1')\]

\[(2')\]

\[(3')\]

\[(4')\]

\[\Delta \ell = v \Delta t_O\]
(1') v \rightarrow Observer \leftarrow Source u \rightarrow

(2') v \rightarrow

(3') v \rightarrow

(4') v \rightarrow

$\Delta l = v \Delta t_O$
(1') \hspace{8cm} (2') \hspace{8cm} (3') \hspace{8cm} (4')

$\Delta t' = \text{time between reception of two pulses in frame of the slide.}$
\((1') \)

Observer \(v \) \hspace{2cm} Source \(u \)

\((2') \)

\(v \)

\((3') \)

\(v \)

\((4') \)

\[\Delta l = v \Delta t' \]

\[\Delta l = v \Delta t_O \]

\[\Delta t_O = \frac{\Delta t'}{\gamma} \]

\(\Delta t' = \) time between reception of two pulses in frame of the slide.
(1) TIME DILATION: Any clock which is moving at speed \(v \) relative to a given reference frame will “appear” (to an observer using that reference frame) to run slower than normal by a factor denoted by the Greek letter \(\gamma \) (gamma), and given by

\[
\gamma \equiv \frac{1}{\sqrt{1 - \beta^2}} , \quad \beta \equiv \frac{v}{c} .
\] (1.10)
(2) LORENTZ-FITZGERALD CONTRACTION: Any rod which is moving at a speed v along its length relative to a given reference frame will “appear” (to an observer using that reference frame) to be shorter than its normal length by the same factor γ. A rod which is moving perpendicular to its length does not undergo a change in apparent length.
(3) RELATIVITY OF SIMULTANEITY: Suppose a rod which has rest length l_0 is equipped with a clock at each end. The clocks can be synchronized in the rest frame of the system by using light pulses. (That is, a light pulse can be sent out from the center, and the clocks at both ends can be started when they receive the pulses.) If the system moves at speed v along its length, then the trailing clock will “appear” to read a time which is later than the leading clock by an amount $\beta l_0 / c$. If, on the other hand, the system moves perpendicular to its length, then the synchronization of the clocks is not disturbed.